You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
364 lines
9.9 KiB
364 lines
9.9 KiB
#include "SIMState.h" |
|
|
|
#if AP_SIM_ENABLED && CONFIG_HAL_BOARD != HAL_BOARD_SITL |
|
|
|
/* |
|
* This is a very-much-cut-down AP_HAL_SITL object. We should make |
|
* PA_HAL_SITL use this object - by moving a lot more code from over |
|
* there into here. |
|
*/ |
|
|
|
#include <SITL/SIM_Multicopter.h> |
|
#include <SITL/SIM_Plane.h> |
|
|
|
#include <AP_Baro/AP_Baro.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
using namespace AP_HAL; |
|
|
|
#include <AP_Terrain/AP_Terrain.h> |
|
|
|
void SIMState::update() |
|
{ |
|
static bool init_done; |
|
if (!init_done) { |
|
init_done = true; |
|
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter) |
|
sitl_model = SITL::MultiCopter::create("+"); |
|
#elif APM_BUILD_TYPE(APM_BUILD_ArduPlane) |
|
sitl_model = SITL::Plane::create("plane"); |
|
#endif |
|
} |
|
|
|
_fdm_input_step(); |
|
} |
|
|
|
/* |
|
setup for SITL handling |
|
*/ |
|
void SIMState::_sitl_setup(const char *home_str) |
|
{ |
|
_home_str = home_str; |
|
|
|
printf("Starting SITL input\n"); |
|
|
|
// find the barometer object if it exists |
|
_barometer = AP_Baro::get_singleton(); |
|
} |
|
|
|
|
|
/* |
|
step the FDM by one time step |
|
*/ |
|
void SIMState::_fdm_input_step(void) |
|
{ |
|
fdm_input_local(); |
|
} |
|
|
|
/* |
|
get FDM input from a local model |
|
*/ |
|
void SIMState::fdm_input_local(void) |
|
{ |
|
struct sitl_input input; |
|
|
|
// construct servos structure for FDM |
|
_simulator_servos(input); |
|
|
|
// read servo inputs from ride along flight controllers |
|
// ride_along.receive(input); |
|
|
|
// update the model |
|
sitl_model->update_model(input); |
|
|
|
// get FDM output from the model |
|
if (_sitl == nullptr) { |
|
_sitl = AP::sitl(); |
|
} |
|
if (_sitl) { |
|
sitl_model->fill_fdm(_sitl->state); |
|
|
|
if (_sitl->rc_fail == SITL::SIM::SITL_RCFail_None) { |
|
for (uint8_t i=0; i< _sitl->state.rcin_chan_count; i++) { |
|
pwm_input[i] = 1000 + _sitl->state.rcin[i]*1000; |
|
} |
|
} |
|
} |
|
|
|
// output JSON state to ride along flight controllers |
|
// ride_along.send(_sitl->state,sitl_model->get_position_relhome()); |
|
|
|
#if HAL_SIM_GIMBAL_ENABLED |
|
if (gimbal != nullptr) { |
|
gimbal->update(); |
|
} |
|
#endif |
|
#if HAL_SIM_ADSB_ENABLED |
|
if (adsb != nullptr) { |
|
adsb->update(); |
|
} |
|
#endif |
|
if (vicon != nullptr) { |
|
Quaternion attitude; |
|
sitl_model->get_attitude(attitude); |
|
vicon->update(sitl_model->get_location(), |
|
sitl_model->get_position_relhome(), |
|
sitl_model->get_velocity_ef(), |
|
attitude); |
|
} |
|
if (benewake_tf02 != nullptr) { |
|
benewake_tf02->update(sitl_model->rangefinder_range()); |
|
} |
|
if (benewake_tf03 != nullptr) { |
|
benewake_tf03->update(sitl_model->rangefinder_range()); |
|
} |
|
if (benewake_tfmini != nullptr) { |
|
benewake_tfmini->update(sitl_model->rangefinder_range()); |
|
} |
|
if (teraranger_serial != nullptr) { |
|
teraranger_serial->update(sitl_model->rangefinder_range()); |
|
} |
|
if (lightwareserial != nullptr) { |
|
lightwareserial->update(sitl_model->rangefinder_range()); |
|
} |
|
if (lightwareserial_binary != nullptr) { |
|
lightwareserial_binary->update(sitl_model->rangefinder_range()); |
|
} |
|
if (lanbao != nullptr) { |
|
lanbao->update(sitl_model->rangefinder_range()); |
|
} |
|
if (blping != nullptr) { |
|
blping->update(sitl_model->rangefinder_range()); |
|
} |
|
if (leddarone != nullptr) { |
|
leddarone->update(sitl_model->rangefinder_range()); |
|
} |
|
if (USD1_v0 != nullptr) { |
|
USD1_v0->update(sitl_model->rangefinder_range()); |
|
} |
|
if (USD1_v1 != nullptr) { |
|
USD1_v1->update(sitl_model->rangefinder_range()); |
|
} |
|
if (maxsonarseriallv != nullptr) { |
|
maxsonarseriallv->update(sitl_model->rangefinder_range()); |
|
} |
|
if (wasp != nullptr) { |
|
wasp->update(sitl_model->rangefinder_range()); |
|
} |
|
if (nmea != nullptr) { |
|
nmea->update(sitl_model->rangefinder_range()); |
|
} |
|
if (rf_mavlink != nullptr) { |
|
rf_mavlink->update(sitl_model->rangefinder_range()); |
|
} |
|
if (gyus42v2 != nullptr) { |
|
gyus42v2->update(sitl_model->rangefinder_range()); |
|
} |
|
if (efi_ms != nullptr) { |
|
efi_ms->update(); |
|
} |
|
|
|
if (frsky_d != nullptr) { |
|
frsky_d->update(); |
|
} |
|
// if (frsky_sport != nullptr) { |
|
// frsky_sport->update(); |
|
// } |
|
// if (frsky_sportpassthrough != nullptr) { |
|
// frsky_sportpassthrough->update(); |
|
// } |
|
|
|
#if AP_SIM_CRSF_ENABLED |
|
if (crsf != nullptr) { |
|
crsf->update(); |
|
} |
|
#endif |
|
|
|
#if HAL_SIM_PS_RPLIDARA2_ENABLED |
|
if (rplidara2 != nullptr) { |
|
rplidara2->update(sitl_model->get_location()); |
|
} |
|
#endif |
|
|
|
#if HAL_SIM_PS_TERARANGERTOWER_ENABLED |
|
if (terarangertower != nullptr) { |
|
terarangertower->update(sitl_model->get_location()); |
|
} |
|
#endif |
|
|
|
#if HAL_SIM_PS_LIGHTWARE_SF45B_ENABLED |
|
if (sf45b != nullptr) { |
|
sf45b->update(sitl_model->get_location()); |
|
} |
|
#endif |
|
|
|
if (vectornav != nullptr) { |
|
vectornav->update(); |
|
} |
|
|
|
if (lord != nullptr) { |
|
lord->update(); |
|
} |
|
|
|
#if HAL_SIM_AIS_ENABLED |
|
if (ais != nullptr) { |
|
ais->update(); |
|
} |
|
#endif |
|
for (uint8_t i=0; i<ARRAY_SIZE(gps); i++) { |
|
if (gps[i] != nullptr) { |
|
gps[i]->update(); |
|
} |
|
} |
|
|
|
// update simulation time |
|
if (_sitl) { |
|
hal.scheduler->stop_clock(_sitl->state.timestamp_us); |
|
} else { |
|
hal.scheduler->stop_clock(AP_HAL::micros64()+100); |
|
} |
|
|
|
set_height_agl(); |
|
|
|
_synthetic_clock_mode = true; |
|
_update_count++; |
|
} |
|
|
|
/* |
|
create sitl_input structure for sending to FDM |
|
*/ |
|
void SIMState::_simulator_servos(struct sitl_input &input) |
|
{ |
|
// output at chosen framerate |
|
uint32_t now = AP_HAL::micros(); |
|
// last_update_usec = now; |
|
|
|
float altitude = _barometer?_barometer->get_altitude():0; |
|
float wind_speed = 0; |
|
float wind_direction = 0; |
|
float wind_dir_z = 0; |
|
|
|
// give 5 seconds to calibrate airspeed sensor at 0 wind speed |
|
if (wind_start_delay_micros == 0) { |
|
wind_start_delay_micros = now; |
|
} else if (_sitl && (now - wind_start_delay_micros) > 5000000 ) { |
|
// The EKF does not like step inputs so this LPF keeps it happy. |
|
wind_speed = _sitl->wind_speed_active = (0.95f*_sitl->wind_speed_active) + (0.05f*_sitl->wind_speed); |
|
wind_direction = _sitl->wind_direction_active = (0.95f*_sitl->wind_direction_active) + (0.05f*_sitl->wind_direction); |
|
wind_dir_z = _sitl->wind_dir_z_active = (0.95f*_sitl->wind_dir_z_active) + (0.05f*_sitl->wind_dir_z); |
|
|
|
// pass wind into simulators using different wind types via param SIM_WIND_T*. |
|
switch (_sitl->wind_type) { |
|
case SITL::SIM::WIND_TYPE_SQRT: |
|
if (altitude < _sitl->wind_type_alt) { |
|
wind_speed *= sqrtf(MAX(altitude / _sitl->wind_type_alt, 0)); |
|
} |
|
break; |
|
|
|
case SITL::SIM::WIND_TYPE_COEF: |
|
wind_speed += (altitude - _sitl->wind_type_alt) * _sitl->wind_type_coef; |
|
break; |
|
|
|
case SITL::SIM::WIND_TYPE_NO_LIMIT: |
|
default: |
|
break; |
|
} |
|
|
|
// never allow negative wind velocity |
|
wind_speed = MAX(wind_speed, 0); |
|
} |
|
|
|
input.wind.speed = wind_speed; |
|
input.wind.direction = wind_direction; |
|
input.wind.turbulence = _sitl?_sitl->wind_turbulance:0; |
|
input.wind.dir_z = wind_dir_z; |
|
|
|
for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) { |
|
if (pwm_output[i] == 0xFFFF) { |
|
input.servos[i] = 0; |
|
} else { |
|
input.servos[i] = pwm_output[i]; |
|
} |
|
} |
|
|
|
if (_sitl != nullptr) { |
|
// FETtec ESC simulation support. Input signals of 1000-2000 |
|
// are positive thrust, 0 to 1000 are negative thrust. Deeper |
|
// changes required to support negative thrust - potentially |
|
// adding a field to input. |
|
if (_sitl != nullptr) { |
|
if (_sitl->fetteconewireesc_sim.enabled()) { |
|
_sitl->fetteconewireesc_sim.update_sitl_input_pwm(input); |
|
for (uint8_t i=0; i<ARRAY_SIZE(input.servos); i++) { |
|
if (input.servos[i] != 0 && input.servos[i] < 1000) { |
|
AP_HAL::panic("Bad input servo value (%u)", input.servos[i]); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
float voltage = 0; |
|
_current = 0; |
|
|
|
if (_sitl != nullptr) { |
|
if (_sitl->state.battery_voltage <= 0) { |
|
} else { |
|
// FDM provides voltage and current |
|
voltage = _sitl->state.battery_voltage; |
|
_current = _sitl->state.battery_current; |
|
} |
|
} |
|
|
|
// assume 3DR power brick |
|
voltage_pin_value = ((voltage / 10.1f) / 5.0f) * 1024; |
|
current_pin_value = ((_current / 17.0f) / 5.0f) * 1024; |
|
// fake battery2 as just a 25% gain on the first one |
|
voltage2_pin_value = ((voltage * 0.25f / 10.1f) / 5.0f) * 1024; |
|
current2_pin_value = ((_current * 0.25f / 17.0f) / 5.0f) * 1024; |
|
} |
|
|
|
/* |
|
set height above the ground in meters |
|
*/ |
|
void SIMState::set_height_agl(void) |
|
{ |
|
static float home_alt = -1; |
|
|
|
if (!_sitl) { |
|
// in example program |
|
return; |
|
} |
|
|
|
if (is_equal(home_alt, -1.0f) && _sitl->state.altitude > 0) { |
|
// remember home altitude as first non-zero altitude |
|
home_alt = _sitl->state.altitude; |
|
} |
|
|
|
#if AP_TERRAIN_AVAILABLE |
|
if (_sitl != nullptr && |
|
_sitl->terrain_enable) { |
|
// get height above terrain from AP_Terrain. This assumes |
|
// AP_Terrain is working |
|
float terrain_height_amsl; |
|
struct Location location; |
|
location.lat = _sitl->state.latitude*1.0e7; |
|
location.lng = _sitl->state.longitude*1.0e7; |
|
|
|
AP_Terrain *_terrain = AP_Terrain::get_singleton(); |
|
if (_terrain != nullptr && |
|
_terrain->height_amsl(location, terrain_height_amsl)) { |
|
_sitl->height_agl = _sitl->state.altitude - terrain_height_amsl; |
|
return; |
|
} |
|
} |
|
#endif |
|
|
|
if (_sitl != nullptr) { |
|
// fall back to flat earth model |
|
_sitl->height_agl = _sitl->state.altitude - home_alt; |
|
} |
|
} |
|
|
|
#endif // AP_SIM_ENABLED && CONFIG_HAL_BOARD != HAL_BOARD_SITL
|
|
|