You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
252 lines
6.4 KiB
252 lines
6.4 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
// |
|
// |
|
// AP_IMU_INS.cpp - IMU Sensor Library for Ardupilot Mega |
|
// Code by Michael Smith, Doug Weibel, Jordi Muñoz and Jose Julio. DIYDrones.com |
|
// |
|
// This library is free software; you can redistribute it and/or |
|
// modify it under the terms of the GNU Lesser General Public |
|
// License as published by the Free Software Foundation; either |
|
// version 2.1 of the License, or (at your option) any later version. |
|
// |
|
|
|
/// @file AP_IMU_INS.cpp |
|
/// @brief IMU driver on top of an INS driver. Provides calibration for the |
|
// inertial sensors (gyro and accel) |
|
|
|
#include <FastSerial.h> |
|
#include <AP_Common.h> |
|
|
|
#include <avr/eeprom.h> |
|
|
|
#include "AP_IMU_INS.h" |
|
|
|
void |
|
AP_IMU_INS::init( Start_style style, |
|
void (*delay_cb)(unsigned long t), |
|
void (*flash_leds_cb)(bool on), |
|
AP_PeriodicProcess * scheduler ) |
|
{ |
|
_ins->init(scheduler); |
|
// if we are warm-starting, load the calibration data from EEPROM and go |
|
// |
|
if (WARM_START == style) { |
|
_sensor_cal.load(); |
|
} else { |
|
|
|
// do cold-start calibration for both accel and gyro |
|
_init_gyro(delay_cb, flash_leds_cb); |
|
|
|
// save calibration |
|
_sensor_cal.save(); |
|
} |
|
} |
|
|
|
/**************************************************/ |
|
|
|
void |
|
AP_IMU_INS::init_gyro(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on)) |
|
{ |
|
_init_gyro(delay_cb, flash_leds_cb); |
|
_sensor_cal.save(); |
|
} |
|
|
|
#define FLASH_LEDS(on) do { if (flash_leds_cb != NULL) flash_leds_cb(on); } while (0) |
|
|
|
void |
|
AP_IMU_INS::_init_gyro(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on)) |
|
{ |
|
Vector3f last_average, best_avg; |
|
float ins_gyro[3]; |
|
float best_diff = 0; |
|
|
|
// cold start |
|
delay_cb(100); |
|
Serial.printf_P(PSTR("Init Gyro")); |
|
|
|
for(int c = 0; c < 25; c++) { |
|
// Mostly we are just flashing the LED's here |
|
// to tell the user to keep the IMU still |
|
FLASH_LEDS(true); |
|
delay_cb(20); |
|
|
|
_ins->update(); |
|
_ins->get_gyros(ins_gyro); |
|
|
|
FLASH_LEDS(false); |
|
delay_cb(20); |
|
} |
|
|
|
// the strategy is to average 200 points over 1 second, then do it |
|
// again and see if the 2nd average is within a small margin of |
|
// the first |
|
|
|
last_average.zero(); |
|
|
|
// we try to get a good calibration estimate for up to 10 seconds |
|
// if the gyros are stable, we should get it in 2 seconds |
|
for (int j = 0; j <= 10; j++) { |
|
Vector3f gyro_sum, gyro_avg, gyro_diff; |
|
float diff_norm; |
|
uint8_t i; |
|
|
|
Serial.printf_P(PSTR("*")); |
|
|
|
gyro_sum.zero(); |
|
for (i=0; i<200; i++) { |
|
_ins->update(); |
|
_ins->get_gyros(ins_gyro); |
|
gyro_sum += Vector3f(ins_gyro[0], ins_gyro[1], ins_gyro[2]); |
|
if (i % 40 == 20) { |
|
FLASH_LEDS(true); |
|
} else if (i % 40 == 0) { |
|
FLASH_LEDS(false); |
|
} |
|
delay_cb(5); |
|
} |
|
gyro_avg = gyro_sum / i; |
|
|
|
gyro_diff = last_average - gyro_avg; |
|
diff_norm = gyro_diff.length(); |
|
|
|
if (j == 0) { |
|
best_diff = diff_norm; |
|
best_avg = gyro_avg; |
|
} else if (gyro_diff.length() < ToRad(0.04)) { |
|
// we want the average to be within 0.1 bit, which is 0.04 degrees/s |
|
last_average = (gyro_avg * 0.5) + (last_average * 0.5); |
|
_sensor_cal[0] = last_average.x; |
|
_sensor_cal[1] = last_average.y; |
|
_sensor_cal[2] = last_average.z; |
|
// all done |
|
return; |
|
} else if (diff_norm < best_diff) { |
|
best_diff = diff_norm; |
|
best_avg = (gyro_avg * 0.5) + (last_average * 0.5); |
|
} |
|
last_average = gyro_avg; |
|
} |
|
|
|
// we've kept the user waiting long enough - use the best pair we |
|
// found so far |
|
Serial.printf_P(PSTR("\ngyro did not converge: diff=%f dps\n"), ToDeg(best_diff)); |
|
|
|
_sensor_cal[0] = best_avg.x; |
|
_sensor_cal[1] = best_avg.y; |
|
_sensor_cal[2] = best_avg.z; |
|
} |
|
|
|
void |
|
AP_IMU_INS::save() |
|
{ |
|
_sensor_cal.save(); |
|
} |
|
|
|
void |
|
AP_IMU_INS::init_accel(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on)) |
|
{ |
|
_init_accel(delay_cb, flash_leds_cb); |
|
_sensor_cal.save(); |
|
} |
|
|
|
void |
|
AP_IMU_INS::_init_accel(void (*delay_cb)(unsigned long t), void (*flash_leds_cb)(bool on)) |
|
{ |
|
int flashcount = 0; |
|
float adc_in; |
|
float prev[6] = {0,0,0}; |
|
float total_change; |
|
float max_offset; |
|
float ins_accel[3]; |
|
|
|
|
|
// cold start |
|
delay_cb(500); |
|
|
|
Serial.printf_P(PSTR("Init Accel")); |
|
|
|
for (int j=3; j<=5; j++) _sensor_cal[j] = 500; // Just a large value to load prev[j] the first time |
|
|
|
do { |
|
_ins->update(); |
|
_ins->get_accels(ins_accel); |
|
|
|
for (int j = 3; j <= 5; j++){ |
|
prev[j] = _sensor_cal[j]; |
|
adc_in = ins_accel[j-3]; |
|
_sensor_cal[j] = adc_in; |
|
} |
|
|
|
for(int i = 0; i < 50; i++){ // We take some readings... |
|
|
|
delay_cb(20); |
|
_ins->update(); |
|
_ins->get_accels(ins_accel); |
|
|
|
for (int j = 3; j < 6; j++){ |
|
adc_in = ins_accel[j-3]; |
|
_sensor_cal[j] = _sensor_cal[j] * 0.9 + adc_in * 0.1; |
|
} |
|
|
|
if(flashcount == 5) { |
|
Serial.printf_P(PSTR("*")); |
|
FLASH_LEDS(true); |
|
} |
|
|
|
if(flashcount >= 10) { |
|
flashcount = 0; |
|
FLASH_LEDS(false); |
|
} |
|
flashcount++; |
|
} |
|
|
|
// null gravity from the Z accel |
|
_sensor_cal[5] += 9.805; |
|
|
|
total_change = fabs(prev[3] - _sensor_cal[3]) + fabs(prev[4] - _sensor_cal[4]) +fabs(prev[5] - _sensor_cal[5]); |
|
max_offset = (_sensor_cal[3] > _sensor_cal[4]) ? _sensor_cal[3] : _sensor_cal[4]; |
|
max_offset = (max_offset > _sensor_cal[5]) ? max_offset : _sensor_cal[5]; |
|
|
|
delay_cb(500); |
|
} while ( total_change > _accel_total_cal_change || max_offset > _accel_max_cal_offset); |
|
|
|
Serial.printf_P(PSTR(" ")); |
|
} |
|
|
|
float |
|
AP_IMU_INS::_calibrated(uint8_t channel, float ins_value) |
|
{ |
|
return ins_value - _sensor_cal[channel]; |
|
} |
|
|
|
|
|
bool |
|
AP_IMU_INS::update(void) |
|
{ |
|
float gyros[3]; |
|
float accels[3]; |
|
|
|
_ins->update(); |
|
_ins->get_gyros(gyros); |
|
_ins->get_accels(accels); |
|
_sample_time = _ins->sample_time(); |
|
|
|
// convert corrected gyro readings to delta acceleration |
|
// |
|
_gyro.x = _calibrated(0, gyros[0]); |
|
_gyro.y = _calibrated(1, gyros[1]); |
|
_gyro.z = _calibrated(2, gyros[2]); |
|
|
|
// convert corrected accelerometer readings to acceleration |
|
// |
|
_accel.x = _calibrated(3, accels[0]); |
|
_accel.y = _calibrated(4, accels[1]); |
|
_accel.z = _calibrated(5, accels[2]); |
|
|
|
// always updated |
|
return true; |
|
} |
|
|
|
bool AP_IMU_INS::new_data_available(void) { |
|
return _ins->new_data_available(); |
|
}
|
|
|