You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
215 lines
7.0 KiB
215 lines
7.0 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
* location.cpp |
|
* Copyright (C) Andrew Tridgell 2011 |
|
* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* this module deals with calculations involving struct Location |
|
*/ |
|
#include <AP_HAL.h> |
|
#include <stdlib.h> |
|
#include "AP_Math.h" |
|
|
|
// radius of earth in meters |
|
#define RADIUS_OF_EARTH 6378100 |
|
|
|
// scaling factor from 1e-7 degrees to meters at equater |
|
// == 1.0e-7 * DEG_TO_RAD * RADIUS_OF_EARTH |
|
#define LOCATION_SCALING_FACTOR 0.011131884502145034f |
|
// inverse of LOCATION_SCALING_FACTOR |
|
#define LOCATION_SCALING_FACTOR_INV 89.83204953368922f |
|
|
|
float longitude_scale(const struct Location &loc) |
|
{ |
|
static int32_t last_lat; |
|
static float scale = 1.0; |
|
if (labs(last_lat - loc.lat) < 100000) { |
|
// we are within 0.01 degrees (about 1km) of the |
|
// same latitude. We can avoid the cos() and return |
|
// the same scale factor. |
|
return scale; |
|
} |
|
scale = cosf(loc.lat * 1.0e-7f * DEG_TO_RAD); |
|
last_lat = loc.lat; |
|
return scale; |
|
} |
|
|
|
|
|
|
|
// return distance in meters between two locations |
|
float get_distance(const struct Location &loc1, const struct Location &loc2) |
|
{ |
|
float dlat = (float)(loc2.lat - loc1.lat); |
|
float dlong = ((float)(loc2.lng - loc1.lng)) * longitude_scale(loc2); |
|
return pythagorous2(dlat, dlong) * LOCATION_SCALING_FACTOR; |
|
} |
|
|
|
// return distance in centimeters to between two locations |
|
uint32_t get_distance_cm(const struct Location &loc1, const struct Location &loc2) |
|
{ |
|
return get_distance(loc1, loc2) * 100; |
|
} |
|
|
|
// return bearing in centi-degrees between two locations |
|
int32_t get_bearing_cd(const struct Location &loc1, const struct Location &loc2) |
|
{ |
|
int32_t off_x = loc2.lng - loc1.lng; |
|
int32_t off_y = (loc2.lat - loc1.lat) / longitude_scale(loc2); |
|
int32_t bearing = 9000 + atan2f(-off_y, off_x) * 5729.57795f; |
|
if (bearing < 0) bearing += 36000; |
|
return bearing; |
|
} |
|
|
|
// see if location is past a line perpendicular to |
|
// the line between point1 and point2. If point1 is |
|
// our previous waypoint and point2 is our target waypoint |
|
// then this function returns true if we have flown past |
|
// the target waypoint |
|
bool location_passed_point(const struct Location &location, |
|
const struct Location &point1, |
|
const struct Location &point2) |
|
{ |
|
// the 3 points form a triangle. If the angle between lines |
|
// point1->point2 and location->point2 is greater than 90 |
|
// degrees then we have passed the waypoint |
|
Vector2f loc1(location.lat, location.lng); |
|
Vector2f pt1(point1.lat, point1.lng); |
|
Vector2f pt2(point2.lat, point2.lng); |
|
float angle = (loc1 - pt2).angle(pt1 - pt2); |
|
if (isinf(angle)) { |
|
// two of the points are co-located. |
|
// If location is equal to point2 then say we have passed the |
|
// waypoint, otherwise say we haven't |
|
if (get_distance(location, point2) == 0) { |
|
return true; |
|
} |
|
return false; |
|
} else if (angle == 0) { |
|
// if we are exactly on the line between point1 and |
|
// point2 then we are past the waypoint if the |
|
// distance from location to point1 is greater then |
|
// the distance from point2 to point1 |
|
return get_distance(location, point1) > |
|
get_distance(point2, point1); |
|
|
|
} |
|
if (degrees(angle) > 90) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
* extrapolate latitude/longitude given bearing and distance |
|
* Note that this function is accurate to about 1mm at a distance of |
|
* 100m. This function has the advantage that it works in relative |
|
* positions, so it keeps the accuracy even when dealing with small |
|
* distances and floating point numbers |
|
*/ |
|
void location_update(struct Location &loc, float bearing, float distance) |
|
{ |
|
float ofs_north = cosf(radians(bearing))*distance; |
|
float ofs_east = sinf(radians(bearing))*distance; |
|
location_offset(loc, ofs_north, ofs_east); |
|
} |
|
|
|
/* |
|
* extrapolate latitude/longitude given distances north and east |
|
* This function costs about 80 usec on an AVR2560 |
|
*/ |
|
void location_offset(struct Location &loc, float ofs_north, float ofs_east) |
|
{ |
|
if (ofs_north != 0 || ofs_east != 0) { |
|
int32_t dlat = ofs_north * LOCATION_SCALING_FACTOR_INV; |
|
int32_t dlng = (ofs_east * LOCATION_SCALING_FACTOR_INV) / longitude_scale(loc); |
|
loc.lat += dlat; |
|
loc.lng += dlng; |
|
} |
|
} |
|
|
|
/* |
|
return the distance in meters in North/East plane as a N/E vector |
|
from loc1 to loc2 |
|
*/ |
|
Vector2f location_diff(const struct Location &loc1, const struct Location &loc2) |
|
{ |
|
return Vector2f((loc2.lat - loc1.lat) * LOCATION_SCALING_FACTOR, |
|
(loc2.lng - loc1.lng) * LOCATION_SCALING_FACTOR * longitude_scale(loc1)); |
|
} |
|
|
|
/* |
|
wrap an angle in centi-degrees to 0..36000 |
|
*/ |
|
int32_t wrap_360_cd(int32_t error) |
|
{ |
|
if (error > 360000 || error < -360000) { |
|
// for very large numbers use modulus |
|
error = error % 36000; |
|
} |
|
if (error > 36000) error -= 36000; |
|
if (error < 0) error += 36000; |
|
return error; |
|
} |
|
|
|
/* |
|
wrap an angle in centi-degrees to -18000..18000 |
|
*/ |
|
int32_t wrap_180_cd(int32_t error) |
|
{ |
|
if (error > 360000 || error < -360000) { |
|
// for very large numbers use modulus |
|
error = error % 36000; |
|
} |
|
if (error > 18000) { error -= 36000; } |
|
if (error < -18000) { error += 36000; } |
|
return error; |
|
} |
|
|
|
/* |
|
wrap an angle defined in radians to -PI ~ PI (equivalent to +- 180 degrees) |
|
*/ |
|
float wrap_PI(float angle_in_radians) |
|
{ |
|
if (angle_in_radians > 10*PI || angle_in_radians < -10*PI) { |
|
// for very large numbers use modulus |
|
angle_in_radians = fmodf(angle_in_radians, 2*PI); |
|
} |
|
while (angle_in_radians > PI) angle_in_radians -= 2*PI; |
|
while (angle_in_radians < -PI) angle_in_radians += 2*PI; |
|
return angle_in_radians; |
|
} |
|
|
|
/* |
|
print a int32_t lat/long in decimal degrees |
|
*/ |
|
void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon) |
|
{ |
|
int32_t dec_portion, frac_portion; |
|
int32_t abs_lat_or_lon = labs(lat_or_lon); |
|
|
|
// extract decimal portion (special handling of negative numbers to ensure we round towards zero) |
|
dec_portion = abs_lat_or_lon / 10000000UL; |
|
|
|
// extract fractional portion |
|
frac_portion = abs_lat_or_lon - dec_portion*10000000UL; |
|
|
|
// print output including the minus sign |
|
if( lat_or_lon < 0 ) { |
|
s->printf_P(PSTR("-")); |
|
} |
|
s->printf_P(PSTR("%ld.%07ld"),(long)dec_portion,(long)frac_portion); |
|
}
|
|
|