You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1226 lines
40 KiB
1226 lines
40 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#define THISFIRMWARE "ArduPlane V2.50" |
|
/* |
|
Authors: Doug Weibel, Jose Julio, Jordi Munoz, Jason Short, Andrew Tridgell, Randy Mackay, Pat Hickey, John Arne Birkeland, Olivier Adler, Amilcar Lucas, Gregory Fletcher |
|
Thanks to: Chris Anderson, Michael Oborne, Paul Mather, Bill Premerlani, James Cohen, JB from rotorFX, Automatik, Fefenin, Peter Meister, Remzibi, Yury Smirnov, Sandro Benigno, Max Levine, Roberto Navoni, Lorenz Meier, Yury MonZon |
|
Please contribute your ideas! |
|
|
|
|
|
This firmware is free software; you can redistribute it and/or |
|
modify it under the terms of the GNU Lesser General Public |
|
License as published by the Free Software Foundation; either |
|
version 2.1 of the License, or (at your option) any later version. |
|
*/ |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Header includes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
// AVR runtime |
|
#include <avr/io.h> |
|
#include <avr/eeprom.h> |
|
#include <avr/pgmspace.h> |
|
#include <math.h> |
|
|
|
// Libraries |
|
#include <FastSerial.h> |
|
#include <AP_Common.h> |
|
#include <Arduino_Mega_ISR_Registry.h> |
|
#include <APM_RC.h> // ArduPilot Mega RC Library |
|
#include <AP_GPS.h> // ArduPilot GPS library |
|
#include <I2C.h> // Wayne Truchsess I2C lib |
|
#include <SPI.h> // Arduino SPI lib |
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library |
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library |
|
#include <AP_AnalogSource.h>// ArduPilot Mega polymorphic analog getter |
|
#include <AP_PeriodicProcess.h> // ArduPilot Mega TimerProcess |
|
#include <AP_Baro.h> // ArduPilot barometer library |
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library |
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library |
|
#include <AP_InertialSensor.h> // Inertial Sensor (uncalibrated IMU) Library |
|
#include <AP_IMU.h> // ArduPilot Mega IMU Library |
|
#include <AP_AHRS.h> // ArduPilot Mega DCM Library |
|
#include <PID.h> // PID library |
|
#include <RC_Channel.h> // RC Channel Library |
|
#include <AP_RangeFinder.h> // Range finder library |
|
#include <Filter.h> // Filter library |
|
#include <ModeFilter.h> // Mode Filter from Filter library |
|
#include <LowPassFilter.h> // LowPassFilter class (inherits from Filter class) |
|
#include <AP_Relay.h> // APM relay |
|
#include <AP_Camera.h> // Photo or video camera |
|
#include <AP_Airspeed.h> |
|
#include <memcheck.h> |
|
|
|
// Configuration |
|
#include "config.h" |
|
|
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions |
|
|
|
#include <AP_Mount.h> // Camera/Antenna mount |
|
|
|
// Local modules |
|
#include "defines.h" |
|
#include "Parameters.h" |
|
#include "GCS.h" |
|
|
|
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Serial ports |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Note that FastSerial port buffers are allocated at ::begin time, |
|
// so there is not much of a penalty to defining ports that we don't |
|
// use. |
|
// |
|
FastSerialPort0(Serial); // FTDI/console |
|
FastSerialPort1(Serial1); // GPS port |
|
#if TELEMETRY_UART2 == ENABLED |
|
// solder bridge set to enable UART2 instead of USB MUX |
|
FastSerialPort2(Serial3); |
|
#else |
|
FastSerialPort3(Serial3); // Telemetry port for APM1 |
|
#endif |
|
|
|
// this sets up the parameter table, and sets the default values. This |
|
// must be the first AP_Param variable declared to ensure its |
|
// constructor runs before the constructors of the other AP_Param |
|
// variables |
|
AP_Param param_loader(var_info, WP_START_BYTE); |
|
|
|
// Outback Challenge failsafe support |
|
#if OBC_FAILSAFE == ENABLED |
|
#include <APM_OBC.h> |
|
APM_OBC obc; |
|
#endif |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// ISR Registry |
|
//////////////////////////////////////////////////////////////////////////////// |
|
Arduino_Mega_ISR_Registry isr_registry; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// APM_RC_Class Instance |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
APM_RC_APM2 APM_RC; |
|
#else |
|
APM_RC_APM1 APM_RC; |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Dataflash |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
DataFlash_APM2 DataFlash; |
|
#else |
|
DataFlash_APM1 DataFlash; |
|
#endif |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Parameters |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Global parameters are all contained within the 'g' class. |
|
// |
|
static Parameters g; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// prototypes |
|
static void update_events(void); |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// There are three basic options related to flight sensor selection. |
|
// |
|
// - Normal flight mode. Real sensors are used. |
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL |
|
// protocol supplies attitude information directly. |
|
// - HIL Sensors mode. Synthetic sensors are configured that |
|
// supply data from the simulation. |
|
// |
|
|
|
// All GPS access should be through this pointer. |
|
static GPS *g_gps; |
|
|
|
// flight modes convenience array |
|
static AP_Int8 *flight_modes = &g.flight_mode1; |
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
|
|
// real sensors |
|
#if CONFIG_ADC == ENABLED |
|
static AP_ADC_ADS7844 adc; |
|
#endif |
|
|
|
#ifdef DESKTOP_BUILD |
|
AP_Baro_BMP085_HIL barometer; |
|
AP_Compass_HIL compass; |
|
#include <SITL.h> |
|
SITL sitl; |
|
#else |
|
|
|
#if CONFIG_BARO == AP_BARO_BMP085 |
|
# if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2 |
|
static AP_Baro_BMP085 barometer(true); |
|
# else |
|
static AP_Baro_BMP085 barometer(false); |
|
# endif |
|
#elif CONFIG_BARO == AP_BARO_MS5611 |
|
static AP_Baro_MS5611 barometer; |
|
#endif |
|
|
|
static AP_Compass_HMC5843 compass; |
|
#endif |
|
|
|
// real GPS selection |
|
#if GPS_PROTOCOL == GPS_PROTOCOL_AUTO |
|
AP_GPS_Auto g_gps_driver(&Serial1, &g_gps); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NMEA |
|
AP_GPS_NMEA g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_SIRF |
|
AP_GPS_SIRF g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_UBLOX |
|
AP_GPS_UBLOX g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK |
|
AP_GPS_MTK g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_MTK16 |
|
AP_GPS_MTK16 g_gps_driver(&Serial1); |
|
|
|
#elif GPS_PROTOCOL == GPS_PROTOCOL_NONE |
|
AP_GPS_None g_gps_driver(NULL); |
|
|
|
#else |
|
#error Unrecognised GPS_PROTOCOL setting. |
|
#endif // GPS PROTOCOL |
|
|
|
# if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 |
|
AP_InertialSensor_MPU6000 ins( CONFIG_MPU6000_CHIP_SELECT_PIN ); |
|
# else |
|
AP_InertialSensor_Oilpan ins( &adc ); |
|
#endif // CONFIG_IMU_TYPE |
|
AP_IMU_INS imu( &ins ); |
|
|
|
AP_AHRS_DCM ahrs(&imu, g_gps); |
|
|
|
#elif HIL_MODE == HIL_MODE_SENSORS |
|
// sensor emulators |
|
AP_ADC_HIL adc; |
|
AP_Baro_BMP085_HIL barometer; |
|
AP_Compass_HIL compass; |
|
AP_GPS_HIL g_gps_driver(NULL); |
|
AP_InertialSensor_Oilpan ins( &adc ); |
|
AP_IMU_Shim imu; |
|
AP_AHRS_DCM ahrs(&imu, g_gps); |
|
|
|
#elif HIL_MODE == HIL_MODE_ATTITUDE |
|
AP_ADC_HIL adc; |
|
AP_IMU_Shim imu; // never used |
|
AP_AHRS_HIL ahrs(&imu, g_gps); |
|
AP_GPS_HIL g_gps_driver(NULL); |
|
AP_Compass_HIL compass; // never used |
|
AP_Baro_BMP085_HIL barometer; |
|
#ifdef DESKTOP_BUILD |
|
#include <SITL.h> |
|
SITL sitl; |
|
AP_InertialSensor_Oilpan ins( &adc ); |
|
#endif |
|
|
|
#else |
|
#error Unrecognised HIL_MODE setting. |
|
#endif // HIL MODE |
|
|
|
// we always have a timer scheduler |
|
AP_TimerProcess timer_scheduler; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GCS selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
GCS_MAVLINK gcs0; |
|
GCS_MAVLINK gcs3; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// PITOT selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
ModeFilterInt16_Size5 sonar_mode_filter(2); |
|
|
|
#if CONFIG_PITOT_SOURCE == PITOT_SOURCE_ADC |
|
AP_AnalogSource_ADC pitot_analog_source( &adc, |
|
CONFIG_PITOT_SOURCE_ADC_CHANNEL, 1.0); |
|
#elif CONFIG_PITOT_SOURCE == PITOT_SOURCE_ANALOG_PIN |
|
AP_AnalogSource_Arduino pitot_analog_source(CONFIG_PITOT_SOURCE_ANALOG_PIN, 4.0); |
|
#endif |
|
|
|
#if SONAR_TYPE == MAX_SONAR_XL |
|
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter); |
|
#elif SONAR_TYPE == MAX_SONAR_LV |
|
// XXX honestly I think these output the same values |
|
// If someone knows, can they confirm it? |
|
AP_RangeFinder_MaxsonarXL sonar(&pitot_analog_source, &sonar_mode_filter); |
|
#endif |
|
|
|
AP_Relay relay; |
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Global variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
// APM2 only |
|
#if USB_MUX_PIN > 0 |
|
static bool usb_connected; |
|
#endif |
|
|
|
static const char *comma = ","; |
|
|
|
static const char* flight_mode_strings[] = { |
|
"Manual", |
|
"Circle", |
|
"Stabilize", |
|
"", |
|
"", |
|
"FBW_A", |
|
"FBW_B", |
|
"", |
|
"", |
|
"", |
|
"Auto", |
|
"RTL", |
|
"Loiter", |
|
"Takeoff", |
|
"Land"}; |
|
|
|
|
|
/* Radio values |
|
Channel assignments |
|
1 Ailerons (rudder if no ailerons) |
|
2 Elevator |
|
3 Throttle |
|
4 Rudder (if we have ailerons) |
|
5 Aux5 |
|
6 Aux6 |
|
7 Aux7 |
|
8 Aux8/Mode |
|
Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. |
|
See libraries/RC_Channel/RC_Channel_aux.h for more information |
|
*/ |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Radio |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is the state of the flight control system |
|
// There are multiple states defined such as MANUAL, FBW-A, AUTO |
|
byte control_mode = INITIALISING; |
|
// Used to maintain the state of the previous control switch position |
|
// This is set to -1 when we need to re-read the switch |
|
byte oldSwitchPosition; |
|
// This is used to enable the inverted flight feature |
|
bool inverted_flight = false; |
|
// These are trim values used for elevon control |
|
// For elevons radio_in[CH_ROLL] and radio_in[CH_PITCH] are equivalent aileron and elevator, not left and right elevon |
|
static uint16_t elevon1_trim = 1500; |
|
static uint16_t elevon2_trim = 1500; |
|
// These are used in the calculation of elevon1_trim and elevon2_trim |
|
static uint16_t ch1_temp = 1500; |
|
static uint16_t ch2_temp = 1500; |
|
// These are values received from the GCS if the user is using GCS joystick |
|
// control and are substituted for the values coming from the RC radio |
|
static int16_t rc_override[8] = {0,0,0,0,0,0,0,0}; |
|
// A flag if GCS joystick control is in use |
|
static bool rc_override_active = false; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Failsafe |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// A tracking variable for type of failsafe active |
|
// Used for failsafe based on loss of RC signal or GCS signal |
|
static int16_t failsafe; |
|
// Used to track if the value on channel 3 (throtttle) has fallen below the failsafe threshold |
|
// RC receiver should be set up to output a low throttle value when signal is lost |
|
static bool ch3_failsafe; |
|
// A timer used to help recovery from unusual attitudes. If we enter an unusual attitude |
|
// while in autonomous flight this variable is used to hold roll at 0 for a recovery period |
|
static byte crash_timer; |
|
// A timer used to track how long since we have received the last GCS heartbeat or rc override message |
|
static uint32_t rc_override_fs_timer = 0; |
|
|
|
// the time when the last HEARTBEAT message arrived from a GCS |
|
static uint32_t last_heartbeat_ms; |
|
|
|
// A timer used to track how long we have been in a "short failsafe" condition due to loss of RC signal |
|
static uint32_t ch3_failsafe_timer = 0; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// LED output |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// state of the GPS light (on/off) |
|
static bool GPS_light; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GPS variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is used to scale GPS values for EEPROM storage |
|
// 10^7 times Decimal GPS means 1 == 1cm |
|
// This approximation makes calculations integer and it's easy to read |
|
static const float t7 = 10000000.0; |
|
// We use atan2 and other trig techniques to calaculate angles |
|
// A counter used to count down valid gps fixes to allow the gps estimate to settle |
|
// before recording our home position (and executing a ground start if we booted with an air start) |
|
static byte ground_start_count = 5; |
|
// Used to compute a speed estimate from the first valid gps fixes to decide if we are |
|
// on the ground or in the air. Used to decide if a ground start is appropriate if we |
|
// booted with an air start. |
|
static int16_t ground_start_avg; |
|
// Tracks if GPS is enabled based on statup routine |
|
// If we do not detect GPS at startup, we stop trying and assume GPS is not connected |
|
static bool GPS_enabled = false; |
|
|
|
// true if we have a position estimate from AHRS |
|
static bool have_position; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Location & Navigation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Constants |
|
const float radius_of_earth = 6378100; // meters |
|
const float gravity = 9.81; // meters/ sec^2 |
|
|
|
// This is the currently calculated direction to fly. |
|
// deg * 100 : 0 to 360 |
|
static int32_t nav_bearing_cd; |
|
|
|
// This is the direction to the next waypoint or loiter center |
|
// deg * 100 : 0 to 360 |
|
static int32_t target_bearing_cd; |
|
|
|
//This is the direction from the last waypoint to the next waypoint |
|
// deg * 100 : 0 to 360 |
|
static int32_t crosstrack_bearing_cd; |
|
|
|
// Direction held during phases of takeoff and landing |
|
// deg * 100 dir of plane, A value of -1 indicates the course has not been set/is not in use |
|
static int32_t hold_course = -1; // deg * 100 dir of plane |
|
|
|
// There may be two active commands in Auto mode. |
|
// This indicates the active navigation command by index number |
|
static byte nav_command_index; |
|
// This indicates the active non-navigation command by index number |
|
static byte non_nav_command_index; |
|
// This is the command type (eg navigate to waypoint) of the active navigation command |
|
static byte nav_command_ID = NO_COMMAND; |
|
static byte non_nav_command_ID = NO_COMMAND; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Airspeed |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The calculated airspeed to use in FBW-B. Also used in higher modes for insuring min ground speed is met. |
|
// Also used for flap deployment criteria. Centimeters per second. |
|
static int32_t target_airspeed_cm; |
|
|
|
// The difference between current and desired airspeed. Used in the pitch controller. Centimeters per second. |
|
static float airspeed_error_cm; |
|
|
|
// The calculated total energy error (kinetic (altitude) plus potential (airspeed)). |
|
// Used by the throttle controller |
|
static int32_t energy_error; |
|
|
|
// kinetic portion of energy error (m^2/s^2) |
|
static int32_t airspeed_energy_error; |
|
|
|
// An amount that the airspeed should be increased in auto modes based on the user positioning the |
|
// throttle stick in the top half of the range. Centimeters per second. |
|
static int16_t airspeed_nudge_cm; |
|
|
|
// Similar to airspeed_nudge, but used when no airspeed sensor. |
|
// 0-(throttle_max - throttle_cruise) : throttle nudge in Auto mode using top 1/2 of throttle stick travel |
|
static int16_t throttle_nudge = 0; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Ground speed |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The amount current ground speed is below min ground speed. Centimeters per second |
|
static int32_t groundspeed_undershoot = 0; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Location Errors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Difference between current bearing and desired bearing. Hundredths of a degree |
|
static int32_t bearing_error_cd; |
|
|
|
// Difference between current altitude and desired altitude. Centimeters |
|
static int32_t altitude_error_cm; |
|
|
|
// Distance perpandicular to the course line that we are off trackline. Meters |
|
static float crosstrack_error; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Battery Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Battery pack 1 voltage. Initialized above the low voltage threshold to pre-load the filter and prevent low voltage events at startup. |
|
static float battery_voltage1 = LOW_VOLTAGE * 1.05; |
|
// Battery pack 1 instantaneous currrent draw. Amperes |
|
static float current_amps1; |
|
// Totalized current (Amp-hours) from battery 1 |
|
static float current_total1; |
|
|
|
// To Do - Add support for second battery pack |
|
//static float battery_voltage2 = LOW_VOLTAGE * 1.05; // Battery 2 Voltage, initialized above threshold for filter |
|
//static float current_amps2; // Current (Amperes) draw from battery 2 |
|
//static float current_total2; // Totalized current (Amp-hours) from battery 2 |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Airspeed Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
AP_Airspeed airspeed(&pitot_analog_source); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Altitude Sensor variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Altitude from the sonar sensor. Meters. Not yet implemented. |
|
static int16_t sonar_alt; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// flight mode specific |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Flag for using gps ground course instead of IMU yaw. Set false when takeoff command in process. |
|
static bool takeoff_complete = true; |
|
// Flag to indicate if we have landed. |
|
//Set land_complete if we are within 2 seconds distance or within 3 meters altitude of touchdown |
|
static bool land_complete; |
|
// Altitude threshold to complete a takeoff command in autonomous modes. Centimeters |
|
static int32_t takeoff_altitude; |
|
|
|
// Minimum pitch to hold during takeoff command execution. Hundredths of a degree |
|
static int16_t takeoff_pitch_cd; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Loiter management |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Previous target bearing. Used to calculate loiter rotations. Hundredths of a degree |
|
static int32_t old_target_bearing_cd; |
|
|
|
// Total desired rotation in a loiter. Used for Loiter Turns commands. Degrees |
|
static int32_t loiter_total; |
|
|
|
// The amount in degrees we have turned since recording old_target_bearing |
|
static int16_t loiter_delta; |
|
|
|
// Total rotation in a loiter. Used for Loiter Turns commands and to check for missed waypoints. Degrees |
|
static int32_t loiter_sum; |
|
|
|
// The amount of time we have been in a Loiter. Used for the Loiter Time command. Milliseconds. |
|
static uint32_t loiter_time_ms; |
|
|
|
// The amount of time we should stay in a loiter for the Loiter Time command. Milliseconds. |
|
static uint32_t loiter_time_max_ms; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation control variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The instantaneous desired bank angle. Hundredths of a degree |
|
static int32_t nav_roll_cd; |
|
|
|
// The instantaneous desired pitch angle. Hundredths of a degree |
|
static int32_t nav_pitch_cd; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Waypoint distances |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Distance between plane and next waypoint. Meters |
|
// is not static because AP_Camera uses it |
|
int32_t wp_distance; |
|
|
|
// Distance between previous and next waypoint. Meters |
|
static int32_t wp_totalDistance; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// repeating event control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Flag indicating current event type |
|
static byte event_id; |
|
|
|
// when the event was started in ms |
|
static int32_t event_timer_ms; |
|
|
|
// how long to delay the next firing of event in millis |
|
static uint16_t event_delay_ms; |
|
|
|
// how many times to cycle : -1 (or -2) = forever, 2 = do one cycle, 4 = do two cycles |
|
static int16_t event_repeat = 0; |
|
// per command value, such as PWM for servos |
|
static int16_t event_value; |
|
// the value used to cycle events (alternate value to event_value) |
|
static int16_t event_undo_value; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Conditional command |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// A value used in condition commands (eg delay, change alt, etc.) |
|
// For example in a change altitude command, it is the altitude to change to. |
|
static int32_t condition_value; |
|
// A starting value used to check the status of a conditional command. |
|
// For example in a delay command the condition_start records that start time for the delay |
|
static uint32_t condition_start; |
|
// A value used in condition commands. For example the rate at which to change altitude. |
|
static int16_t condition_rate; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// 3D Location vectors |
|
// Location structure defined in AP_Common |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The home location used for RTL. The location is set when we first get stable GPS lock |
|
static struct Location home; |
|
// Flag for if we have g_gps lock and have set the home location |
|
static bool home_is_set; |
|
// The location of the previous waypoint. Used for track following and altitude ramp calculations |
|
static struct Location prev_WP; |
|
// The plane's current location |
|
static struct Location current_loc; |
|
// The location of the current/active waypoint. Used for altitude ramp, track following and loiter calculations. |
|
static struct Location next_WP; |
|
// The location of the active waypoint in Guided mode. |
|
static struct Location guided_WP; |
|
// The location structure information from the Nav command being processed |
|
static struct Location next_nav_command; |
|
// The location structure information from the Non-Nav command being processed |
|
static struct Location next_nonnav_command; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Altitude / Climb rate control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The current desired altitude. Altitude is linearly ramped between waypoints. Centimeters |
|
static int32_t target_altitude_cm; |
|
// Altitude difference between previous and current waypoint. Centimeters |
|
static int32_t offset_altitude_cm; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// IMU variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The main loop execution time. Seconds |
|
//This is the time between calls to the DCM algorithm and is the Integration time for the gyros. |
|
static float G_Dt = 0.02; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Performance monitoring |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Timer used to accrue data and trigger recording of the performanc monitoring log message |
|
static int32_t perf_mon_timer; |
|
// The maximum main loop execution time recorded in the current performance monitoring interval |
|
static int16_t G_Dt_max = 0; |
|
// The number of gps fixes recorded in the current performance monitoring interval |
|
static int16_t gps_fix_count = 0; |
|
// A variable used by developers to track performanc metrics. |
|
// Currently used to record the number of GCS heartbeat messages received |
|
static int16_t pmTest1 = 0; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// System Timers |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Time in miliseconds of start of main control loop. Milliseconds |
|
static uint32_t fast_loopTimer_ms; |
|
|
|
// Time Stamp when fast loop was complete. Milliseconds |
|
static uint32_t fast_loopTimeStamp_ms; |
|
|
|
// Number of milliseconds used in last main loop cycle |
|
static uint8_t delta_ms_fast_loop; |
|
|
|
// Counter of main loop executions. Used for performance monitoring and failsafe processing |
|
static uint16_t mainLoop_count; |
|
|
|
// Time in miliseconds of start of medium control loop. Milliseconds |
|
static uint32_t medium_loopTimer_ms; |
|
|
|
// Counters for branching from main control loop to slower loops |
|
static byte medium_loopCounter; |
|
// Number of milliseconds used in last medium loop cycle |
|
static uint8_t delta_ms_medium_loop; |
|
|
|
// Counters for branching from medium control loop to slower loops |
|
static byte slow_loopCounter; |
|
// Counter to trigger execution of very low rate processes |
|
static byte superslow_loopCounter; |
|
// Counter to trigger execution of 1 Hz processes |
|
static byte counter_one_herz; |
|
|
|
// % MCU cycles used |
|
static float load; |
|
|
|
|
|
// Camera/Antenna mount tracking and stabilisation stuff |
|
// -------------------------------------- |
|
#if MOUNT == ENABLED |
|
// current_loc uses the baro/gps soloution for altitude rather than gps only. |
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? |
|
AP_Mount camera_mount(¤t_loc, g_gps, &ahrs, 0); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
// current_loc uses the baro/gps soloution for altitude rather than gps only. |
|
// mabe one could use current_loc for lat/lon too and eliminate g_gps alltogether? |
|
AP_Mount camera_mount2(¤t_loc, g_gps, &ahrs, 1); |
|
#endif |
|
|
|
#if CAMERA == ENABLED |
|
//pinMode(camtrig, OUTPUT); // these are free pins PE3(5), PH3(15), PH6(18), PB4(23), PB5(24), PL1(36), PL3(38), PA6(72), PA7(71), PK0(89), PK1(88), PK2(87), PK3(86), PK4(83), PK5(84), PK6(83), PK7(82) |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Top-level logic |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
void setup() { |
|
memcheck_init(); |
|
init_ardupilot(); |
|
} |
|
|
|
void loop() |
|
{ |
|
// We want this to execute at 50Hz if possible |
|
// ------------------------------------------- |
|
if (millis() - fast_loopTimer_ms > 19) { |
|
delta_ms_fast_loop = millis() - fast_loopTimer_ms; |
|
load = (float)(fast_loopTimeStamp_ms - fast_loopTimer_ms)/delta_ms_fast_loop; |
|
G_Dt = (float)delta_ms_fast_loop / 1000.f; |
|
fast_loopTimer_ms = millis(); |
|
|
|
mainLoop_count++; |
|
|
|
// Execute the fast loop |
|
// --------------------- |
|
fast_loop(); |
|
|
|
// Execute the medium loop |
|
// ----------------------- |
|
medium_loop(); |
|
|
|
counter_one_herz++; |
|
if(counter_one_herz == 50){ |
|
one_second_loop(); |
|
counter_one_herz = 0; |
|
} |
|
|
|
if (millis() - perf_mon_timer > 20000) { |
|
if (mainLoop_count != 0) { |
|
if (g.log_bitmask & MASK_LOG_PM) |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
Log_Write_Performance(); |
|
#endif |
|
|
|
resetPerfData(); |
|
} |
|
} |
|
|
|
fast_loopTimeStamp_ms = millis(); |
|
} |
|
} |
|
|
|
// Main loop 50Hz |
|
static void fast_loop() |
|
{ |
|
// This is the fast loop - we want it to execute at 50Hz if possible |
|
// ----------------------------------------------------------------- |
|
if (delta_ms_fast_loop > G_Dt_max) |
|
G_Dt_max = delta_ms_fast_loop; |
|
|
|
// Read radio |
|
// ---------- |
|
read_radio(); |
|
|
|
// try to send any deferred messages if the serial port now has |
|
// some space available |
|
gcs_send_message(MSG_RETRY_DEFERRED); |
|
|
|
// check for loss of control signal failsafe condition |
|
// ------------------------------------ |
|
check_short_failsafe(); |
|
|
|
#if HIL_MODE == HIL_MODE_SENSORS |
|
// update hil before AHRS update |
|
gcs_update(); |
|
#endif |
|
|
|
ahrs.update(); |
|
|
|
// uses the yaw from the DCM to give more accurate turns |
|
calc_bearing_error(); |
|
|
|
# if HIL_MODE == HIL_MODE_DISABLED |
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) |
|
Log_Write_Attitude(ahrs.roll_sensor, ahrs.pitch_sensor, ahrs.yaw_sensor); |
|
|
|
if (g.log_bitmask & MASK_LOG_RAW) |
|
Log_Write_Raw(); |
|
#endif |
|
|
|
// inertial navigation |
|
// ------------------ |
|
#if INERTIAL_NAVIGATION == ENABLED |
|
// TODO: implement inertial nav function |
|
inertialNavigation(); |
|
#endif |
|
|
|
// custom code/exceptions for flight modes |
|
// --------------------------------------- |
|
update_current_flight_mode(); |
|
|
|
// apply desired roll, pitch and yaw to the plane |
|
// ---------------------------------------------- |
|
if (control_mode > MANUAL) |
|
stabilize(); |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos(); |
|
|
|
gcs_update(); |
|
gcs_data_stream_send(); |
|
} |
|
|
|
static void medium_loop() |
|
{ |
|
#if MOUNT == ENABLED |
|
camera_mount.update_mount_position(); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
camera_mount2.update_mount_position(); |
|
#endif |
|
|
|
#if CAMERA == ENABLED |
|
g.camera.trigger_pic_cleanup(); |
|
#endif |
|
|
|
// This is the start of the medium (10 Hz) loop pieces |
|
// ----------------------------------------- |
|
switch(medium_loopCounter) { |
|
|
|
// This case deals with the GPS |
|
//------------------------------- |
|
case 0: |
|
medium_loopCounter++; |
|
if(GPS_enabled){ |
|
update_GPS(); |
|
calc_gndspeed_undershoot(); |
|
} |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if (g.compass_enabled && compass.read()) { |
|
ahrs.set_compass(&compass); |
|
compass.null_offsets(); |
|
} else { |
|
ahrs.set_compass(NULL); |
|
} |
|
#endif |
|
/*{ |
|
Serial.print(ahrs.roll_sensor, DEC); Serial.printf_P(PSTR("\t")); |
|
Serial.print(ahrs.pitch_sensor, DEC); Serial.printf_P(PSTR("\t")); |
|
Serial.print(ahrs.yaw_sensor, DEC); Serial.printf_P(PSTR("\t")); |
|
Vector3f tempaccel = imu.get_accel(); |
|
Serial.print(tempaccel.x, DEC); Serial.printf_P(PSTR("\t")); |
|
Serial.print(tempaccel.y, DEC); Serial.printf_P(PSTR("\t")); |
|
Serial.println(tempaccel.z, DEC); |
|
}*/ |
|
|
|
break; |
|
|
|
// This case performs some navigation computations |
|
//------------------------------------------------ |
|
case 1: |
|
medium_loopCounter++; |
|
|
|
// Read 6-position switch on radio |
|
// ------------------------------- |
|
read_control_switch(); |
|
|
|
// calculate the plane's desired bearing |
|
// ------------------------------------- |
|
navigate(); |
|
|
|
break; |
|
|
|
// command processing |
|
//------------------------------ |
|
case 2: |
|
medium_loopCounter++; |
|
|
|
// Read Airspeed |
|
// ------------- |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if (airspeed.enabled()) { |
|
read_airspeed(); |
|
} |
|
#endif |
|
|
|
// Read altitude from sensors |
|
// ------------------ |
|
update_alt(); |
|
if(g.sonar_enabled) sonar_alt = sonar.read(); |
|
|
|
// altitude smoothing |
|
// ------------------ |
|
if (control_mode != FLY_BY_WIRE_B) |
|
calc_altitude_error(); |
|
|
|
// perform next command |
|
// -------------------- |
|
update_commands(); |
|
break; |
|
|
|
// This case deals with sending high rate telemetry |
|
//------------------------------------------------- |
|
case 3: |
|
medium_loopCounter++; |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if ((g.log_bitmask & MASK_LOG_ATTITUDE_MED) && !(g.log_bitmask & MASK_LOG_ATTITUDE_FAST)) |
|
Log_Write_Attitude(ahrs.roll_sensor, ahrs.pitch_sensor, ahrs.yaw_sensor); |
|
|
|
if (g.log_bitmask & MASK_LOG_CTUN) |
|
Log_Write_Control_Tuning(); |
|
#endif |
|
|
|
if (g.log_bitmask & MASK_LOG_NTUN) |
|
Log_Write_Nav_Tuning(); |
|
|
|
if (g.log_bitmask & MASK_LOG_GPS) |
|
Log_Write_GPS(g_gps->time, current_loc.lat, current_loc.lng, g_gps->altitude, current_loc.alt, (long) g_gps->ground_speed, g_gps->ground_course, g_gps->fix, g_gps->num_sats); |
|
break; |
|
|
|
// This case controls the slow loop |
|
//--------------------------------- |
|
case 4: |
|
medium_loopCounter = 0; |
|
delta_ms_medium_loop = millis() - medium_loopTimer_ms; |
|
medium_loopTimer_ms = millis(); |
|
|
|
if (g.battery_monitoring != 0){ |
|
read_battery(); |
|
} |
|
|
|
slow_loop(); |
|
|
|
#if OBC_FAILSAFE == ENABLED |
|
// perform OBC failsafe checks |
|
obc.check(OBC_MODE(control_mode), |
|
last_heartbeat_ms, |
|
g_gps?g_gps->last_fix_time:0); |
|
#endif |
|
|
|
break; |
|
} |
|
} |
|
|
|
static void slow_loop() |
|
{ |
|
// This is the slow (3 1/3 Hz) loop pieces |
|
//---------------------------------------- |
|
switch (slow_loopCounter){ |
|
case 0: |
|
slow_loopCounter++; |
|
check_long_failsafe(); |
|
superslow_loopCounter++; |
|
if(superslow_loopCounter >=200) { // 200 = Execute every minute |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
if(g.compass_enabled) { |
|
compass.save_offsets(); |
|
} |
|
#endif |
|
|
|
superslow_loopCounter = 0; |
|
} |
|
break; |
|
|
|
case 1: |
|
slow_loopCounter++; |
|
|
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM1 |
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8); |
|
#else |
|
update_aux_servo_function(&g.rc_5, &g.rc_6, &g.rc_7, &g.rc_8, &g.rc_9, &g.rc_10, &g.rc_11); |
|
#endif |
|
enable_aux_servos(); |
|
|
|
#if MOUNT == ENABLED |
|
camera_mount.update_mount_type(); |
|
#endif |
|
#if MOUNT2 == ENABLED |
|
camera_mount2.update_mount_type(); |
|
#endif |
|
break; |
|
|
|
case 2: |
|
slow_loopCounter = 0; |
|
update_events(); |
|
|
|
mavlink_system.sysid = g.sysid_this_mav; // This is just an ugly hack to keep mavlink_system.sysid sync'd with our parameter |
|
|
|
#if USB_MUX_PIN > 0 |
|
check_usb_mux(); |
|
#endif |
|
|
|
break; |
|
} |
|
} |
|
|
|
static void one_second_loop() |
|
{ |
|
if (g.log_bitmask & MASK_LOG_CUR) |
|
Log_Write_Current(); |
|
|
|
// send a heartbeat |
|
gcs_send_message(MSG_HEARTBEAT); |
|
} |
|
|
|
static void update_GPS(void) |
|
{ |
|
g_gps->update(); |
|
update_GPS_light(); |
|
|
|
// get position from AHRS |
|
have_position = ahrs.get_position(¤t_loc); |
|
|
|
if (g_gps->new_data && g_gps->fix) { |
|
g_gps->new_data = false; |
|
|
|
// for performance |
|
// --------------- |
|
gps_fix_count++; |
|
|
|
if(ground_start_count > 1){ |
|
ground_start_count--; |
|
ground_start_avg += g_gps->ground_speed; |
|
|
|
} else if (ground_start_count == 1) { |
|
// We countdown N number of good GPS fixes |
|
// so that the altitude is more accurate |
|
// ------------------------------------- |
|
if (current_loc.lat == 0) { |
|
ground_start_count = 5; |
|
|
|
} else { |
|
if(ENABLE_AIR_START == 1 && (ground_start_avg / 5) < SPEEDFILT){ |
|
startup_ground(); |
|
|
|
if (g.log_bitmask & MASK_LOG_CMD) |
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG); |
|
|
|
init_home(); |
|
} else if (ENABLE_AIR_START == 0) { |
|
init_home(); |
|
} |
|
|
|
if (g.compass_enabled) { |
|
// Set compass declination automatically |
|
compass.set_initial_location(g_gps->latitude, g_gps->longitude); |
|
} |
|
ground_start_count = 0; |
|
} |
|
} |
|
|
|
// see if we've breached the geo-fence |
|
geofence_check(false); |
|
} |
|
} |
|
|
|
static void update_current_flight_mode(void) |
|
{ |
|
if(control_mode == AUTO){ |
|
crash_checker(); |
|
|
|
switch(nav_command_ID){ |
|
case MAV_CMD_NAV_TAKEOFF: |
|
if (hold_course != -1) { |
|
calc_nav_roll(); |
|
} else { |
|
nav_roll_cd = 0; |
|
} |
|
|
|
if(airspeed.use()) { |
|
calc_nav_pitch(); |
|
if (nav_pitch_cd < takeoff_pitch_cd) |
|
nav_pitch_cd = takeoff_pitch_cd; |
|
} else { |
|
nav_pitch_cd = (float)g_gps->ground_speed / (float)g.airspeed_cruise_cm * (float)takeoff_pitch_cd * 0.5; |
|
nav_pitch_cd = constrain(nav_pitch_cd, 500, takeoff_pitch_cd); |
|
} |
|
|
|
g.channel_throttle.servo_out = g.throttle_max; //TODO: Replace with THROTTLE_TAKEOFF or other method of controlling throttle |
|
// What is the case for doing something else? Why wouldn't you want max throttle for TO? |
|
// ****************************** |
|
|
|
break; |
|
|
|
case MAV_CMD_NAV_LAND: |
|
calc_nav_roll(); |
|
|
|
calc_nav_pitch(); |
|
calc_throttle(); |
|
if (!airspeed.use() || land_complete) { |
|
// hold pitch constant in final approach |
|
nav_pitch_cd = g.land_pitch_cd; |
|
} |
|
|
|
if (land_complete) { |
|
// we are in the final stage of a landing - force |
|
// zero throttle |
|
g.channel_throttle.servo_out = 0; |
|
} |
|
break; |
|
|
|
default: |
|
// we are doing normal AUTO flight, the special cases |
|
// are for takeoff and landing |
|
hold_course = -1; |
|
land_complete = false; |
|
calc_nav_roll(); |
|
calc_nav_pitch(); |
|
calc_throttle(); |
|
break; |
|
} |
|
}else{ |
|
// hold_course is only used in takeoff and landing |
|
hold_course = -1; |
|
|
|
switch(control_mode){ |
|
case RTL: |
|
case LOITER: |
|
case GUIDED: |
|
crash_checker(); |
|
calc_nav_roll(); |
|
calc_nav_pitch(); |
|
calc_throttle(); |
|
break; |
|
|
|
case FLY_BY_WIRE_A: |
|
// set nav_roll and nav_pitch using sticks |
|
nav_roll_cd = g.channel_roll.norm_input() * g.roll_limit_cd; |
|
nav_pitch_cd = g.channel_pitch.norm_input() * (-1) * g.pitch_limit_min_cd; |
|
// We use pitch_min above because it is usually greater magnitude then pitch_max. -1 is to compensate for its sign. |
|
nav_pitch_cd = constrain(nav_pitch_cd, -3000, 3000); // trying to give more pitch authority |
|
if (inverted_flight) { |
|
nav_pitch_cd = -nav_pitch_cd; |
|
} |
|
break; |
|
|
|
case FLY_BY_WIRE_B: |
|
// Substitute stick inputs for Navigation control output |
|
// We use g.pitch_limit_min because its magnitude is |
|
// normally greater than g.pitch_limit_max |
|
|
|
// Thanks to Yury MonZon for the altitude limit code! |
|
|
|
nav_roll_cd = g.channel_roll.norm_input() * g.roll_limit_cd; |
|
|
|
float elevator_input; |
|
elevator_input = g.channel_pitch.norm_input(); |
|
|
|
if (g.flybywire_elev_reverse) { |
|
elevator_input = -elevator_input; |
|
} |
|
if ((current_loc.alt >= home.alt+g.FBWB_min_altitude_cm) || (g.FBWB_min_altitude_cm == 0)) { |
|
altitude_error_cm = elevator_input * g.pitch_limit_min_cd; |
|
} else { |
|
altitude_error_cm = (home.alt + g.FBWB_min_altitude_cm) - current_loc.alt; |
|
if (elevator_input < 0) { |
|
altitude_error_cm += elevator_input * g.pitch_limit_min_cd; |
|
} |
|
} |
|
calc_throttle(); |
|
calc_nav_pitch(); |
|
break; |
|
|
|
case STABILIZE: |
|
nav_roll_cd = 0; |
|
nav_pitch_cd = 0; |
|
// throttle is passthrough |
|
break; |
|
|
|
case CIRCLE: |
|
// we have no GPS installed and have lost radio contact |
|
// or we just want to fly around in a gentle circle w/o GPS |
|
// ---------------------------------------------------- |
|
nav_roll_cd = g.roll_limit_cd / 3; |
|
nav_pitch_cd = 0; |
|
|
|
if (failsafe != FAILSAFE_NONE){ |
|
g.channel_throttle.servo_out = g.throttle_cruise; |
|
} |
|
break; |
|
|
|
case MANUAL: |
|
// servo_out is for Sim control only |
|
// --------------------------------- |
|
g.channel_roll.servo_out = g.channel_roll.pwm_to_angle(); |
|
g.channel_pitch.servo_out = g.channel_pitch.pwm_to_angle(); |
|
g.channel_rudder.servo_out = g.channel_rudder.pwm_to_angle(); |
|
break; |
|
//roll: -13788.000, pitch: -13698.000, thr: 0.000, rud: -13742.000 |
|
|
|
} |
|
} |
|
} |
|
|
|
static void update_navigation() |
|
{ |
|
// wp_distance is in ACTUAL meters, not the *100 meters we get from the GPS |
|
// ------------------------------------------------------------------------ |
|
|
|
// distance and bearing calcs only |
|
if(control_mode == AUTO){ |
|
verify_commands(); |
|
}else{ |
|
|
|
switch(control_mode){ |
|
case LOITER: |
|
case RTL: |
|
case GUIDED: |
|
update_loiter(); |
|
calc_bearing_error(); |
|
break; |
|
|
|
} |
|
} |
|
} |
|
|
|
|
|
static void update_alt() |
|
{ |
|
#if HIL_MODE == HIL_MODE_ATTITUDE |
|
current_loc.alt = g_gps->altitude; |
|
#else |
|
// this function is in place to potentially add a sonar sensor in the future |
|
//altitude_sensor = BARO; |
|
|
|
if (barometer.healthy) { |
|
current_loc.alt = (1 - g.altitude_mix) * g_gps->altitude; // alt_MSL centimeters (meters * 100) |
|
current_loc.alt += g.altitude_mix * (read_barometer() + home.alt); |
|
} else if (g_gps->fix) { |
|
current_loc.alt = g_gps->altitude; // alt_MSL centimeters (meters * 100) |
|
} |
|
#endif |
|
|
|
geofence_check(true); |
|
|
|
// Calculate new climb rate |
|
//if(medium_loopCounter == 0 && slow_loopCounter == 0) |
|
// add_altitude_data(millis() / 100, g_gps->altitude / 10); |
|
}
|
|
|