You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
766 lines
24 KiB
766 lines
24 KiB
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
* |
|
* Code by Andrew Tridgell and Siddharth Bharat Purohit |
|
*/ |
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Math/AP_Math.h> |
|
|
|
#include <hal.h> |
|
#include "Util.h" |
|
#include <ch.h> |
|
#include "RCOutput.h" |
|
#include "UARTDriver.h" |
|
#include "hwdef/common/stm32_util.h" |
|
#include "hwdef/common/watchdog.h" |
|
#include "hwdef/common/flash.h" |
|
#include <AP_ROMFS/AP_ROMFS.h> |
|
#include <AP_Common/ExpandingString.h> |
|
#include "sdcard.h" |
|
#include "shared_dma.h" |
|
#if defined(HAL_PWM_ALARM) || HAL_DSHOT_ALARM || HAL_CANMANAGER_ENABLED || HAL_USE_PWM == TRUE |
|
#include <AP_Notify/AP_Notify.h> |
|
#endif |
|
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS |
|
#include <AP_InertialSensor/AP_InertialSensor.h> |
|
#endif |
|
#ifndef HAL_BOOTLOADER_BUILD |
|
#include <AP_Logger/AP_Logger.h> |
|
#endif |
|
|
|
#if HAL_WITH_IO_MCU |
|
#include <AP_BoardConfig/AP_BoardConfig.h> |
|
#include <AP_IOMCU/AP_IOMCU.h> |
|
extern AP_IOMCU iomcu; |
|
#endif |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
using namespace ChibiOS; |
|
#if CH_CFG_USE_HEAP == TRUE |
|
|
|
/** |
|
how much free memory do we have in bytes. |
|
*/ |
|
uint32_t Util::available_memory(void) |
|
{ |
|
// from malloc.c in hwdef |
|
return mem_available(); |
|
} |
|
|
|
/* |
|
Special Allocation Routines |
|
*/ |
|
|
|
void* Util::malloc_type(size_t size, AP_HAL::Util::Memory_Type mem_type) |
|
{ |
|
if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) { |
|
return malloc_dma(size); |
|
} else if (mem_type == AP_HAL::Util::MEM_FAST) { |
|
return malloc_fastmem(size); |
|
} else { |
|
return calloc(1, size); |
|
} |
|
} |
|
|
|
void Util::free_type(void *ptr, size_t size, AP_HAL::Util::Memory_Type mem_type) |
|
{ |
|
if (ptr != NULL) { |
|
free(ptr); |
|
} |
|
} |
|
|
|
|
|
#ifdef ENABLE_HEAP |
|
|
|
void *Util::allocate_heap_memory(size_t size) |
|
{ |
|
memory_heap_t *heap = (memory_heap_t *)malloc(size + sizeof(memory_heap_t)); |
|
if (heap == nullptr) { |
|
return nullptr; |
|
} |
|
chHeapObjectInit(heap, heap + 1U, size); |
|
return heap; |
|
} |
|
|
|
/* |
|
realloc implementation thanks to wolfssl, used by AP_Scripting |
|
*/ |
|
void *Util::std_realloc(void *addr, size_t size) |
|
{ |
|
if (size == 0) { |
|
free(addr); |
|
return nullptr; |
|
} |
|
if (addr == nullptr) { |
|
return malloc(size); |
|
} |
|
void *new_mem = malloc(size); |
|
if (new_mem != nullptr) { |
|
memcpy(new_mem, addr, chHeapGetSize(addr) > size ? size : chHeapGetSize(addr)); |
|
free(addr); |
|
} |
|
return new_mem; |
|
} |
|
|
|
void *Util::heap_realloc(void *heap, void *ptr, size_t new_size) |
|
{ |
|
if (heap == nullptr) { |
|
return nullptr; |
|
} |
|
if (new_size == 0) { |
|
if (ptr != nullptr) { |
|
chHeapFree(ptr); |
|
} |
|
return nullptr; |
|
} |
|
if (ptr == nullptr) { |
|
return chHeapAlloc((memory_heap_t *)heap, new_size); |
|
} |
|
void *new_mem = chHeapAlloc((memory_heap_t *)heap, new_size); |
|
if (new_mem != nullptr) { |
|
memcpy(new_mem, ptr, chHeapGetSize(ptr) > new_size ? new_size : chHeapGetSize(ptr)); |
|
chHeapFree(ptr); |
|
} |
|
return new_mem; |
|
} |
|
#endif // ENABLE_HEAP |
|
|
|
#endif // CH_CFG_USE_HEAP |
|
|
|
/* |
|
get safety switch state |
|
*/ |
|
Util::safety_state Util::safety_switch_state(void) |
|
{ |
|
#if HAL_USE_PWM == TRUE |
|
return ((RCOutput *)hal.rcout)->_safety_switch_state(); |
|
#else |
|
return SAFETY_NONE; |
|
#endif |
|
} |
|
|
|
#ifdef HAL_PWM_ALARM |
|
struct Util::ToneAlarmPwmGroup Util::_toneAlarm_pwm_group = HAL_PWM_ALARM; |
|
#elif HAL_USE_PWM == TRUE |
|
struct Util::ToneAlarmPwmGroup Util::_toneAlarm_pwm_group = {}; |
|
#endif |
|
|
|
uint8_t Util::_toneAlarm_types = 0; |
|
|
|
bool Util::toneAlarm_init(uint8_t types) |
|
{ |
|
#ifdef HAL_PWM_ALARM |
|
_toneAlarm_pwm_group.pwm_cfg.period = 1000; |
|
pwmStart(_toneAlarm_pwm_group.pwm_drv, &_toneAlarm_pwm_group.pwm_cfg); |
|
#endif |
|
_toneAlarm_types = types; |
|
|
|
#if HAL_USE_PWM != TRUE && !HAL_DSHOT_ALARM && !HAL_CANMANAGER_ENABLED |
|
// Nothing to do |
|
return false; |
|
#else |
|
return true; |
|
#endif |
|
} |
|
|
|
#if HAL_USE_PWM == TRUE |
|
bool Util::toneAlarm_init(const PWMConfig& pwm_cfg, PWMDriver* pwm_drv, pwmchannel_t chan, bool active_high) |
|
{ |
|
#ifdef HAL_PWM_ALARM |
|
pwmStop(_toneAlarm_pwm_group.pwm_drv); |
|
#endif |
|
_toneAlarm_pwm_group.pwm_cfg = pwm_cfg; |
|
_toneAlarm_pwm_group.pwm_drv = pwm_drv; |
|
_toneAlarm_pwm_group.pwm_cfg.period = 1000; |
|
_toneAlarm_pwm_group.pwm_cfg.channels[chan].mode = active_high ? PWM_OUTPUT_ACTIVE_HIGH : PWM_OUTPUT_ACTIVE_LOW; |
|
_toneAlarm_pwm_group.chan = chan; |
|
pwmStart(_toneAlarm_pwm_group.pwm_drv, &_toneAlarm_pwm_group.pwm_cfg); |
|
return true; |
|
} |
|
#endif |
|
|
|
void Util::toneAlarm_set_buzzer_tone(float frequency, float volume, uint32_t duration_ms) |
|
{ |
|
#if HAL_USE_PWM == TRUE |
|
if (_toneAlarm_pwm_group.pwm_drv != nullptr) { |
|
if (is_zero(frequency) || is_zero(volume)) { |
|
pwmDisableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan); |
|
} else { |
|
pwmChangePeriod(_toneAlarm_pwm_group.pwm_drv, |
|
roundf(_toneAlarm_pwm_group.pwm_cfg.frequency/frequency)); |
|
|
|
pwmEnableChannel(_toneAlarm_pwm_group.pwm_drv, _toneAlarm_pwm_group.chan, roundf(volume*_toneAlarm_pwm_group.pwm_cfg.frequency/frequency)/2); |
|
} |
|
} |
|
#endif // HAL_USE_PWM |
|
#if HAL_DSHOT_ALARM |
|
// don't play the motors while flying |
|
if (!(_toneAlarm_types & AP_Notify::Notify_Buzz_DShot) || get_soft_armed() || hal.rcout->get_dshot_esc_type() != RCOutput::DSHOT_ESC_BLHELI) { |
|
return; |
|
} |
|
|
|
if (is_zero(frequency)) { // silence |
|
hal.rcout->send_dshot_command(RCOutput::DSHOT_RESET, RCOutput::ALL_CHANNELS, duration_ms); |
|
} else if (frequency < 1047) { // C |
|
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP1, RCOutput::ALL_CHANNELS, duration_ms); |
|
} else if (frequency < 1175) { // D |
|
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP2, RCOutput::ALL_CHANNELS, duration_ms); |
|
} else if (frequency < 1319) { // E |
|
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP3, RCOutput::ALL_CHANNELS, duration_ms); |
|
} else if (frequency < 1397) { // F |
|
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP4, RCOutput::ALL_CHANNELS, duration_ms); |
|
} else { // G+ |
|
hal.rcout->send_dshot_command(RCOutput::DSHOT_BEEP5, RCOutput::ALL_CHANNELS, duration_ms); |
|
} |
|
#endif // HAL_DSHOT_ALARM |
|
} |
|
|
|
/* |
|
set HW RTC in UTC microseconds |
|
*/ |
|
void Util::set_hw_rtc(uint64_t time_utc_usec) |
|
{ |
|
stm32_set_utc_usec(time_utc_usec); |
|
} |
|
|
|
/* |
|
get system clock in UTC microseconds |
|
*/ |
|
uint64_t Util::get_hw_rtc() const |
|
{ |
|
return stm32_get_utc_usec(); |
|
} |
|
|
|
#if !defined(HAL_NO_FLASH_SUPPORT) && !defined(HAL_NO_ROMFS_SUPPORT) |
|
|
|
#ifndef HAL_BOOTLOADER_BUILD |
|
#include <GCS_MAVLink/GCS.h> |
|
#if HAL_GCS_ENABLED |
|
#define Debug(fmt, args ...) do { gcs().send_text(MAV_SEVERITY_INFO, fmt, ## args); } while (0) |
|
#endif // HAL_GCS_ENABLED |
|
#endif // ifndef HAL_BOOT_LOADER_BUILD |
|
|
|
#ifndef Debug |
|
#define Debug(fmt, args ...) do { hal.console->printf(fmt, ## args); } while (0) |
|
#endif |
|
|
|
Util::FlashBootloader Util::flash_bootloader() |
|
{ |
|
uint32_t fw_size; |
|
const char *fw_name = "bootloader.bin"; |
|
|
|
EXPECT_DELAY_MS(11000); |
|
|
|
const uint8_t *fw = AP_ROMFS::find_decompress(fw_name, fw_size); |
|
if (!fw) { |
|
Debug("failed to find %s\n", fw_name); |
|
return FlashBootloader::NOT_AVAILABLE; |
|
} |
|
// make sure size is multiple of 32 |
|
fw_size = (fw_size + 31U) & ~31U; |
|
|
|
bool uptodate = true; |
|
const uint32_t addr = hal.flash->getpageaddr(0); |
|
|
|
if (memcmp(fw, (const void*)addr, fw_size) != 0) { |
|
uptodate = false; |
|
} |
|
|
|
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS |
|
// see if we should store persistent parameters along with the |
|
// bootloader. We only do this on boards using a single sector for |
|
// the bootloader. The persistent parameters are stored as text at |
|
// the end of the sector |
|
const int32_t space_available = hal.flash->getpagesize(0) - int32_t(fw_size); |
|
ExpandingString persistent_params {}, old_persistent_params {}; |
|
if (get_persistent_params(persistent_params) && |
|
space_available >= persistent_params.get_length() && |
|
(!load_persistent_params(old_persistent_params) || |
|
strcmp(persistent_params.get_string(), |
|
old_persistent_params.get_string()) != 0)) { |
|
// persistent parameters have changed, we will update |
|
// bootloader to allow storage of the params |
|
uptodate = false; |
|
} |
|
#endif |
|
|
|
if (uptodate) { |
|
Debug("Bootloader up-to-date\n"); |
|
AP_ROMFS::free(fw); |
|
return FlashBootloader::NO_CHANGE; |
|
} |
|
|
|
Debug("Erasing\n"); |
|
uint32_t erased_size = 0; |
|
uint8_t erase_page = 0; |
|
while (erased_size < fw_size) { |
|
uint32_t page_size = hal.flash->getpagesize(erase_page); |
|
if (page_size == 0) { |
|
AP_ROMFS::free(fw); |
|
return FlashBootloader::FAIL; |
|
} |
|
hal.scheduler->expect_delay_ms(1000); |
|
if (!hal.flash->erasepage(erase_page)) { |
|
Debug("Erase %u failed\n", erase_page); |
|
AP_ROMFS::free(fw); |
|
return FlashBootloader::FAIL; |
|
} |
|
erased_size += page_size; |
|
erase_page++; |
|
} |
|
|
|
Debug("Flashing %s @%08x\n", fw_name, (unsigned int)addr); |
|
const uint8_t max_attempts = 10; |
|
hal.flash->keep_unlocked(true); |
|
for (uint8_t i=0; i<max_attempts; i++) { |
|
hal.scheduler->expect_delay_ms(1000); |
|
bool ok = hal.flash->write(addr, fw, fw_size); |
|
if (!ok) { |
|
Debug("Flash failed! (attempt=%u/%u)\n", |
|
i+1, |
|
max_attempts); |
|
hal.scheduler->delay(100); |
|
continue; |
|
} |
|
Debug("Flash OK\n"); |
|
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS |
|
if (persistent_params.get_length()) { |
|
const uint32_t ofs = hal.flash->getpagesize(0) - persistent_params.get_length(); |
|
hal.flash->write(addr+ofs, persistent_params.get_string(), persistent_params.get_length()); |
|
} |
|
#endif |
|
hal.flash->keep_unlocked(false); |
|
AP_ROMFS::free(fw); |
|
return FlashBootloader::OK; |
|
} |
|
|
|
hal.flash->keep_unlocked(false); |
|
Debug("Flash failed after %u attempts\n", max_attempts); |
|
AP_ROMFS::free(fw); |
|
return FlashBootloader::FAIL; |
|
} |
|
#endif // !HAL_NO_FLASH_SUPPORT && !HAL_NO_ROMFS_SUPPORT |
|
|
|
/* |
|
display system identifer - board type and serial number |
|
*/ |
|
bool Util::get_system_id(char buf[40]) |
|
{ |
|
uint8_t serialid[12]; |
|
char board_name[14]; |
|
|
|
memcpy(serialid, (const void *)UDID_START, 12); |
|
strncpy(board_name, CHIBIOS_SHORT_BOARD_NAME, 13); |
|
board_name[13] = 0; |
|
|
|
// this format is chosen to match the format used by HAL_PX4 |
|
snprintf(buf, 40, "%s %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X", |
|
board_name, |
|
(unsigned)serialid[3], (unsigned)serialid[2], (unsigned)serialid[1], (unsigned)serialid[0], |
|
(unsigned)serialid[7], (unsigned)serialid[6], (unsigned)serialid[5], (unsigned)serialid[4], |
|
(unsigned)serialid[11], (unsigned)serialid[10], (unsigned)serialid[9],(unsigned)serialid[8]); |
|
buf[39] = 0; |
|
return true; |
|
} |
|
|
|
bool Util::get_system_id_unformatted(uint8_t buf[], uint8_t &len) |
|
{ |
|
len = MIN(12, len); |
|
memcpy(buf, (const void *)UDID_START, len); |
|
return true; |
|
} |
|
|
|
// return true if the reason for the reboot was a watchdog reset |
|
bool Util::was_watchdog_reset() const |
|
{ |
|
return stm32_was_watchdog_reset(); |
|
} |
|
|
|
#if CH_DBG_ENABLE_STACK_CHECK == TRUE && !defined(HAL_BOOTLOADER_BUILD) |
|
/* |
|
display stack usage as text buffer for @SYS/threads.txt |
|
*/ |
|
__RAMFUNC__ void Util::thread_info(ExpandingString &str) |
|
{ |
|
#if HAL_ENABLE_THREAD_STATISTICS |
|
uint64_t cumulative_cycles = ch.kernel_stats.m_crit_isr.cumulative; |
|
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) { |
|
if (tp->stats.best > 0) { // not run |
|
cumulative_cycles += (uint64_t)tp->stats.cumulative; |
|
} |
|
} |
|
#endif |
|
// a header to allow for machine parsers to determine format |
|
const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__); |
|
#if HAL_ENABLE_THREAD_STATISTICS |
|
str.printf("ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u LOAD=%4.1f%%\n", |
|
&__main_stack_base__, |
|
unsigned(stack_free(&__main_stack_base__)), |
|
unsigned(isr_stack_size), 100.0f * float(ch.kernel_stats.m_crit_isr.cumulative) / float(cumulative_cycles)); |
|
ch.kernel_stats.m_crit_isr.cumulative = 0U; |
|
#else |
|
str.printf("ThreadsV2\nISR PRI=255 sp=%p STACK=%u/%u\n", |
|
&__main_stack_base__, |
|
unsigned(stack_free(&__main_stack_base__)), |
|
unsigned(isr_stack_size)); |
|
#endif |
|
for (thread_t *tp = chRegFirstThread(); tp; tp = chRegNextThread(tp)) { |
|
uint32_t total_stack; |
|
if (tp->wabase == (void*)&__main_thread_stack_base__) { |
|
// main thread has its stack separated from the thread context |
|
total_stack = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__); |
|
} else { |
|
// all other threads have their thread context pointer |
|
// above the stack top |
|
total_stack = uint32_t(tp) - uint32_t(tp->wabase); |
|
} |
|
#if HAL_ENABLE_THREAD_STATISTICS |
|
time_measurement_t stats = tp->stats; |
|
if (tp->stats.best > 0) { // not run |
|
str.printf("%-13.13s PRI=%3u sp=%p STACK=%4u/%4u LOAD=%4.1f%%%s\n", |
|
tp->name, unsigned(tp->realprio), tp->wabase, |
|
unsigned(stack_free(tp->wabase)), unsigned(total_stack), |
|
100.0f * float(stats.cumulative) / float(cumulative_cycles), |
|
// more than a loop slice is bad for everyone else, warn on |
|
// more than a 200Hz slice so that only the worst offenders are identified |
|
// also don't do this for the main or idle threads |
|
tp != chThdGetSelfX() && unsigned(RTC2US(STM32_HSECLK, stats.worst)) > 5000 |
|
&& tp != get_main_thread() && tp->realprio != 1 ? "*" : ""); |
|
} else { |
|
str.printf("%-13.13s PRI=%3u sp=%p STACK=%4u/%4u\n", |
|
tp->name, unsigned(tp->realprio), tp->wabase, unsigned(stack_free(tp->wabase)), unsigned(total_stack)); |
|
} |
|
// Giovanni thinks this is dangerous, but we can't get useable data without it |
|
if (tp != chThdGetSelfX()) { |
|
chTMObjectInit(&tp->stats); // reset counters to zero |
|
} else { |
|
tp->stats.cumulative = 0U; |
|
} |
|
#else |
|
str.printf("%-13.13s PRI=%3u sp=%p STACK=%u/%u\n", |
|
tp->name, unsigned(tp->realprio), tp->wabase, |
|
unsigned(stack_free(tp->wabase)), unsigned(total_stack)); |
|
#endif |
|
} |
|
} |
|
#endif // CH_DBG_ENABLE_STACK_CHECK == TRUE |
|
|
|
#if CH_CFG_USE_SEMAPHORES |
|
// request information on dma contention |
|
void Util::dma_info(ExpandingString &str) |
|
{ |
|
#if AP_HAL_SHARED_DMA_ENABLED |
|
ChibiOS::Shared_DMA::dma_info(str); |
|
#endif |
|
} |
|
#endif |
|
|
|
#if CH_CFG_USE_HEAP == TRUE |
|
/* |
|
return information on heap usage |
|
*/ |
|
void Util::mem_info(ExpandingString &str) |
|
{ |
|
memory_heap_t *heaps; |
|
const struct memory_region *regions; |
|
uint8_t num_heaps = malloc_get_heaps(&heaps, ®ions); |
|
|
|
str.printf("MemInfoV1\n"); |
|
for (uint8_t i=0; i<num_heaps; i++) { |
|
size_t totalp=0, largest=0; |
|
// get memory available on main heap |
|
chHeapStatus(i == 0 ? nullptr : &heaps[i], &totalp, &largest); |
|
str.printf("START=0x%08x LEN=%3uk FREE=%6u LRG=%6u TYPE=%1u\n", |
|
unsigned(regions[i].address), unsigned(regions[i].size/1024), |
|
unsigned(totalp), unsigned(largest), unsigned(regions[i].flags)); |
|
} |
|
} |
|
#endif |
|
|
|
#if HAL_ENABLE_SAVE_PERSISTENT_PARAMS |
|
|
|
static const char *persistent_header = "{{PERSISTENT_START_V1}}\n"; |
|
|
|
/* |
|
create a set of persistent parameters in string form |
|
*/ |
|
bool Util::get_persistent_params(ExpandingString &str) const |
|
{ |
|
str.printf("%s", persistent_header); |
|
#if HAL_INS_TEMPERATURE_CAL_ENABLE |
|
const auto *ins = AP_InertialSensor::get_singleton(); |
|
if (ins) { |
|
ins->get_persistent_params(str); |
|
} |
|
#endif |
|
if (str.has_failed_allocation() || str.get_length() <= strlen(persistent_header)) { |
|
// no data |
|
return false; |
|
} |
|
// ensure that the length is a multiple of 32 to meet flash alignment requirements |
|
while (!str.has_failed_allocation() && str.get_length() % 32 != 0) { |
|
str.append(" ", 1); |
|
} |
|
return !str.has_failed_allocation(); |
|
} |
|
|
|
/* |
|
load a set of persistent parameters in string form from the bootloader sector |
|
*/ |
|
bool Util::load_persistent_params(ExpandingString &str) const |
|
{ |
|
const uint32_t addr = hal.flash->getpageaddr(0); |
|
const uint32_t size = hal.flash->getpagesize(0); |
|
const char *s = (const char *)memmem((void*)addr, size, |
|
persistent_header, |
|
strlen(persistent_header)); |
|
if (s) { |
|
str.append(s, (addr+size) - uint32_t(s)); |
|
return !str.has_failed_allocation(); |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
apply persistent parameters from the bootloader sector to AP_Param |
|
*/ |
|
void Util::apply_persistent_params(void) const |
|
{ |
|
ExpandingString str {}; |
|
if (!load_persistent_params(str)) { |
|
return; |
|
} |
|
char *s = str.get_writeable_string(); |
|
char *saveptr; |
|
s += strlen(persistent_header); |
|
uint32_t count = 0; |
|
uint32_t errors = 0; |
|
for (char *p = strtok_r(s, "\n", &saveptr); |
|
p; p = strtok_r(nullptr, "\n", &saveptr)) { |
|
char *eq = strchr(p, int('=')); |
|
if (eq) { |
|
*eq = 0; |
|
const char *pname = p; |
|
const float value = strtof(eq+1, NULL); |
|
if (AP_Param::set_default_by_name(pname, value)) { |
|
count++; |
|
/* |
|
we now have a special case for INS_ACC*_ID. To |
|
support factory accelerometer calibration we need to |
|
do a save() on the ID parameters if they are not |
|
already in storage. This is needed as |
|
AP_InertialSensor determines if a calibration has |
|
been done by whether the IDs are configured in |
|
storage |
|
*/ |
|
if (strncmp(pname, "INS_ACC", 7) == 0 && |
|
strcmp(pname+strlen(pname)-3, "_ID") == 0) { |
|
enum ap_var_type ptype; |
|
AP_Int32 *ap = (AP_Int32 *)AP_Param::find(pname, &ptype); |
|
if (ap && ptype == AP_PARAM_INT32) { |
|
if (ap->get() != int32_t(value)) { |
|
// the accelerometer ID has changed since |
|
// this persistent data was saved. Stop |
|
// loading persistent parameters as it is |
|
// no longer valid for this board. This |
|
// can happen if the user has set |
|
// parameters to prevent loading of |
|
// specific IMU drivers, or if they have |
|
// setup an external IMU |
|
errors++; |
|
break; |
|
} |
|
if (!ap->configured()) { |
|
ap->save(); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
if (count) { |
|
AP_Param::invalidate_count(); |
|
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "Loaded %u persistent parameters (%u errors)", |
|
unsigned(count), unsigned(errors)); |
|
} |
|
} |
|
#endif // HAL_ENABLE_SAVE_PERSISTENT_PARAMS |
|
|
|
#if HAL_WITH_IO_MCU |
|
extern ChibiOS::UARTDriver uart_io; |
|
#endif |
|
|
|
#if HAL_UART_STATS_ENABLED |
|
// request information on uart I/O |
|
void Util::uart_info(ExpandingString &str) |
|
{ |
|
// a header to allow for machine parsers to determine format |
|
str.printf("UARTV1\n"); |
|
for (uint8_t i = 0; i < HAL_UART_NUM_SERIAL_PORTS; i++) { |
|
auto *uart = hal.serial(i); |
|
if (uart) { |
|
str.printf("SERIAL%u ", i); |
|
uart->uart_info(str); |
|
} |
|
} |
|
#if HAL_WITH_IO_MCU |
|
str.printf("IOMCU "); |
|
uart_io.uart_info(str); |
|
#endif |
|
} |
|
#endif |
|
|
|
// request information on uart I/O |
|
#if HAL_USE_PWM == TRUE |
|
void Util::timer_info(ExpandingString &str) |
|
{ |
|
hal.rcout->timer_info(str); |
|
} |
|
#endif |
|
|
|
/** |
|
* This method will generate random values with set size. It will fall back to AP_Math's get_random16() |
|
* if True RNG fails or enough entropy is not present. |
|
*/ |
|
bool Util::get_random_vals(uint8_t* data, size_t size) |
|
{ |
|
#if HAL_USE_HW_RNG && defined(RNG) |
|
size_t true_random_vals = stm32_rand_generate_nonblocking(data, size); |
|
if (true_random_vals == size) { |
|
return true; |
|
} else { |
|
if (!(true_random_vals % 2)) { |
|
data[true_random_vals] = (uint8_t)(get_random16() & 0xFF); |
|
true_random_vals++; |
|
} |
|
while(true_random_vals < size) { |
|
uint16_t val = get_random16(); |
|
memcpy(&data[true_random_vals], &val, sizeof(uint16_t)); |
|
true_random_vals+=sizeof(uint16_t); |
|
} |
|
} |
|
return true; |
|
#else |
|
return false; |
|
#endif |
|
} |
|
|
|
/** |
|
* This method will generate true random values with set size. This method will block for set amount |
|
* of true random numbers to be generated, the timeout specifies the maximum amount of time to wait |
|
* for the call to finish. |
|
*/ |
|
bool Util::get_true_random_vals(uint8_t* data, size_t size, uint32_t timeout_us) |
|
{ |
|
#if HAL_USE_HW_RNG && defined(RNG) |
|
if (stm32_rand_generate_blocking(data, size, timeout_us)) { |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
#else |
|
return false; |
|
#endif |
|
} |
|
|
|
/* |
|
log info on stack usage. Called at 1Hz by logging thread, logs next |
|
thread on each call |
|
*/ |
|
void Util::log_stack_info(void) |
|
{ |
|
#if !defined(HAL_BOOTLOADER_BUILD) && HAL_LOGGING_ENABLED |
|
static thread_t *last_tp; |
|
static uint8_t thread_id; |
|
thread_t *tp = last_tp; |
|
if (tp == nullptr) { |
|
tp = chRegFirstThread(); |
|
thread_id = 0; |
|
} else { |
|
tp = chRegNextThread(last_tp); |
|
thread_id++; |
|
} |
|
struct log_STAK pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_STAK_MSG), |
|
time_us : AP_HAL::micros64(), |
|
}; |
|
if (tp == nullptr) { |
|
pkt.thread_id = 255; |
|
pkt.priority = 255; |
|
const uint32_t isr_stack_size = uint32_t((const uint8_t *)&__main_stack_end__ - (const uint8_t *)&__main_stack_base__); |
|
pkt.stack_total = isr_stack_size; |
|
pkt.stack_free = stack_free(&__main_stack_base__); |
|
strncpy_noterm(pkt.name, "ISR", sizeof(pkt.name)); |
|
} else { |
|
if (tp->wabase == (void*)&__main_thread_stack_base__) { |
|
// main thread has its stack separated from the thread context |
|
pkt.stack_total = uint32_t((const uint8_t *)&__main_thread_stack_end__ - (const uint8_t *)&__main_thread_stack_base__); |
|
} else { |
|
// all other threads have their thread context pointer |
|
// above the stack top |
|
pkt.stack_total = uint32_t(tp) - uint32_t(tp->wabase); |
|
} |
|
pkt.thread_id = thread_id; |
|
pkt.priority = tp->realprio, |
|
pkt.stack_free = stack_free(tp->wabase); |
|
strncpy_noterm(pkt.name, tp->name, sizeof(pkt.name)); |
|
} |
|
AP::logger().WriteBlock(&pkt, sizeof(pkt)); |
|
last_tp = tp; |
|
#endif |
|
} |
|
|
|
#if !defined(HAL_BOOTLOADER_BUILD) |
|
size_t Util::last_crash_dump_size() const |
|
{ |
|
#if HAL_CRASHDUMP_ENABLE |
|
// get dump size |
|
uint32_t size = stm32_crash_dump_size(); |
|
char* dump_start = (char*)stm32_crash_dump_addr(); |
|
if (!(dump_start[0] == 0x63 && dump_start[1] == 0x43)) { |
|
// there's no valid Crash Dump |
|
return 0; |
|
} |
|
if (size == 0xFFFFFFFF) { |
|
GCS_SEND_TEXT(MAV_SEVERITY_ERROR, "Crash Dump incomplete, dumping what we got!"); |
|
size = stm32_crash_dump_max_size(); |
|
} |
|
return size; |
|
#endif |
|
return 0; |
|
} |
|
|
|
void* Util::last_crash_dump_ptr() const |
|
{ |
|
#if HAL_CRASHDUMP_ENABLE |
|
if (last_crash_dump_size() == 0) { |
|
return nullptr; |
|
} |
|
return (void*)stm32_crash_dump_addr(); |
|
#else |
|
return nullptr; |
|
#endif |
|
} |
|
#endif // HAL_BOOTLOADER_BUILD |
|
|
|
// set armed state |
|
void Util::set_soft_armed(const bool b) |
|
{ |
|
AP_HAL::Util::set_soft_armed(b); |
|
#ifdef HAL_GPIO_PIN_nARMED |
|
palWriteLine(HAL_GPIO_PIN_nARMED, !b); |
|
#endif |
|
} |
|
|
|
|