You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1820 lines
61 KiB
1820 lines
61 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include <stdlib.h> |
|
|
|
#include <AP_AHRS/AP_AHRS.h> |
|
#include <AP_Baro/AP_Baro.h> |
|
#include <AP_BattMonitor/AP_BattMonitor.h> |
|
#include <AP_Compass/AP_Compass.h> |
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_Param/AP_Param.h> |
|
#include <AP_Progmem/AP_Progmem.h> |
|
|
|
#include "DataFlash.h" |
|
#include "DataFlash_SITL.h" |
|
#include "DataFlash_Block.h" |
|
#include "DataFlash_File.h" |
|
#include "DataFlash_MAVLink.h" |
|
#include "DFMessageWriter.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
void DataFlash_Class::Init(const struct LogStructure *structures, uint8_t num_types) |
|
{ |
|
if (_next_backend == DATAFLASH_MAX_BACKENDS) { |
|
AP_HAL::panic("Too many backends"); |
|
return; |
|
} |
|
_num_types = num_types; |
|
_structures = structures; |
|
|
|
; |
|
#if defined(HAL_BOARD_LOG_DIRECTORY) |
|
if (_params.backend_types == DATAFLASH_BACKEND_FILE || |
|
_params.backend_types == DATAFLASH_BACKEND_BOTH) { |
|
DFMessageWriter_DFLogStart *message_writer = |
|
new DFMessageWriter_DFLogStart(_firmware_string); |
|
if (message_writer != NULL) { |
|
backends[_next_backend] = new DataFlash_File(*this, |
|
message_writer, |
|
HAL_BOARD_LOG_DIRECTORY); |
|
} |
|
if (backends[_next_backend] == NULL) { |
|
hal.console->printf("Unable to open DataFlash_File"); |
|
} else { |
|
_next_backend++; |
|
} |
|
} |
|
#endif |
|
|
|
#if DATAFLASH_MAVLINK_SUPPORT |
|
if (_params.backend_types == DATAFLASH_BACKEND_MAVLINK || |
|
_params.backend_types == DATAFLASH_BACKEND_BOTH) { |
|
if (_next_backend == DATAFLASH_MAX_BACKENDS) { |
|
AP_HAL::panic("Too many backends"); |
|
return; |
|
} |
|
DFMessageWriter_DFLogStart *message_writer = |
|
new DFMessageWriter_DFLogStart(_firmware_string); |
|
if (message_writer != NULL) { |
|
backends[_next_backend] = new DataFlash_MAVLink(*this, |
|
message_writer); |
|
} |
|
if (backends[_next_backend] == NULL) { |
|
hal.console->printf("Unable to open DataFlash_MAVLink"); |
|
} else { |
|
_next_backend++; |
|
} |
|
} |
|
#endif |
|
|
|
for (uint8_t i=0; i<_next_backend; i++) { |
|
backends[i]->Init(); |
|
} |
|
} |
|
|
|
// This function determines the number of whole or partial log files in the DataFlash |
|
// Wholly overwritten files are (of course) lost. |
|
uint16_t DataFlash_Block::get_num_logs(void) |
|
{ |
|
uint16_t lastpage; |
|
uint16_t last; |
|
uint16_t first; |
|
|
|
if (find_last_page() == 1) { |
|
return 0; |
|
} |
|
|
|
StartRead(1); |
|
|
|
if (GetFileNumber() == 0xFFFF) { |
|
return 0; |
|
} |
|
|
|
lastpage = find_last_page(); |
|
StartRead(lastpage); |
|
last = GetFileNumber(); |
|
StartRead(lastpage + 2); |
|
first = GetFileNumber(); |
|
if(first > last) { |
|
StartRead(1); |
|
first = GetFileNumber(); |
|
} |
|
|
|
if (last == first) { |
|
return 1; |
|
} |
|
|
|
return (last - first + 1); |
|
} |
|
|
|
// This function starts a new log file in the DataFlash |
|
uint16_t DataFlash_Block::start_new_log(void) |
|
{ |
|
_startup_messagewriter->reset(); |
|
|
|
uint16_t last_page = find_last_page(); |
|
|
|
StartRead(last_page); |
|
//Serial.print("last page: "); Serial.println(last_page); |
|
//Serial.print("file #: "); Serial.println(GetFileNumber()); |
|
//Serial.print("file page: "); Serial.println(GetFilePage()); |
|
|
|
if(find_last_log() == 0 || GetFileNumber() == 0xFFFF) { |
|
SetFileNumber(1); |
|
StartWrite(1); |
|
//Serial.println("start log from 0"); |
|
log_write_started = true; |
|
return 1; |
|
} |
|
|
|
uint16_t new_log_num; |
|
|
|
// Check for log of length 1 page and suppress |
|
if(GetFilePage() <= 1) { |
|
new_log_num = GetFileNumber(); |
|
// Last log too short, reuse its number |
|
// and overwrite it |
|
SetFileNumber(new_log_num); |
|
StartWrite(last_page); |
|
} else { |
|
new_log_num = GetFileNumber()+1; |
|
if (last_page == 0xFFFF) { |
|
last_page=0; |
|
} |
|
SetFileNumber(new_log_num); |
|
StartWrite(last_page + 1); |
|
} |
|
log_write_started = true; |
|
return new_log_num; |
|
} |
|
|
|
// This function finds the first and last pages of a log file |
|
// The first page may be greater than the last page if the DataFlash has been filled and partially overwritten. |
|
void DataFlash_Block::get_log_boundaries(uint16_t log_num, uint16_t & start_page, uint16_t & end_page) |
|
{ |
|
uint16_t num = get_num_logs(); |
|
uint16_t look; |
|
|
|
if (df_BufferIdx != 0) { |
|
FinishWrite(); |
|
hal.scheduler->delay(100); |
|
} |
|
|
|
if(num == 1) |
|
{ |
|
StartRead(df_NumPages); |
|
if (GetFileNumber() == 0xFFFF) |
|
{ |
|
start_page = 1; |
|
end_page = find_last_page_of_log((uint16_t)log_num); |
|
} else { |
|
end_page = find_last_page_of_log((uint16_t)log_num); |
|
start_page = end_page + 1; |
|
} |
|
|
|
} else { |
|
if(log_num==1) { |
|
StartRead(df_NumPages); |
|
if(GetFileNumber() == 0xFFFF) { |
|
start_page = 1; |
|
} else { |
|
start_page = find_last_page() + 1; |
|
} |
|
} else { |
|
if(log_num == find_last_log() - num + 1) { |
|
start_page = find_last_page() + 1; |
|
} else { |
|
look = log_num-1; |
|
do { |
|
start_page = find_last_page_of_log(look) + 1; |
|
look--; |
|
} while (start_page <= 0 && look >=1); |
|
} |
|
} |
|
} |
|
if (start_page == df_NumPages+1 || start_page == 0) { |
|
start_page = 1; |
|
} |
|
end_page = find_last_page_of_log(log_num); |
|
if (end_page == 0) { |
|
end_page = start_page; |
|
} |
|
} |
|
|
|
// find log size and time |
|
void DataFlash_Block::get_log_info(uint16_t log_num, uint32_t &size, uint32_t &time_utc) |
|
{ |
|
uint16_t start, end; |
|
get_log_boundaries(log_num, start, end); |
|
if (end >= start) { |
|
size = (end + 1 - start) * (uint32_t)df_PageSize; |
|
} else { |
|
size = (df_NumPages + end - start) * (uint32_t)df_PageSize; |
|
} |
|
time_utc = 0; |
|
} |
|
|
|
bool DataFlash_Block::check_wrapped(void) |
|
{ |
|
StartRead(df_NumPages); |
|
if(GetFileNumber() == 0xFFFF) |
|
return 0; |
|
else |
|
return 1; |
|
} |
|
|
|
// This funciton finds the last log number |
|
uint16_t DataFlash_Block::find_last_log(void) |
|
{ |
|
uint16_t last_page = find_last_page(); |
|
StartRead(last_page); |
|
return GetFileNumber(); |
|
} |
|
|
|
// This function finds the last page of the last file |
|
uint16_t DataFlash_Block::find_last_page(void) |
|
{ |
|
uint16_t look; |
|
uint16_t bottom = 1; |
|
uint16_t top = df_NumPages; |
|
uint32_t look_hash; |
|
uint32_t bottom_hash; |
|
uint32_t top_hash; |
|
|
|
StartRead(bottom); |
|
bottom_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage(); |
|
|
|
while(top-bottom > 1) { |
|
look = (top+bottom)/2; |
|
StartRead(look); |
|
look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage(); |
|
if (look_hash >= 0xFFFF0000) look_hash = 0; |
|
|
|
if(look_hash < bottom_hash) { |
|
// move down |
|
top = look; |
|
} else { |
|
// move up |
|
bottom = look; |
|
bottom_hash = look_hash; |
|
} |
|
} |
|
|
|
StartRead(top); |
|
top_hash = ((int32_t)GetFileNumber()<<16) | GetFilePage(); |
|
if (top_hash >= 0xFFFF0000) { |
|
top_hash = 0; |
|
} |
|
if (top_hash > bottom_hash) { |
|
return top; |
|
} |
|
|
|
return bottom; |
|
} |
|
|
|
// This function finds the last page of a particular log file |
|
uint16_t DataFlash_Block::find_last_page_of_log(uint16_t log_number) |
|
{ |
|
uint16_t look; |
|
uint16_t bottom; |
|
uint16_t top; |
|
uint32_t look_hash; |
|
uint32_t check_hash; |
|
|
|
if(check_wrapped()) |
|
{ |
|
StartRead(1); |
|
bottom = GetFileNumber(); |
|
if (bottom > log_number) |
|
{ |
|
bottom = find_last_page(); |
|
top = df_NumPages; |
|
} else { |
|
bottom = 1; |
|
top = find_last_page(); |
|
} |
|
} else { |
|
bottom = 1; |
|
top = find_last_page(); |
|
} |
|
|
|
check_hash = (int32_t)log_number<<16 | 0xFFFF; |
|
|
|
while(top-bottom > 1) |
|
{ |
|
look = (top+bottom)/2; |
|
StartRead(look); |
|
look_hash = (int32_t)GetFileNumber()<<16 | GetFilePage(); |
|
if (look_hash >= 0xFFFF0000) look_hash = 0; |
|
|
|
if(look_hash > check_hash) { |
|
// move down |
|
top = look; |
|
} else { |
|
// move up |
|
bottom = look; |
|
} |
|
} |
|
|
|
StartRead(top); |
|
if (GetFileNumber() == log_number) return top; |
|
|
|
StartRead(bottom); |
|
if (GetFileNumber() == log_number) return bottom; |
|
|
|
return -1; |
|
} |
|
|
|
#define PGM_UINT8(addr) pgm_read_byte((const char *)addr) |
|
|
|
/* |
|
read and print a log entry using the format strings from the given structure |
|
*/ |
|
void DataFlash_Backend::_print_log_entry(uint8_t msg_type, |
|
print_mode_fn print_mode, |
|
AP_HAL::BetterStream *port) |
|
{ |
|
uint8_t i; |
|
for (i=0; i<num_types(); i++) { |
|
if (msg_type == structure(i)->msg_type) { |
|
break; |
|
} |
|
} |
|
if (i == num_types()) { |
|
port->printf("UNKN, %u\n", (unsigned)msg_type); |
|
return; |
|
} |
|
const struct LogStructure *log_structure = structure(i); |
|
uint8_t msg_len = log_structure->msg_len - 3; |
|
uint8_t pkt[msg_len]; |
|
if (!ReadBlock(pkt, msg_len)) { |
|
return; |
|
} |
|
port->printf("%s, ", log_structure->name); |
|
for (uint8_t ofs=0, fmt_ofs=0; ofs<msg_len; fmt_ofs++) { |
|
char fmt = log_structure->format[fmt_ofs]; |
|
switch (fmt) { |
|
case 'b': { |
|
port->printf("%d", (int)pkt[ofs]); |
|
ofs += 1; |
|
break; |
|
} |
|
case 'B': { |
|
port->printf("%u", (unsigned)pkt[ofs]); |
|
ofs += 1; |
|
break; |
|
} |
|
case 'h': { |
|
int16_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%d", (int)v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'H': { |
|
uint16_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%u", (unsigned)v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'i': { |
|
int32_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%ld", (long)v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'I': { |
|
uint32_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%lu", (unsigned long)v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'q': { |
|
int64_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%lld", (long long)v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'Q': { |
|
uint64_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%llu", (unsigned long long)v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'f': { |
|
float v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%f", (double)v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'd': { |
|
double v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
// note that %f here *really* means a single-precision |
|
// float, so we lose precision printing this double out |
|
// dtoa_engine needed.... |
|
port->printf("%f", (double)v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'c': { |
|
int16_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%.2f", (double)(0.01f*v)); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'C': { |
|
uint16_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%.2f", (double)(0.01f*v)); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'e': { |
|
int32_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%.2f", (double)(0.01f*v)); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'E': { |
|
uint32_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
port->printf("%.2f", (double)(0.01f*v)); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'L': { |
|
int32_t v; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
print_latlon(port, v); |
|
ofs += sizeof(v); |
|
break; |
|
} |
|
case 'n': { |
|
char v[5]; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
v[sizeof(v)-1] = 0; |
|
port->printf("%s", v); |
|
ofs += sizeof(v)-1; |
|
break; |
|
} |
|
case 'N': { |
|
char v[17]; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
v[sizeof(v)-1] = 0; |
|
port->printf("%s", v); |
|
ofs += sizeof(v)-1; |
|
break; |
|
} |
|
case 'Z': { |
|
char v[65]; |
|
memcpy(&v, &pkt[ofs], sizeof(v)); |
|
v[sizeof(v)-1] = 0; |
|
port->printf("%s", v); |
|
ofs += sizeof(v)-1; |
|
break; |
|
} |
|
case 'M': { |
|
print_mode(port, pkt[ofs]); |
|
ofs += 1; |
|
break; |
|
} |
|
default: |
|
ofs = msg_len; |
|
break; |
|
} |
|
if (ofs < msg_len) { |
|
port->printf(", "); |
|
} |
|
} |
|
port->println(); |
|
} |
|
|
|
/* |
|
print FMT specifiers for log dumps where we have wrapped in the |
|
dataflash and so have no formats. This assumes the log being dumped |
|
using the same log formats as the current formats, but it is better |
|
than falling back to old defaults in the GCS |
|
*/ |
|
void DataFlash_Block::_print_log_formats(AP_HAL::BetterStream *port) |
|
{ |
|
for (uint8_t i=0; i<num_types(); i++) { |
|
const struct LogStructure *s = structure(i); |
|
port->printf("FMT, %u, %u, %s, %s, %s\n", |
|
(unsigned)PGM_UINT8(&s->msg_type), |
|
(unsigned)PGM_UINT8(&s->msg_len), |
|
s->name, s->format, s->labels); |
|
} |
|
} |
|
|
|
/* |
|
Read the log and print it on port |
|
*/ |
|
void DataFlash_Block::LogReadProcess(uint16_t log_num, |
|
uint16_t start_page, uint16_t end_page, |
|
print_mode_fn print_mode, |
|
AP_HAL::BetterStream *port) |
|
{ |
|
uint8_t log_step = 0; |
|
uint16_t page = start_page; |
|
bool first_entry = true; |
|
|
|
if (df_BufferIdx != 0) { |
|
FinishWrite(); |
|
hal.scheduler->delay(100); |
|
} |
|
|
|
StartRead(start_page); |
|
|
|
while (true) { |
|
uint8_t data; |
|
if (!ReadBlock(&data, 1)) { |
|
break; |
|
} |
|
|
|
// This is a state machine to read the packets |
|
switch(log_step) { |
|
case 0: |
|
if (data == HEAD_BYTE1) { |
|
log_step++; |
|
} |
|
break; |
|
|
|
case 1: |
|
if (data == HEAD_BYTE2) { |
|
log_step++; |
|
} else { |
|
log_step = 0; |
|
} |
|
break; |
|
|
|
case 2: |
|
log_step = 0; |
|
if (first_entry && data != LOG_FORMAT_MSG) { |
|
_print_log_formats(port); |
|
} |
|
first_entry = false; |
|
_print_log_entry(data, print_mode, port); |
|
break; |
|
} |
|
uint16_t new_page = GetPage(); |
|
if (new_page != page) { |
|
if (new_page == end_page+1 || new_page == start_page) { |
|
return; |
|
} |
|
page = new_page; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
dump header information from all log pages |
|
*/ |
|
void DataFlash_Block::DumpPageInfo(AP_HAL::BetterStream *port) |
|
{ |
|
for (uint16_t count=1; count<=df_NumPages; count++) { |
|
StartRead(count); |
|
port->printf("DF page, log file #, log page: %u,\t", (unsigned)count); |
|
port->printf("%u,\t", (unsigned)GetFileNumber()); |
|
port->printf("%u\n", (unsigned)GetFilePage()); |
|
} |
|
} |
|
|
|
/* |
|
show information about the device |
|
*/ |
|
void DataFlash_Block::ShowDeviceInfo(AP_HAL::BetterStream *port) |
|
{ |
|
if (!CardInserted()) { |
|
port->println("No dataflash inserted"); |
|
return; |
|
} |
|
ReadManufacturerID(); |
|
port->printf("Manufacturer: 0x%02x Device: 0x%04x\n", |
|
(unsigned)df_manufacturer, |
|
(unsigned)df_device); |
|
port->printf("NumPages: %u PageSize: %u\n", |
|
(unsigned)df_NumPages+1, |
|
(unsigned)df_PageSize); |
|
} |
|
|
|
/* |
|
list available log numbers |
|
*/ |
|
void DataFlash_Block::ListAvailableLogs(AP_HAL::BetterStream *port) |
|
{ |
|
uint16_t num_logs = get_num_logs(); |
|
int16_t last_log_num = find_last_log(); |
|
uint16_t log_start = 0; |
|
uint16_t log_end = 0; |
|
|
|
if (num_logs == 0) { |
|
port->printf("\nNo logs\n\n"); |
|
return; |
|
} |
|
port->printf("\n%u logs\n", (unsigned)num_logs); |
|
|
|
for (uint16_t i=num_logs; i>=1; i--) { |
|
uint16_t last_log_start = log_start, last_log_end = log_end; |
|
uint16_t temp = last_log_num - i + 1; |
|
get_log_boundaries(temp, log_start, log_end); |
|
port->printf("Log %u, start %u, end %u\n", |
|
(unsigned)temp, |
|
(unsigned)log_start, |
|
(unsigned)log_end); |
|
if (last_log_start == log_start && last_log_end == log_end) { |
|
// we are printing bogus logs |
|
break; |
|
} |
|
} |
|
port->println(); |
|
} |
|
|
|
// This function starts a new log file in the DataFlash, and writes |
|
// the format of supported messages in the log |
|
void DataFlash_Class::StartNewLog(void) |
|
{ |
|
for (uint8_t i=0; i<_next_backend; i++) { |
|
backends[i]->start_new_log(); |
|
} |
|
} |
|
|
|
/* |
|
write a structure format to the log - should be in frontend |
|
*/ |
|
void DataFlash_Backend::Log_Fill_Format(const struct LogStructure *s, struct log_Format &pkt) |
|
{ |
|
memset(&pkt, 0, sizeof(pkt)); |
|
pkt.head1 = HEAD_BYTE1; |
|
pkt.head2 = HEAD_BYTE2; |
|
pkt.msgid = LOG_FORMAT_MSG; |
|
pkt.type = PGM_UINT8(&s->msg_type); |
|
pkt.length = PGM_UINT8(&s->msg_len); |
|
strncpy(pkt.name, s->name, sizeof(pkt.name)); |
|
strncpy(pkt.format, s->format, sizeof(pkt.format)); |
|
strncpy(pkt.labels, s->labels, sizeof(pkt.labels)); |
|
} |
|
|
|
/* |
|
write a structure format to the log |
|
*/ |
|
bool DataFlash_Backend::Log_Write_Format(const struct LogStructure *s) |
|
{ |
|
struct log_Format pkt; |
|
Log_Fill_Format(s, pkt); |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
/* |
|
write a parameter to the log |
|
*/ |
|
bool DataFlash_Backend::Log_Write_Parameter(const char *name, float value) |
|
{ |
|
struct log_Parameter pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_PARAMETER_MSG), |
|
time_us : AP_HAL::micros64(), |
|
name : {}, |
|
value : value |
|
}; |
|
strncpy(pkt.name, name, sizeof(pkt.name)); |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
/* |
|
write a parameter to the log |
|
*/ |
|
bool DataFlash_Backend::Log_Write_Parameter(const AP_Param *ap, |
|
const AP_Param::ParamToken &token, |
|
enum ap_var_type type) |
|
{ |
|
char name[16]; |
|
ap->copy_name_token(token, &name[0], sizeof(name), true); |
|
return Log_Write_Parameter(name, ap->cast_to_float(type)); |
|
} |
|
|
|
/* |
|
write all parameters to the log - used when starting a new log so |
|
the log file has a full record of the parameters |
|
*/ |
|
void DataFlash_Class::Log_Write_Parameters(void) |
|
{ |
|
AP_Param::ParamToken token; |
|
AP_Param *ap; |
|
enum ap_var_type type; |
|
|
|
for (ap=AP_Param::first(&token, &type); |
|
ap; |
|
ap=AP_Param::next_scalar(&token, &type)) { |
|
Log_Write_Parameter(ap, token, type); |
|
// slow down the parameter dump to prevent saturating |
|
// the dataflash write bandwidth |
|
hal.scheduler->delay(1); |
|
} |
|
} |
|
|
|
// Write an GPS packet |
|
void DataFlash_Class::Log_Write_GPS(const AP_GPS &gps, uint8_t i, int32_t relative_alt) |
|
{ |
|
const struct Location &loc = gps.location(i); |
|
struct log_GPS pkt = { |
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPS_MSG+i)), |
|
time_us : AP_HAL::micros64(), |
|
status : (uint8_t)gps.status(i), |
|
gps_week_ms : gps.time_week_ms(i), |
|
gps_week : gps.time_week(i), |
|
num_sats : gps.num_sats(i), |
|
hdop : gps.get_hdop(i), |
|
latitude : loc.lat, |
|
longitude : loc.lng, |
|
rel_altitude : relative_alt, |
|
altitude : loc.alt, |
|
ground_speed : (uint32_t)(gps.ground_speed(i) * 100), |
|
ground_course : gps.ground_course_cd(i), |
|
vel_z : gps.velocity(i).z, |
|
used : (uint8_t)(gps.primary_sensor() == i) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
/* write auxillary accuracy information as well */ |
|
float hacc = 0, vacc = 0, sacc = 0; |
|
gps.horizontal_accuracy(i, hacc); |
|
gps.vertical_accuracy(i, vacc); |
|
gps.speed_accuracy(i, sacc); |
|
struct log_GPA pkt2 = { |
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_GPA_MSG+i)), |
|
time_us : AP_HAL::micros64(), |
|
vdop : gps.get_vdop(i), |
|
hacc : (uint16_t)(hacc*100), |
|
vacc : (uint16_t)(vacc*100), |
|
sacc : (uint16_t)(sacc*100) |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
} |
|
|
|
|
|
// Write an RFND (rangefinder) packet |
|
void DataFlash_Class::Log_Write_RFND(const RangeFinder &rangefinder) |
|
{ |
|
struct log_RFND pkt = { |
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_RFND_MSG)), |
|
time_us : AP_HAL::micros64(), |
|
dist1 : rangefinder.distance_cm(0), |
|
dist2 : rangefinder.distance_cm(1) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write an RCIN packet |
|
void DataFlash_Class::Log_Write_RCIN(void) |
|
{ |
|
struct log_RCIN pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RCIN_MSG), |
|
time_us : AP_HAL::micros64(), |
|
chan1 : hal.rcin->read(0), |
|
chan2 : hal.rcin->read(1), |
|
chan3 : hal.rcin->read(2), |
|
chan4 : hal.rcin->read(3), |
|
chan5 : hal.rcin->read(4), |
|
chan6 : hal.rcin->read(5), |
|
chan7 : hal.rcin->read(6), |
|
chan8 : hal.rcin->read(7), |
|
chan9 : hal.rcin->read(8), |
|
chan10 : hal.rcin->read(9), |
|
chan11 : hal.rcin->read(10), |
|
chan12 : hal.rcin->read(11), |
|
chan13 : hal.rcin->read(12), |
|
chan14 : hal.rcin->read(13) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write an SERVO packet |
|
void DataFlash_Class::Log_Write_RCOUT(void) |
|
{ |
|
struct log_RCOUT pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RCOUT_MSG), |
|
time_us : AP_HAL::micros64(), |
|
chan1 : hal.rcout->read(0), |
|
chan2 : hal.rcout->read(1), |
|
chan3 : hal.rcout->read(2), |
|
chan4 : hal.rcout->read(3), |
|
chan5 : hal.rcout->read(4), |
|
chan6 : hal.rcout->read(5), |
|
chan7 : hal.rcout->read(6), |
|
chan8 : hal.rcout->read(7), |
|
chan9 : hal.rcout->read(8), |
|
chan10 : hal.rcout->read(9), |
|
chan11 : hal.rcout->read(10), |
|
chan12 : hal.rcout->read(11) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
Log_Write_ESC(); |
|
} |
|
|
|
// Write an RSSI packet |
|
void DataFlash_Class::Log_Write_RSSI(AP_RSSI &rssi) |
|
{ |
|
struct log_RSSI pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RSSI_MSG), |
|
time_us : AP_HAL::micros64(), |
|
RXRSSI : rssi.read_receiver_rssi() |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a BARO packet |
|
void DataFlash_Class::Log_Write_Baro(AP_Baro &baro) |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
struct log_BARO pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_BARO_MSG), |
|
time_us : time_us, |
|
altitude : baro.get_altitude(0), |
|
pressure : baro.get_pressure(0), |
|
temperature : (int16_t)(baro.get_temperature(0) * 100), |
|
climbrate : baro.get_climb_rate() |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
if (baro.num_instances() > 1 && baro.healthy(1)) { |
|
struct log_BARO pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_BAR2_MSG), |
|
time_us : time_us, |
|
altitude : baro.get_altitude(1), |
|
pressure : baro.get_pressure(1), |
|
temperature : (int16_t)(baro.get_temperature(1) * 100), |
|
climbrate : baro.get_climb_rate() |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
} |
|
|
|
if (baro.num_instances() > 2 && baro.healthy(2)) { |
|
struct log_BARO pkt3 = { |
|
LOG_PACKET_HEADER_INIT(LOG_BAR3_MSG), |
|
time_us : time_us, |
|
altitude : baro.get_altitude(2), |
|
pressure : baro.get_pressure(2), |
|
temperature : (int16_t)(baro.get_temperature(2) * 100), |
|
climbrate : baro.get_climb_rate() |
|
}; |
|
WriteBlock(&pkt3, sizeof(pkt3)); |
|
} |
|
} |
|
|
|
// Write an raw accel/gyro data packet |
|
void DataFlash_Class::Log_Write_IMU(const AP_InertialSensor &ins) |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
const Vector3f &gyro = ins.get_gyro(0); |
|
const Vector3f &accel = ins.get_accel(0); |
|
struct log_IMU pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_IMU_MSG), |
|
time_us : time_us, |
|
gyro_x : gyro.x, |
|
gyro_y : gyro.y, |
|
gyro_z : gyro.z, |
|
accel_x : accel.x, |
|
accel_y : accel.y, |
|
accel_z : accel.z, |
|
gyro_error : ins.get_gyro_error_count(0), |
|
accel_error : ins.get_accel_error_count(0), |
|
temperature : ins.get_temperature(0), |
|
gyro_health : (uint8_t)ins.get_gyro_health(0), |
|
accel_health : (uint8_t)ins.get_accel_health(0) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
if (ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) { |
|
return; |
|
} |
|
|
|
const Vector3f &gyro2 = ins.get_gyro(1); |
|
const Vector3f &accel2 = ins.get_accel(1); |
|
struct log_IMU pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_IMU2_MSG), |
|
time_us : time_us, |
|
gyro_x : gyro2.x, |
|
gyro_y : gyro2.y, |
|
gyro_z : gyro2.z, |
|
accel_x : accel2.x, |
|
accel_y : accel2.y, |
|
accel_z : accel2.z, |
|
gyro_error : ins.get_gyro_error_count(1), |
|
accel_error : ins.get_accel_error_count(1), |
|
temperature : ins.get_temperature(1), |
|
gyro_health : (uint8_t)ins.get_gyro_health(1), |
|
accel_health : (uint8_t)ins.get_accel_health(1) |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
if (ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) { |
|
return; |
|
} |
|
const Vector3f &gyro3 = ins.get_gyro(2); |
|
const Vector3f &accel3 = ins.get_accel(2); |
|
struct log_IMU pkt3 = { |
|
LOG_PACKET_HEADER_INIT(LOG_IMU3_MSG), |
|
time_us : time_us, |
|
gyro_x : gyro3.x, |
|
gyro_y : gyro3.y, |
|
gyro_z : gyro3.z, |
|
accel_x : accel3.x, |
|
accel_y : accel3.y, |
|
accel_z : accel3.z, |
|
gyro_error : ins.get_gyro_error_count(2), |
|
accel_error : ins.get_accel_error_count(2), |
|
temperature : ins.get_temperature(2), |
|
gyro_health : (uint8_t)ins.get_gyro_health(2), |
|
accel_health : (uint8_t)ins.get_accel_health(2) |
|
}; |
|
WriteBlock(&pkt3, sizeof(pkt3)); |
|
} |
|
|
|
// Write an accel/gyro delta time data packet |
|
void DataFlash_Class::Log_Write_IMUDT(const AP_InertialSensor &ins) |
|
{ |
|
float delta_t = ins.get_delta_time(); |
|
float delta_vel_t = ins.get_delta_velocity_dt(0); |
|
Vector3f delta_angle, delta_velocity; |
|
ins.get_delta_angle(0, delta_angle); |
|
ins.get_delta_velocity(0, delta_velocity); |
|
|
|
uint64_t time_us = AP_HAL::micros64(); |
|
struct log_IMUDT pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_IMUDT_MSG), |
|
time_us : time_us, |
|
delta_time : delta_t, |
|
delta_vel_dt : delta_vel_t, |
|
delta_ang_x : delta_angle.x, |
|
delta_ang_y : delta_angle.y, |
|
delta_ang_z : delta_angle.z, |
|
delta_vel_x : delta_velocity.x, |
|
delta_vel_y : delta_velocity.y, |
|
delta_vel_z : delta_velocity.z |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
if (ins.get_gyro_count() < 2 && ins.get_accel_count() < 2) { |
|
return; |
|
} |
|
|
|
delta_vel_t = ins.get_delta_velocity_dt(1); |
|
if (!ins.get_delta_angle(1, delta_angle)) { |
|
delta_angle.zero(); |
|
} |
|
if (!ins.get_delta_velocity(1, delta_velocity)) { |
|
delta_velocity.zero(); |
|
} |
|
struct log_IMUDT pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_IMUDT2_MSG), |
|
time_us : time_us, |
|
delta_time : delta_t, |
|
delta_vel_dt : delta_vel_t, |
|
delta_ang_x : delta_angle.x, |
|
delta_ang_y : delta_angle.y, |
|
delta_ang_z : delta_angle.z, |
|
delta_vel_x : delta_velocity.x, |
|
delta_vel_y : delta_velocity.y, |
|
delta_vel_z : delta_velocity.z |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
|
|
if (ins.get_gyro_count() < 3 && ins.get_accel_count() < 3) { |
|
return; |
|
} |
|
delta_vel_t = ins.get_delta_velocity_dt(1); |
|
if (!ins.get_delta_angle(2, delta_angle)) { |
|
delta_angle.zero(); |
|
} |
|
if (!ins.get_delta_velocity(2, delta_velocity)) { |
|
delta_velocity.zero(); |
|
} |
|
struct log_IMUDT pkt3 = { |
|
LOG_PACKET_HEADER_INIT(LOG_IMUDT3_MSG), |
|
time_us : time_us, |
|
delta_time : delta_t, |
|
delta_vel_dt : delta_vel_t, |
|
delta_ang_x : delta_angle.x, |
|
delta_ang_y : delta_angle.y, |
|
delta_ang_z : delta_angle.z, |
|
delta_vel_x : delta_velocity.x, |
|
delta_vel_y : delta_velocity.y, |
|
delta_vel_z : delta_velocity.z |
|
}; |
|
WriteBlock(&pkt3, sizeof(pkt3)); |
|
} |
|
|
|
void DataFlash_Class::Log_Write_Vibration(const AP_InertialSensor &ins) |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
Vector3f vibration = ins.get_vibration_levels(); |
|
struct log_Vibe pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_VIBE_MSG), |
|
time_us : time_us, |
|
vibe_x : vibration.x, |
|
vibe_y : vibration.y, |
|
vibe_z : vibration.z, |
|
clipping_0 : ins.get_accel_clip_count(0), |
|
clipping_1 : ins.get_accel_clip_count(1), |
|
clipping_2 : ins.get_accel_clip_count(2) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void DataFlash_Class::Log_Write_SysInfo(const char *firmware_string) |
|
{ |
|
Log_Write_Message(firmware_string); |
|
|
|
#if defined(PX4_GIT_VERSION) && defined(NUTTX_GIT_VERSION) |
|
Log_Write_Message("PX4: " PX4_GIT_VERSION " NuttX: " NUTTX_GIT_VERSION); |
|
#endif |
|
|
|
// write system identifier as well if available |
|
char sysid[40]; |
|
if (hal.util->get_system_id(sysid)) { |
|
Log_Write_Message(sysid); |
|
} |
|
|
|
// Write all current parameters |
|
Log_Write_Parameters(); |
|
} |
|
|
|
// Write a mission command. Total length : 36 bytes |
|
bool DataFlash_Backend::Log_Write_Mission_Cmd(const AP_Mission &mission, |
|
const AP_Mission::Mission_Command &cmd) |
|
{ |
|
mavlink_mission_item_t mav_cmd = {}; |
|
AP_Mission::mission_cmd_to_mavlink(cmd,mav_cmd); |
|
return Log_Write_MavCmd(mission.num_commands(),mav_cmd); |
|
} |
|
|
|
void DataFlash_Backend::Log_Write_EntireMission(const AP_Mission &mission) |
|
{ |
|
DFMessageWriter_WriteEntireMission writer; |
|
writer.set_dataflash_backend(this); |
|
writer.set_mission(&mission); |
|
writer.process(); |
|
} |
|
|
|
// Write a text message to the log |
|
bool DataFlash_Backend::Log_Write_Message(const char *message) |
|
{ |
|
struct log_Message pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MESSAGE_MSG), |
|
time_us : AP_HAL::micros64(), |
|
msg : {} |
|
}; |
|
strncpy(pkt.msg, message, sizeof(pkt.msg)); |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void DataFlash_Class::Log_Write_Power(void) |
|
{ |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
struct log_POWR pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_POWR_MSG), |
|
time_us : AP_HAL::micros64(), |
|
Vcc : (uint16_t)(hal.analogin->board_voltage() * 100), |
|
Vservo : (uint16_t)(hal.analogin->servorail_voltage() * 100), |
|
flags : hal.analogin->power_status_flags() |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
#endif |
|
} |
|
|
|
// Write an AHRS2 packet |
|
void DataFlash_Class::Log_Write_AHRS2(AP_AHRS &ahrs) |
|
{ |
|
Vector3f euler; |
|
struct Location loc; |
|
if (!ahrs.get_secondary_attitude(euler) || !ahrs.get_secondary_position(loc)) { |
|
return; |
|
} |
|
struct log_AHRS pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_AHR2_MSG), |
|
time_us : AP_HAL::micros64(), |
|
roll : (int16_t)(degrees(euler.x)*100), |
|
pitch : (int16_t)(degrees(euler.y)*100), |
|
yaw : (uint16_t)(wrap_360_cd(degrees(euler.z)*100)), |
|
alt : loc.alt*1.0e-2f, |
|
lat : loc.lat, |
|
lng : loc.lng |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a POS packet |
|
void DataFlash_Class::Log_Write_POS(AP_AHRS &ahrs) |
|
{ |
|
Location loc; |
|
if (!ahrs.get_position(loc)) { |
|
return; |
|
} |
|
Vector3f pos; |
|
ahrs.get_relative_position_NED(pos); |
|
struct log_POS pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_POS_MSG), |
|
time_us : AP_HAL::micros64(), |
|
lat : loc.lat, |
|
lng : loc.lng, |
|
alt : loc.alt*1.0e-2f, |
|
rel_alt : -pos.z |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
#if AP_AHRS_NAVEKF_AVAILABLE |
|
void DataFlash_Class::Log_Write_EKF(AP_AHRS_NavEKF &ahrs, bool optFlowEnabled) |
|
{ |
|
// only log EKF if enabled |
|
if (ahrs.get_NavEKF().enabled()) { |
|
// Write first EKF packet |
|
Vector3f euler; |
|
Vector3f posNED; |
|
Vector3f velNED; |
|
Vector3f dAngBias; |
|
Vector3f dVelBias; |
|
Vector3f gyroBias; |
|
float posDownDeriv; |
|
ahrs.get_NavEKF().getEulerAngles(euler); |
|
ahrs.get_NavEKF().getVelNED(velNED); |
|
ahrs.get_NavEKF().getPosNED(posNED); |
|
ahrs.get_NavEKF().getGyroBias(gyroBias); |
|
posDownDeriv = ahrs.get_NavEKF().getPosDownDerivative(); |
|
struct log_EKF1 pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_EKF1_MSG), |
|
time_us : AP_HAL::micros64(), |
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) |
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) |
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) |
|
velN : (float)(velNED.x), // velocity North (m/s) |
|
velE : (float)(velNED.y), // velocity East (m/s) |
|
velD : (float)(velNED.z), // velocity Down (m/s) |
|
posD_dot : (float)(posDownDeriv), // first derivative of down position |
|
posN : (float)(posNED.x), // metres North |
|
posE : (float)(posNED.y), // metres East |
|
posD : (float)(posNED.z), // metres Down |
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string |
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string |
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)) // cd/sec, displayed as deg/sec due to format string |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
// Write second EKF packet |
|
float ratio; |
|
float az1bias, az2bias; |
|
Vector3f wind; |
|
Vector3f magNED; |
|
Vector3f magXYZ; |
|
ahrs.get_NavEKF().getIMU1Weighting(ratio); |
|
ahrs.get_NavEKF().getAccelZBias(az1bias, az2bias); |
|
ahrs.get_NavEKF().getWind(wind); |
|
ahrs.get_NavEKF().getMagNED(magNED); |
|
ahrs.get_NavEKF().getMagXYZ(magXYZ); |
|
struct log_EKF2 pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_EKF2_MSG), |
|
time_us : AP_HAL::micros64(), |
|
Ratio : (int8_t)(100*ratio), |
|
AZ1bias : (int8_t)(100*az1bias), |
|
AZ2bias : (int8_t)(100*az2bias), |
|
windN : (int16_t)(100*wind.x), |
|
windE : (int16_t)(100*wind.y), |
|
magN : (int16_t)(magNED.x), |
|
magE : (int16_t)(magNED.y), |
|
magD : (int16_t)(magNED.z), |
|
magX : (int16_t)(magXYZ.x), |
|
magY : (int16_t)(magXYZ.y), |
|
magZ : (int16_t)(magXYZ.z) |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
|
|
// Write third EKF packet |
|
Vector3f velInnov; |
|
Vector3f posInnov; |
|
Vector3f magInnov; |
|
float tasInnov; |
|
ahrs.get_NavEKF().getInnovations(velInnov, posInnov, magInnov, tasInnov); |
|
struct log_EKF3 pkt3 = { |
|
LOG_PACKET_HEADER_INIT(LOG_EKF3_MSG), |
|
time_us : AP_HAL::micros64(), |
|
innovVN : (int16_t)(100*velInnov.x), |
|
innovVE : (int16_t)(100*velInnov.y), |
|
innovVD : (int16_t)(100*velInnov.z), |
|
innovPN : (int16_t)(100*posInnov.x), |
|
innovPE : (int16_t)(100*posInnov.y), |
|
innovPD : (int16_t)(100*posInnov.z), |
|
innovMX : (int16_t)(magInnov.x), |
|
innovMY : (int16_t)(magInnov.y), |
|
innovMZ : (int16_t)(magInnov.z), |
|
innovVT : (int16_t)(100*tasInnov) |
|
}; |
|
WriteBlock(&pkt3, sizeof(pkt3)); |
|
|
|
// Write fourth EKF packet |
|
float velVar; |
|
float posVar; |
|
float hgtVar; |
|
Vector3f magVar; |
|
float tasVar; |
|
Vector2f offset; |
|
uint8_t faultStatus, timeoutStatus; |
|
nav_filter_status solutionStatus; |
|
nav_gps_status gpsStatus {}; |
|
ahrs.get_NavEKF().getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset); |
|
ahrs.get_NavEKF().getFilterFaults(faultStatus); |
|
ahrs.get_NavEKF().getFilterTimeouts(timeoutStatus); |
|
ahrs.get_NavEKF().getFilterStatus(solutionStatus); |
|
ahrs.get_NavEKF().getFilterGpsStatus(gpsStatus); |
|
struct log_EKF4 pkt4 = { |
|
LOG_PACKET_HEADER_INIT(LOG_EKF4_MSG), |
|
time_us : AP_HAL::micros64(), |
|
sqrtvarV : (int16_t)(100*velVar), |
|
sqrtvarP : (int16_t)(100*posVar), |
|
sqrtvarH : (int16_t)(100*hgtVar), |
|
sqrtvarMX : (int16_t)(100*magVar.x), |
|
sqrtvarMY : (int16_t)(100*magVar.y), |
|
sqrtvarMZ : (int16_t)(100*magVar.z), |
|
sqrtvarVT : (int16_t)(100*tasVar), |
|
offsetNorth : (int8_t)(offset.x), |
|
offsetEast : (int8_t)(offset.y), |
|
faults : (uint8_t)(faultStatus), |
|
timeouts : (uint8_t)(timeoutStatus), |
|
solution : (uint16_t)(solutionStatus.value), |
|
gps : (uint16_t)(gpsStatus.value) |
|
}; |
|
WriteBlock(&pkt4, sizeof(pkt4)); |
|
|
|
|
|
// Write fifth EKF packet |
|
if (optFlowEnabled) { |
|
float normInnov; // normalised innovation variance ratio for optical flow observations fused by the main nav filter |
|
float gndOffset; // estimated vertical position of the terrain relative to the nav filter zero datum |
|
float flowInnovX, flowInnovY; // optical flow LOS rate vector innovations from the main nav filter |
|
float auxFlowInnov; // optical flow LOS rate innovation from terrain offset estimator |
|
float HAGL; // height above ground level |
|
float rngInnov; // range finder innovations |
|
float range; // measured range |
|
float gndOffsetErr; // filter ground offset state error |
|
ahrs.get_NavEKF().getFlowDebug(normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr); |
|
struct log_EKF5 pkt5 = { |
|
LOG_PACKET_HEADER_INIT(LOG_EKF5_MSG), |
|
time_us : AP_HAL::micros64(), |
|
normInnov : (uint8_t)(MIN(100*normInnov,255)), |
|
FIX : (int16_t)(1000*flowInnovX), |
|
FIY : (int16_t)(1000*flowInnovY), |
|
AFI : (int16_t)(1000*auxFlowInnov), |
|
HAGL : (int16_t)(100*HAGL), |
|
offset : (int16_t)(100*gndOffset), |
|
RI : (int16_t)(100*rngInnov), |
|
meaRng : (uint16_t)(100*range), |
|
errHAGL : (uint16_t)(100*gndOffsetErr) |
|
}; |
|
WriteBlock(&pkt5, sizeof(pkt5)); |
|
} |
|
} |
|
// only log EKF2 if enabled |
|
if (ahrs.get_NavEKF2().activeCores() > 0) { |
|
Log_Write_EKF2(ahrs, optFlowEnabled); |
|
} |
|
} |
|
|
|
|
|
void DataFlash_Class::Log_Write_EKF2(AP_AHRS_NavEKF &ahrs, bool optFlowEnabled) |
|
{ |
|
// Write first EKF packet |
|
Vector3f euler; |
|
Vector3f posNED; |
|
Vector3f velNED; |
|
Vector3f dAngBias; |
|
Vector3f dVelBias; |
|
Vector3f gyroBias; |
|
float posDownDeriv; |
|
ahrs.get_NavEKF2().getEulerAngles(0,euler); |
|
ahrs.get_NavEKF2().getVelNED(0,velNED); |
|
ahrs.get_NavEKF2().getPosNED(0,posNED); |
|
ahrs.get_NavEKF2().getGyroBias(0,gyroBias); |
|
posDownDeriv = ahrs.get_NavEKF2().getPosDownDerivative(0); |
|
struct log_EKF1 pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF1_MSG), |
|
time_us : AP_HAL::micros64(), |
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) |
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) |
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) |
|
velN : (float)(velNED.x), // velocity North (m/s) |
|
velE : (float)(velNED.y), // velocity East (m/s) |
|
velD : (float)(velNED.z), // velocity Down (m/s) |
|
posD_dot : (float)(posDownDeriv), // first derivative of down position |
|
posN : (float)(posNED.x), // metres North |
|
posE : (float)(posNED.y), // metres East |
|
posD : (float)(posNED.z), // metres Down |
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string |
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string |
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)) // cd/sec, displayed as deg/sec due to format string |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
// Write second EKF packet |
|
float azbias = 0; |
|
Vector3f wind; |
|
Vector3f magNED; |
|
Vector3f magXYZ; |
|
Vector3f gyroScaleFactor; |
|
uint8_t magIndex = ahrs.get_NavEKF2().getActiveMag(0); |
|
ahrs.get_NavEKF2().getAccelZBias(0,azbias); |
|
ahrs.get_NavEKF2().getWind(0,wind); |
|
ahrs.get_NavEKF2().getMagNED(0,magNED); |
|
ahrs.get_NavEKF2().getMagXYZ(0,magXYZ); |
|
ahrs.get_NavEKF2().getGyroScaleErrorPercentage(0,gyroScaleFactor); |
|
struct log_NKF2 pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF2_MSG), |
|
time_us : AP_HAL::micros64(), |
|
AZbias : (int8_t)(100*azbias), |
|
scaleX : (int16_t)(100*gyroScaleFactor.x), |
|
scaleY : (int16_t)(100*gyroScaleFactor.y), |
|
scaleZ : (int16_t)(100*gyroScaleFactor.z), |
|
windN : (int16_t)(100*wind.x), |
|
windE : (int16_t)(100*wind.y), |
|
magN : (int16_t)(magNED.x), |
|
magE : (int16_t)(magNED.y), |
|
magD : (int16_t)(magNED.z), |
|
magX : (int16_t)(magXYZ.x), |
|
magY : (int16_t)(magXYZ.y), |
|
magZ : (int16_t)(magXYZ.z), |
|
index : (uint8_t)(magIndex) |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
|
|
// Write third EKF packet |
|
Vector3f velInnov; |
|
Vector3f posInnov; |
|
Vector3f magInnov; |
|
float tasInnov = 0; |
|
float yawInnov = 0; |
|
ahrs.get_NavEKF2().getInnovations(0,velInnov, posInnov, magInnov, tasInnov, yawInnov); |
|
struct log_NKF3 pkt3 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF3_MSG), |
|
time_us : AP_HAL::micros64(), |
|
innovVN : (int16_t)(100*velInnov.x), |
|
innovVE : (int16_t)(100*velInnov.y), |
|
innovVD : (int16_t)(100*velInnov.z), |
|
innovPN : (int16_t)(100*posInnov.x), |
|
innovPE : (int16_t)(100*posInnov.y), |
|
innovPD : (int16_t)(100*posInnov.z), |
|
innovMX : (int16_t)(magInnov.x), |
|
innovMY : (int16_t)(magInnov.y), |
|
innovMZ : (int16_t)(magInnov.z), |
|
innovYaw : (int16_t)(100*degrees(yawInnov)), |
|
innovVT : (int16_t)(100*tasInnov) |
|
}; |
|
WriteBlock(&pkt3, sizeof(pkt3)); |
|
|
|
// Write fourth EKF packet |
|
float velVar = 0; |
|
float posVar = 0; |
|
float hgtVar = 0; |
|
Vector3f magVar; |
|
float tasVar = 0; |
|
Vector2f offset; |
|
uint8_t faultStatus=0, timeoutStatus=0; |
|
nav_filter_status solutionStatus {}; |
|
nav_gps_status gpsStatus {}; |
|
ahrs.get_NavEKF2().getVariances(0,velVar, posVar, hgtVar, magVar, tasVar, offset); |
|
float magLength = magVar.length(); |
|
ahrs.get_NavEKF2().getFilterFaults(0,faultStatus); |
|
ahrs.get_NavEKF2().getFilterTimeouts(0,timeoutStatus); |
|
ahrs.get_NavEKF2().getFilterStatus(0,solutionStatus); |
|
ahrs.get_NavEKF2().getFilterGpsStatus(0,gpsStatus); |
|
float tiltError; |
|
ahrs.get_NavEKF2().getTiltError(0,tiltError); |
|
uint8_t primaryIndex = ahrs.get_NavEKF2().getPrimaryCoreIndex(); |
|
struct log_NKF4 pkt4 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF4_MSG), |
|
time_us : AP_HAL::micros64(), |
|
sqrtvarV : (int16_t)(100*velVar), |
|
sqrtvarP : (int16_t)(100*posVar), |
|
sqrtvarH : (int16_t)(100*hgtVar), |
|
sqrtvarM : (int16_t)(100*magLength), |
|
sqrtvarVT : (int16_t)(100*tasVar), |
|
tiltErr : (float)tiltError, |
|
offsetNorth : (int8_t)(offset.x), |
|
offsetEast : (int8_t)(offset.y), |
|
faults : (uint8_t)(faultStatus), |
|
timeouts : (uint8_t)(timeoutStatus), |
|
solution : (uint16_t)(solutionStatus.value), |
|
gps : (uint16_t)(gpsStatus.value), |
|
primary : (int8_t)primaryIndex |
|
}; |
|
WriteBlock(&pkt4, sizeof(pkt4)); |
|
|
|
// Write fifth EKF packet - take data from the primary instance |
|
if (optFlowEnabled) { |
|
float normInnov=0; // normalised innovation variance ratio for optical flow observations fused by the main nav filter |
|
float gndOffset=0; // estimated vertical position of the terrain relative to the nav filter zero datum |
|
float flowInnovX=0, flowInnovY=0; // optical flow LOS rate vector innovations from the main nav filter |
|
float auxFlowInnov=0; // optical flow LOS rate innovation from terrain offset estimator |
|
float HAGL=0; // height above ground level |
|
float rngInnov=0; // range finder innovations |
|
float range=0; // measured range |
|
float gndOffsetErr=0; // filter ground offset state error |
|
ahrs.get_NavEKF2().getFlowDebug(-1,normInnov, gndOffset, flowInnovX, flowInnovY, auxFlowInnov, HAGL, rngInnov, range, gndOffsetErr); |
|
struct log_EKF5 pkt5 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF5_MSG), |
|
time_us : AP_HAL::micros64(), |
|
normInnov : (uint8_t)(MIN(100*normInnov,255)), |
|
FIX : (int16_t)(1000*flowInnovX), |
|
FIY : (int16_t)(1000*flowInnovY), |
|
AFI : (int16_t)(1000*auxFlowInnov), |
|
HAGL : (int16_t)(100*HAGL), |
|
offset : (int16_t)(100*gndOffset), |
|
RI : (int16_t)(100*rngInnov), |
|
meaRng : (uint16_t)(100*range), |
|
errHAGL : (uint16_t)(100*gndOffsetErr) |
|
}; |
|
WriteBlock(&pkt5, sizeof(pkt5)); |
|
} |
|
|
|
// log innovations for the second IMU if enabled |
|
if (ahrs.get_NavEKF2().activeCores() >= 2) { |
|
// Write 6th EKF packet |
|
ahrs.get_NavEKF2().getEulerAngles(1,euler); |
|
ahrs.get_NavEKF2().getVelNED(1,velNED); |
|
ahrs.get_NavEKF2().getPosNED(1,posNED); |
|
ahrs.get_NavEKF2().getGyroBias(1,gyroBias); |
|
posDownDeriv = ahrs.get_NavEKF2().getPosDownDerivative(1); |
|
struct log_EKF1 pkt6 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF6_MSG), |
|
time_us : AP_HAL::micros64(), |
|
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string) |
|
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string) |
|
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string) |
|
velN : (float)(velNED.x), // velocity North (m/s) |
|
velE : (float)(velNED.y), // velocity East (m/s) |
|
velD : (float)(velNED.z), // velocity Down (m/s) |
|
posD_dot : (float)(posDownDeriv), // first derivative of down position |
|
posN : (float)(posNED.x), // metres North |
|
posE : (float)(posNED.y), // metres East |
|
posD : (float)(posNED.z), // metres Down |
|
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string |
|
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string |
|
gyrZ : (int16_t)(100*degrees(gyroBias.z)) // cd/sec, displayed as deg/sec due to format string |
|
}; |
|
WriteBlock(&pkt6, sizeof(pkt6)); |
|
|
|
// Write 7th EKF packet |
|
ahrs.get_NavEKF2().getAccelZBias(1,azbias); |
|
ahrs.get_NavEKF2().getWind(1,wind); |
|
ahrs.get_NavEKF2().getMagNED(1,magNED); |
|
ahrs.get_NavEKF2().getMagXYZ(1,magXYZ); |
|
ahrs.get_NavEKF2().getGyroScaleErrorPercentage(1,gyroScaleFactor); |
|
magIndex = ahrs.get_NavEKF2().getActiveMag(1); |
|
struct log_NKF2 pkt7 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF7_MSG), |
|
time_us : AP_HAL::micros64(), |
|
AZbias : (int8_t)(100*azbias), |
|
scaleX : (int16_t)(100*gyroScaleFactor.x), |
|
scaleY : (int16_t)(100*gyroScaleFactor.y), |
|
scaleZ : (int16_t)(100*gyroScaleFactor.z), |
|
windN : (int16_t)(100*wind.x), |
|
windE : (int16_t)(100*wind.y), |
|
magN : (int16_t)(magNED.x), |
|
magE : (int16_t)(magNED.y), |
|
magD : (int16_t)(magNED.z), |
|
magX : (int16_t)(magXYZ.x), |
|
magY : (int16_t)(magXYZ.y), |
|
magZ : (int16_t)(magXYZ.z), |
|
index : (uint8_t)(magIndex) |
|
}; |
|
WriteBlock(&pkt7, sizeof(pkt7)); |
|
|
|
// Write 8th EKF packet |
|
ahrs.get_NavEKF2().getInnovations(1,velInnov, posInnov, magInnov, tasInnov, yawInnov); |
|
struct log_NKF3 pkt8 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF8_MSG), |
|
time_us : AP_HAL::micros64(), |
|
innovVN : (int16_t)(100*velInnov.x), |
|
innovVE : (int16_t)(100*velInnov.y), |
|
innovVD : (int16_t)(100*velInnov.z), |
|
innovPN : (int16_t)(100*posInnov.x), |
|
innovPE : (int16_t)(100*posInnov.y), |
|
innovPD : (int16_t)(100*posInnov.z), |
|
innovMX : (int16_t)(magInnov.x), |
|
innovMY : (int16_t)(magInnov.y), |
|
innovMZ : (int16_t)(magInnov.z), |
|
innovYaw : (int16_t)(100*degrees(yawInnov)), |
|
innovVT : (int16_t)(100*tasInnov) |
|
}; |
|
WriteBlock(&pkt8, sizeof(pkt8)); |
|
|
|
// Write 9th EKF packet |
|
ahrs.get_NavEKF2().getVariances(1,velVar, posVar, hgtVar, magVar, tasVar, offset); |
|
magLength = magVar.length(); |
|
ahrs.get_NavEKF2().getFilterFaults(1,faultStatus); |
|
ahrs.get_NavEKF2().getFilterTimeouts(1,timeoutStatus); |
|
ahrs.get_NavEKF2().getFilterStatus(1,solutionStatus); |
|
ahrs.get_NavEKF2().getFilterGpsStatus(1,gpsStatus); |
|
ahrs.get_NavEKF2().getTiltError(1,tiltError); |
|
struct log_NKF4 pkt9 = { |
|
LOG_PACKET_HEADER_INIT(LOG_NKF9_MSG), |
|
time_us : AP_HAL::micros64(), |
|
sqrtvarV : (int16_t)(100*velVar), |
|
sqrtvarP : (int16_t)(100*posVar), |
|
sqrtvarH : (int16_t)(100*hgtVar), |
|
sqrtvarM : (int16_t)(100*magLength), |
|
sqrtvarVT : (int16_t)(100*tasVar), |
|
tiltErr : (float)tiltError, |
|
offsetNorth : (int8_t)(offset.x), |
|
offsetEast : (int8_t)(offset.y), |
|
faults : (uint8_t)(faultStatus), |
|
timeouts : (uint8_t)(timeoutStatus), |
|
solution : (uint16_t)(solutionStatus.value), |
|
gps : (uint16_t)(gpsStatus.value), |
|
primary : (int8_t)primaryIndex |
|
}; |
|
WriteBlock(&pkt9, sizeof(pkt9)); |
|
} |
|
} |
|
#endif |
|
|
|
// Write a command processing packet |
|
bool DataFlash_Backend::Log_Write_MavCmd(uint16_t cmd_total, const mavlink_mission_item_t& mav_cmd) |
|
{ |
|
struct log_Cmd pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_CMD_MSG), |
|
time_us : AP_HAL::micros64(), |
|
command_total : (uint16_t)cmd_total, |
|
sequence : (uint16_t)mav_cmd.seq, |
|
command : (uint16_t)mav_cmd.command, |
|
param1 : (float)mav_cmd.param1, |
|
param2 : (float)mav_cmd.param2, |
|
param3 : (float)mav_cmd.param3, |
|
param4 : (float)mav_cmd.param4, |
|
latitude : (float)mav_cmd.x, |
|
longitude : (float)mav_cmd.y, |
|
altitude : (float)mav_cmd.z |
|
}; |
|
return WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void DataFlash_Class::Log_Write_Radio(const mavlink_radio_t &packet) |
|
{ |
|
struct log_Radio pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RADIO_MSG), |
|
time_us : AP_HAL::micros64(), |
|
rssi : packet.rssi, |
|
remrssi : packet.remrssi, |
|
txbuf : packet.txbuf, |
|
noise : packet.noise, |
|
remnoise : packet.remnoise, |
|
rxerrors : packet.rxerrors, |
|
fixed : packet.fixed |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a Camera packet |
|
void DataFlash_Class::Log_Write_Camera(const AP_AHRS &ahrs, const AP_GPS &gps, const Location ¤t_loc) |
|
{ |
|
int32_t altitude, altitude_rel; |
|
if (current_loc.flags.relative_alt) { |
|
altitude = current_loc.alt+ahrs.get_home().alt; |
|
altitude_rel = current_loc.alt; |
|
} else { |
|
altitude = current_loc.alt; |
|
altitude_rel = current_loc.alt - ahrs.get_home().alt; |
|
} |
|
|
|
struct log_Camera pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_CAMERA_MSG), |
|
time_us : AP_HAL::micros64(), |
|
gps_time : gps.time_week_ms(), |
|
gps_week : gps.time_week(), |
|
latitude : current_loc.lat, |
|
longitude : current_loc.lng, |
|
altitude : altitude, |
|
altitude_rel: altitude_rel, |
|
roll : (int16_t)ahrs.roll_sensor, |
|
pitch : (int16_t)ahrs.pitch_sensor, |
|
yaw : (uint16_t)ahrs.yaw_sensor |
|
}; |
|
WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write an attitude packet |
|
void DataFlash_Class::Log_Write_Attitude(AP_AHRS &ahrs, const Vector3f &targets) |
|
{ |
|
struct log_Attitude pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_ATTITUDE_MSG), |
|
time_us : AP_HAL::micros64(), |
|
control_roll : (int16_t)targets.x, |
|
roll : (int16_t)ahrs.roll_sensor, |
|
control_pitch : (int16_t)targets.y, |
|
pitch : (int16_t)ahrs.pitch_sensor, |
|
control_yaw : (uint16_t)targets.z, |
|
yaw : (uint16_t)ahrs.yaw_sensor, |
|
error_rp : (uint16_t)(ahrs.get_error_rp() * 100), |
|
error_yaw : (uint16_t)(ahrs.get_error_yaw() * 100) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write an Current data packet |
|
void DataFlash_Class::Log_Write_Current(const AP_BattMonitor &battery, int16_t throttle) |
|
{ |
|
float voltage2 = battery.voltage2(); |
|
struct log_Current pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_CURRENT_MSG), |
|
time_us : AP_HAL::micros64(), |
|
throttle : throttle, |
|
battery_voltage : (int16_t) (battery.voltage() * 100.0f), |
|
current_amps : (int16_t) (battery.current_amps() * 100.0f), |
|
board_voltage : (uint16_t)(hal.analogin->board_voltage()*1000), |
|
current_total : battery.current_total_mah(), |
|
battery2_voltage : (int16_t)(voltage2 * 100.0f) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a Compass packet |
|
void DataFlash_Class::Log_Write_Compass(const Compass &compass) |
|
{ |
|
const Vector3f &mag_field = compass.get_field(0); |
|
const Vector3f &mag_offsets = compass.get_offsets(0); |
|
const Vector3f &mag_motor_offsets = compass.get_motor_offsets(0); |
|
struct log_Compass pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_COMPASS_MSG), |
|
time_us : AP_HAL::micros64(), |
|
mag_x : (int16_t)mag_field.x, |
|
mag_y : (int16_t)mag_field.y, |
|
mag_z : (int16_t)mag_field.z, |
|
offset_x : (int16_t)mag_offsets.x, |
|
offset_y : (int16_t)mag_offsets.y, |
|
offset_z : (int16_t)mag_offsets.z, |
|
motor_offset_x : (int16_t)mag_motor_offsets.x, |
|
motor_offset_y : (int16_t)mag_motor_offsets.y, |
|
motor_offset_z : (int16_t)mag_motor_offsets.z, |
|
health : (uint8_t)compass.healthy(0) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
|
|
if (compass.get_count() > 1) { |
|
const Vector3f &mag_field2 = compass.get_field(1); |
|
const Vector3f &mag_offsets2 = compass.get_offsets(1); |
|
const Vector3f &mag_motor_offsets2 = compass.get_motor_offsets(1); |
|
struct log_Compass pkt2 = { |
|
LOG_PACKET_HEADER_INIT(LOG_COMPASS2_MSG), |
|
time_us : AP_HAL::micros64(), |
|
mag_x : (int16_t)mag_field2.x, |
|
mag_y : (int16_t)mag_field2.y, |
|
mag_z : (int16_t)mag_field2.z, |
|
offset_x : (int16_t)mag_offsets2.x, |
|
offset_y : (int16_t)mag_offsets2.y, |
|
offset_z : (int16_t)mag_offsets2.z, |
|
motor_offset_x : (int16_t)mag_motor_offsets2.x, |
|
motor_offset_y : (int16_t)mag_motor_offsets2.y, |
|
motor_offset_z : (int16_t)mag_motor_offsets2.z, |
|
health : (uint8_t)compass.healthy(1) |
|
}; |
|
WriteBlock(&pkt2, sizeof(pkt2)); |
|
} |
|
|
|
if (compass.get_count() > 2) { |
|
const Vector3f &mag_field3 = compass.get_field(2); |
|
const Vector3f &mag_offsets3 = compass.get_offsets(2); |
|
const Vector3f &mag_motor_offsets3 = compass.get_motor_offsets(2); |
|
struct log_Compass pkt3 = { |
|
LOG_PACKET_HEADER_INIT(LOG_COMPASS3_MSG), |
|
time_us : AP_HAL::micros64(), |
|
mag_x : (int16_t)mag_field3.x, |
|
mag_y : (int16_t)mag_field3.y, |
|
mag_z : (int16_t)mag_field3.z, |
|
offset_x : (int16_t)mag_offsets3.x, |
|
offset_y : (int16_t)mag_offsets3.y, |
|
offset_z : (int16_t)mag_offsets3.z, |
|
motor_offset_x : (int16_t)mag_motor_offsets3.x, |
|
motor_offset_y : (int16_t)mag_motor_offsets3.y, |
|
motor_offset_z : (int16_t)mag_motor_offsets3.z, |
|
health : (uint8_t)compass.healthy(2) |
|
}; |
|
WriteBlock(&pkt3, sizeof(pkt3)); |
|
} |
|
} |
|
|
|
// Write a mode packet. |
|
bool DataFlash_Backend::Log_Write_Mode(uint8_t mode) |
|
{ |
|
struct log_Mode pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_MODE_MSG), |
|
time_us : AP_HAL::micros64(), |
|
mode : mode, |
|
mode_num : mode |
|
}; |
|
return WriteCriticalBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write ESC status messages |
|
void DataFlash_Class::Log_Write_ESC(void) |
|
{ |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
static int _esc_status_sub = -1; |
|
struct esc_status_s esc_status; |
|
|
|
if (_esc_status_sub == -1) { |
|
// subscribe to ORB topic on first call |
|
_esc_status_sub = orb_subscribe(ORB_ID(esc_status)); |
|
} |
|
|
|
// check for new ESC status data |
|
bool esc_updated = false; |
|
orb_check(_esc_status_sub, &esc_updated); |
|
if (esc_updated && (OK == orb_copy(ORB_ID(esc_status), _esc_status_sub, &esc_status))) { |
|
if (esc_status.esc_count > 8) { |
|
esc_status.esc_count = 8; |
|
} |
|
uint64_t time_us = AP_HAL::micros64(); |
|
for (uint8_t i = 0; i < esc_status.esc_count; i++) { |
|
// skip logging ESCs with a esc_address of zero, and this |
|
// are probably not populated. The Pixhawk itself should |
|
// be address zero |
|
if (esc_status.esc[i].esc_address != 0) { |
|
struct log_Esc pkt = { |
|
LOG_PACKET_HEADER_INIT((uint8_t)(LOG_ESC1_MSG + i)), |
|
time_us : time_us, |
|
rpm : (int16_t)(esc_status.esc[i].esc_rpm/10), |
|
voltage : (int16_t)(esc_status.esc[i].esc_voltage*100.0f + .5f), |
|
current : (int16_t)(esc_status.esc[i].esc_current*100.0f + .5f), |
|
temperature : (int16_t)(esc_status.esc[i].esc_temperature*100.0f + .5f) |
|
}; |
|
|
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
} |
|
} |
|
#endif // CONFIG_HAL_BOARD |
|
} |
|
|
|
// Write a AIRSPEED packet |
|
void DataFlash_Class::Log_Write_Airspeed(AP_Airspeed &airspeed) |
|
{ |
|
float temperature; |
|
if (!airspeed.get_temperature(temperature)) { |
|
temperature = 0; |
|
} |
|
struct log_AIRSPEED pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_ARSP_MSG), |
|
time_us : AP_HAL::micros64(), |
|
airspeed : airspeed.get_raw_airspeed(), |
|
diffpressure : airspeed.get_differential_pressure(), |
|
temperature : (int16_t)(temperature * 100.0f), |
|
rawpressure : airspeed.get_raw_pressure(), |
|
offset : airspeed.get_offset() |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
// Write a Yaw PID packet |
|
void DataFlash_Class::Log_Write_PID(uint8_t msg_type, const PID_Info &info) |
|
{ |
|
struct log_PID pkt = { |
|
LOG_PACKET_HEADER_INIT(msg_type), |
|
time_us : AP_HAL::micros64(), |
|
desired : info.desired, |
|
P : info.P, |
|
I : info.I, |
|
D : info.D, |
|
FF : info.FF, |
|
AFF : info.AFF |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void DataFlash_Class::Log_Write_Origin(uint8_t origin_type, const Location &loc) |
|
{ |
|
uint64_t time_us = AP_HAL::micros64(); |
|
struct log_ORGN pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_ORGN_MSG), |
|
time_us : time_us, |
|
origin_type : origin_type, |
|
latitude : loc.lat, |
|
longitude : loc.lng, |
|
altitude : loc.alt |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
} |
|
|
|
void DataFlash_Class::Log_Write_RPM(const AP_RPM &rpm_sensor) |
|
{ |
|
struct log_RPM pkt = { |
|
LOG_PACKET_HEADER_INIT(LOG_RPM_MSG), |
|
time_us : AP_HAL::micros64(), |
|
rpm1 : rpm_sensor.get_rpm(0), |
|
rpm2 : rpm_sensor.get_rpm(1) |
|
}; |
|
WriteBlock(&pkt, sizeof(pkt)); |
|
}
|
|
|