You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
558 lines
21 KiB
558 lines
21 KiB
#include "mode.h" |
|
#include "Rover.h" |
|
|
|
Mode::Mode() : |
|
ahrs(rover.ahrs), |
|
g(rover.g), |
|
g2(rover.g2), |
|
channel_steer(rover.channel_steer), |
|
channel_throttle(rover.channel_throttle), |
|
channel_lateral(rover.channel_lateral), |
|
channel_roll(rover.channel_roll), |
|
channel_pitch(rover.channel_pitch), |
|
channel_walking_height(rover.channel_walking_height), |
|
attitude_control(rover.g2.attitude_control) |
|
{ } |
|
|
|
void Mode::exit() |
|
{ |
|
// call sub-classes exit |
|
_exit(); |
|
} |
|
|
|
bool Mode::enter() |
|
{ |
|
const bool ignore_checks = !hal.util->get_soft_armed(); // allow switching to any mode if disarmed. We rely on the arming check to perform |
|
if (!ignore_checks) { |
|
|
|
// get EKF filter status |
|
nav_filter_status filt_status; |
|
rover.ahrs.get_filter_status(filt_status); |
|
|
|
// check position estimate. requires origin and at least one horizontal position flag to be true |
|
const bool position_ok = rover.ekf_position_ok() && !rover.failsafe.ekf; |
|
if (requires_position() && !position_ok) { |
|
return false; |
|
} |
|
|
|
// check velocity estimate (if we have position estimate, we must have velocity estimate) |
|
if (requires_velocity() && !position_ok && !filt_status.flags.horiz_vel) { |
|
return false; |
|
} |
|
} |
|
|
|
bool ret = _enter(); |
|
|
|
// initialisation common to all modes |
|
if (ret) { |
|
set_reversed(false); |
|
|
|
// clear sailboat tacking flags |
|
rover.g2.sailboat.clear_tack(); |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
// decode pilot steering and throttle inputs and return in steer_out and throttle_out arguments |
|
// steering_out is in the range -4500 ~ +4500 with positive numbers meaning rotate clockwise |
|
// throttle_out is in the range -100 ~ +100 |
|
void Mode::get_pilot_input(float &steering_out, float &throttle_out) |
|
{ |
|
// no RC input means no throttle and centered steering |
|
if (rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) { |
|
steering_out = 0; |
|
throttle_out = 0; |
|
return; |
|
} |
|
|
|
// apply RC skid steer mixing |
|
switch ((enum pilot_steer_type_t)rover.g.pilot_steer_type.get()) |
|
{ |
|
case PILOT_STEER_TYPE_DEFAULT: |
|
case PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING: |
|
default: { |
|
// by default regular and skid-steering vehicles reverse their rotation direction when backing up |
|
throttle_out = rover.channel_throttle->get_control_in(); |
|
const float steering_dir = is_negative(throttle_out) ? -1 : 1; |
|
steering_out = steering_dir * rover.channel_steer->get_control_in(); |
|
break; |
|
} |
|
|
|
case PILOT_STEER_TYPE_TWO_PADDLES: { |
|
// convert the two radio_in values from skid steering values |
|
// left paddle from steering input channel, right paddle from throttle input channel |
|
// steering = left-paddle - right-paddle |
|
// throttle = average(left-paddle, right-paddle) |
|
const float left_paddle = rover.channel_steer->norm_input_dz(); |
|
const float right_paddle = rover.channel_throttle->norm_input_dz(); |
|
|
|
throttle_out = 0.5f * (left_paddle + right_paddle) * 100.0f; |
|
steering_out = (left_paddle - right_paddle) * 0.5f * 4500.0f; |
|
break; |
|
} |
|
|
|
case PILOT_STEER_TYPE_DIR_UNCHANGED_WHEN_REVERSING: { |
|
throttle_out = rover.channel_throttle->get_control_in(); |
|
steering_out = rover.channel_steer->get_control_in(); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// decode pilot steering and throttle inputs and return in steer_out and throttle_out arguments |
|
// steering_out is in the range -4500 ~ +4500 with positive numbers meaning rotate clockwise |
|
// throttle_out is in the range -100 ~ +100 |
|
void Mode::get_pilot_desired_steering_and_throttle(float &steering_out, float &throttle_out) |
|
{ |
|
// do basic conversion |
|
get_pilot_input(steering_out, throttle_out); |
|
|
|
// for skid steering vehicles, if pilot commands would lead to saturation |
|
// we proportionally reduce steering and throttle |
|
if (g2.motors.have_skid_steering()) { |
|
const float steer_normalised = constrain_float(steering_out / 4500.0f, -1.0f, 1.0f); |
|
const float throttle_normalised = constrain_float(throttle_out / 100.0f, -1.0f, 1.0f); |
|
const float saturation_value = fabsf(steer_normalised) + fabsf(throttle_normalised); |
|
if (saturation_value > 1.0f) { |
|
steering_out /= saturation_value; |
|
throttle_out /= saturation_value; |
|
} |
|
} |
|
|
|
// check for special case of input and output throttle being in opposite directions |
|
float throttle_out_limited = g2.motors.get_slew_limited_throttle(throttle_out, rover.G_Dt); |
|
if ((is_negative(throttle_out) != is_negative(throttle_out_limited)) && |
|
((g.pilot_steer_type == PILOT_STEER_TYPE_DEFAULT) || |
|
(g.pilot_steer_type == PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING))) { |
|
steering_out *= -1; |
|
} |
|
throttle_out = throttle_out_limited; |
|
} |
|
|
|
// decode pilot steering and return steering_out and speed_out (in m/s) |
|
void Mode::get_pilot_desired_steering_and_speed(float &steering_out, float &speed_out) |
|
{ |
|
float desired_throttle; |
|
get_pilot_input(steering_out, desired_throttle); |
|
speed_out = desired_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f); |
|
// check for special case of input and output throttle being in opposite directions |
|
float speed_out_limited = g2.attitude_control.get_desired_speed_accel_limited(speed_out, rover.G_Dt); |
|
if ((is_negative(speed_out) != is_negative(speed_out_limited)) && |
|
((g.pilot_steer_type == PILOT_STEER_TYPE_DEFAULT) || |
|
(g.pilot_steer_type == PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING))) { |
|
steering_out *= -1; |
|
} |
|
speed_out = speed_out_limited; |
|
} |
|
|
|
// decode pilot lateral movement input and return in lateral_out argument |
|
void Mode::get_pilot_desired_lateral(float &lateral_out) |
|
{ |
|
// no RC input means no lateral input |
|
if ((rover.failsafe.bits & FAILSAFE_EVENT_THROTTLE) || (rover.channel_lateral == nullptr)) { |
|
lateral_out = 0; |
|
return; |
|
} |
|
|
|
// get pilot lateral input |
|
lateral_out = rover.channel_lateral->get_control_in(); |
|
} |
|
|
|
// decode pilot's input and return heading_out (in cd) and speed_out (in m/s) |
|
void Mode::get_pilot_desired_heading_and_speed(float &heading_out, float &speed_out) |
|
{ |
|
// get steering and throttle in the -1 to +1 range |
|
float desired_steering = constrain_float(rover.channel_steer->norm_input_dz(), -1.0f, 1.0f); |
|
float desired_throttle = constrain_float(rover.channel_throttle->norm_input_dz(), -1.0f, 1.0f); |
|
|
|
// handle two paddle input |
|
if ((enum pilot_steer_type_t)rover.g.pilot_steer_type.get() == PILOT_STEER_TYPE_TWO_PADDLES) { |
|
const float left_paddle = desired_steering; |
|
const float right_paddle = desired_throttle; |
|
desired_steering = (left_paddle - right_paddle) * 0.5f; |
|
desired_throttle = (left_paddle + right_paddle) * 0.5f; |
|
} |
|
|
|
// calculate angle of input stick vector |
|
heading_out = wrap_360_cd(atan2f(desired_steering, desired_throttle) * DEGX100); |
|
|
|
// calculate throttle using magnitude of input stick vector |
|
const float throttle = MIN(safe_sqrt(sq(desired_throttle) + sq(desired_steering)), 1.0f); |
|
speed_out = throttle * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f); |
|
} |
|
|
|
// decode pilot roll and pitch inputs and return in roll_out and pitch_out arguments |
|
// outputs are in the range -1 to +1 |
|
void Mode::get_pilot_desired_roll_and_pitch(float &roll_out, float &pitch_out) |
|
{ |
|
if (channel_roll != nullptr) { |
|
roll_out = channel_roll->norm_input(); |
|
} else { |
|
roll_out = 0.0f; |
|
} |
|
if (channel_pitch != nullptr) { |
|
pitch_out = channel_pitch->norm_input(); |
|
} else { |
|
pitch_out = 0.0f; |
|
} |
|
} |
|
|
|
// decode pilot walking_height inputs and return in walking_height_out arguments |
|
// outputs are in the range -1 to +1 |
|
void Mode::get_pilot_desired_walking_height(float &walking_height_out) |
|
{ |
|
if (channel_walking_height != nullptr) { |
|
walking_height_out = channel_walking_height->norm_input(); |
|
} else { |
|
walking_height_out = 0.0f; |
|
} |
|
} |
|
|
|
// return heading (in degrees) to target destination (aka waypoint) |
|
float Mode::wp_bearing() const |
|
{ |
|
if (!is_autopilot_mode()) { |
|
return 0.0f; |
|
} |
|
return g2.wp_nav.wp_bearing_cd() * 0.01f; |
|
} |
|
|
|
// return short-term target heading in degrees (i.e. target heading back to line between waypoints) |
|
float Mode::nav_bearing() const |
|
{ |
|
if (!is_autopilot_mode()) { |
|
return 0.0f; |
|
} |
|
return g2.wp_nav.nav_bearing_cd() * 0.01f; |
|
} |
|
|
|
// return cross track error (i.e. vehicle's distance from the line between waypoints) |
|
float Mode::crosstrack_error() const |
|
{ |
|
if (!is_autopilot_mode()) { |
|
return 0.0f; |
|
} |
|
return g2.wp_nav.crosstrack_error(); |
|
} |
|
|
|
// return desired lateral acceleration |
|
float Mode::get_desired_lat_accel() const |
|
{ |
|
if (!is_autopilot_mode()) { |
|
return 0.0f; |
|
} |
|
return g2.wp_nav.get_lat_accel(); |
|
} |
|
|
|
// set desired location |
|
bool Mode::set_desired_location(const Location &destination, Location next_destination ) |
|
{ |
|
if (!g2.wp_nav.set_desired_location(destination, next_destination)) { |
|
return false; |
|
} |
|
|
|
// initialise distance |
|
_distance_to_destination = g2.wp_nav.get_distance_to_destination(); |
|
_reached_destination = false; |
|
|
|
return true; |
|
} |
|
|
|
// get default speed for this mode (held in WP_SPEED or RTL_SPEED) |
|
float Mode::get_speed_default(bool rtl) const |
|
{ |
|
if (rtl && is_positive(g2.rtl_speed)) { |
|
return g2.rtl_speed; |
|
} |
|
|
|
return g2.wp_nav.get_default_speed(); |
|
} |
|
|
|
// execute the mission in reverse (i.e. backing up) |
|
void Mode::set_reversed(bool value) |
|
{ |
|
g2.wp_nav.set_reversed(value); |
|
} |
|
|
|
// handle tacking request (from auxiliary switch) in sailboats |
|
void Mode::handle_tack_request() |
|
{ |
|
// autopilot modes handle tacking |
|
if (is_autopilot_mode()) { |
|
rover.g2.sailboat.handle_tack_request_auto(); |
|
} |
|
} |
|
|
|
void Mode::calc_throttle(float target_speed, bool avoidance_enabled) |
|
{ |
|
// get acceleration limited target speed |
|
target_speed = attitude_control.get_desired_speed_accel_limited(target_speed, rover.G_Dt); |
|
|
|
// apply object avoidance to desired speed using half vehicle's maximum deceleration |
|
if (avoidance_enabled) { |
|
g2.avoid.adjust_speed(0.0f, 0.5f * attitude_control.get_decel_max(), ahrs.yaw, target_speed, rover.G_Dt); |
|
if (g2.sailboat.tack_enabled() && g2.avoid.limits_active()) { |
|
// we are a sailboat trying to avoid fence, try a tack |
|
if (rover.control_mode != &rover.mode_acro) { |
|
rover.control_mode->handle_tack_request(); |
|
} |
|
} |
|
} |
|
|
|
// call throttle controller and convert output to -100 to +100 range |
|
float throttle_out = 0.0f; |
|
|
|
if (rover.g2.sailboat.sail_enabled()) { |
|
// sailboats use special throttle and mainsail controller |
|
float mainsail_out = 0.0f; |
|
float wingsail_out = 0.0f; |
|
float mast_rotation_out = 0.0f; |
|
rover.g2.sailboat.get_throttle_and_mainsail_out(target_speed, throttle_out, mainsail_out, wingsail_out, mast_rotation_out); |
|
rover.g2.motors.set_mainsail(mainsail_out); |
|
rover.g2.motors.set_wingsail(wingsail_out); |
|
rover.g2.motors.set_mast_rotation(mast_rotation_out); |
|
} else { |
|
// call speed or stop controller |
|
if (is_zero(target_speed) && !rover.is_balancebot()) { |
|
bool stopped; |
|
throttle_out = 100.0f * attitude_control.get_throttle_out_stop(g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt, stopped); |
|
} else { |
|
throttle_out = 100.0f * attitude_control.get_throttle_out_speed(target_speed, g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt); |
|
} |
|
|
|
// if vehicle is balance bot, calculate actual throttle required for balancing |
|
if (rover.is_balancebot()) { |
|
rover.balancebot_pitch_control(throttle_out); |
|
} |
|
} |
|
|
|
// send to motor |
|
g2.motors.set_throttle(throttle_out); |
|
} |
|
|
|
// performs a controlled stop without turning |
|
bool Mode::stop_vehicle() |
|
{ |
|
// call throttle controller and convert output to -100 to +100 range |
|
bool stopped = false; |
|
float throttle_out; |
|
|
|
// if vehicle is balance bot, calculate throttle required for balancing |
|
if (rover.is_balancebot()) { |
|
throttle_out = 100.0f * attitude_control.get_throttle_out_speed(0, g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt); |
|
rover.balancebot_pitch_control(throttle_out); |
|
} else { |
|
throttle_out = 100.0f * attitude_control.get_throttle_out_stop(g2.motors.limit.throttle_lower, g2.motors.limit.throttle_upper, g.speed_cruise, g.throttle_cruise * 0.01f, rover.G_Dt, stopped); |
|
} |
|
|
|
// relax sails if present |
|
g2.motors.set_mainsail(100.0f); |
|
g2.motors.set_wingsail(0.0f); |
|
|
|
// send to motor |
|
g2.motors.set_throttle(throttle_out); |
|
|
|
// do not turn while slowing down |
|
float steering_out = 0.0; |
|
if (!stopped) { |
|
steering_out = attitude_control.get_steering_out_rate(0.0, g2.motors.limit.steer_left, g2.motors.limit.steer_right, rover.G_Dt); |
|
} |
|
g2.motors.set_steering(steering_out * 4500.0); |
|
|
|
// return true once stopped |
|
return stopped; |
|
} |
|
|
|
// estimate maximum vehicle speed (in m/s) |
|
// cruise_speed is in m/s, cruise_throttle should be in the range -1 to +1 |
|
float Mode::calc_speed_max(float cruise_speed, float cruise_throttle) const |
|
{ |
|
float speed_max; |
|
|
|
// sanity checks |
|
if (cruise_throttle > 1.0f || cruise_throttle < 0.05f) { |
|
speed_max = cruise_speed; |
|
} else if (is_positive(g2.speed_max)) { |
|
speed_max = g2.speed_max; |
|
} else { |
|
// project vehicle's maximum speed |
|
speed_max = (1.0f / cruise_throttle) * cruise_speed; |
|
} |
|
|
|
// constrain to 30m/s (108km/h) and return |
|
return constrain_float(speed_max, 0.0f, 30.0f); |
|
} |
|
|
|
// calculate pilot input to nudge speed up or down |
|
// target_speed should be in meters/sec |
|
// reversed should be true if the vehicle is intentionally backing up which allows the pilot to increase the backing up speed by pulling the throttle stick down |
|
float Mode::calc_speed_nudge(float target_speed, bool reversed) |
|
{ |
|
// sanity checks |
|
if (g.throttle_cruise > 100 || g.throttle_cruise < 5) { |
|
return target_speed; |
|
} |
|
|
|
// convert pilot throttle input to speed |
|
float pilot_steering, pilot_throttle; |
|
get_pilot_input(pilot_steering, pilot_throttle); |
|
float pilot_speed = pilot_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f); |
|
|
|
// ignore pilot's input if in opposite direction to vehicle's desired direction of travel |
|
// note that the target_speed may be negative while reversed is true (or vice-versa) |
|
// while vehicle is transitioning between forward and backwards movement |
|
if ((is_positive(pilot_speed) && reversed) || |
|
(is_negative(pilot_speed) && !reversed)) { |
|
return target_speed; |
|
} |
|
|
|
// return the larger of the pilot speed and the original target speed |
|
if (reversed) { |
|
return MIN(target_speed, pilot_speed); |
|
} else { |
|
return MAX(target_speed, pilot_speed); |
|
} |
|
} |
|
|
|
// high level call to navigate to waypoint |
|
// uses wp_nav to calculate turn rate and speed to drive along the path from origin to destination |
|
// this function updates _distance_to_destination |
|
void Mode::navigate_to_waypoint() |
|
{ |
|
// apply speed nudge from pilot |
|
// calc_speed_nudge's "desired_speed" argument should be negative when vehicle is reversing |
|
// AR_WPNav nudge_speed_max argu,ent should always be positive even when reversing |
|
const float calc_nudge_input_speed = g2.wp_nav.get_speed_max() * (g2.wp_nav.get_reversed() ? -1.0 : 1.0); |
|
const float nudge_speed_max = calc_speed_nudge(calc_nudge_input_speed, g2.wp_nav.get_reversed()); |
|
g2.wp_nav.set_nudge_speed_max(fabsf(nudge_speed_max)); |
|
|
|
// update navigation controller |
|
g2.wp_nav.update(rover.G_Dt); |
|
_distance_to_destination = g2.wp_nav.get_distance_to_destination(); |
|
|
|
// sailboats trigger tack if simple avoidance becomes active |
|
if (g2.sailboat.tack_enabled() && g2.avoid.limits_active()) { |
|
// we are a sailboat trying to avoid fence, try a tack |
|
rover.control_mode->handle_tack_request(); |
|
} |
|
|
|
// pass desired speed to throttle controller |
|
// do not do simple avoidance because this is already handled in the position controller |
|
calc_throttle(g2.wp_nav.get_speed(), false); |
|
|
|
float desired_heading_cd = g2.wp_nav.oa_wp_bearing_cd(); |
|
if (g2.sailboat.use_indirect_route(desired_heading_cd)) { |
|
// sailboats use heading controller when tacking upwind |
|
desired_heading_cd = g2.sailboat.calc_heading(desired_heading_cd); |
|
// use pivot turn rate for tacks |
|
const float turn_rate = g2.sailboat.tacking() ? g2.wp_nav.get_pivot_rate() : 0.0f; |
|
calc_steering_to_heading(desired_heading_cd, turn_rate); |
|
} else { |
|
// retrieve turn rate from waypoint controller |
|
float desired_turn_rate_rads = g2.wp_nav.get_turn_rate_rads(); |
|
|
|
// if simple avoidance is active at very low speed do not attempt to turn |
|
if (g2.avoid.limits_active() && (fabsf(attitude_control.get_desired_speed()) <= attitude_control.get_stop_speed())) { |
|
desired_turn_rate_rads = 0.0f; |
|
} |
|
|
|
// call turn rate steering controller |
|
calc_steering_from_turn_rate(desired_turn_rate_rads); |
|
} |
|
} |
|
|
|
// calculate steering output given a turn rate |
|
// desired turn rate in radians/sec. Positive to the right. |
|
void Mode::calc_steering_from_turn_rate(float turn_rate) |
|
{ |
|
// calculate and send final steering command to motor library |
|
const float steering_out = attitude_control.get_steering_out_rate(turn_rate, |
|
g2.motors.limit.steer_left, |
|
g2.motors.limit.steer_right, |
|
rover.G_Dt); |
|
set_steering(steering_out * 4500.0f); |
|
} |
|
|
|
/* |
|
calculate steering output given lateral_acceleration |
|
*/ |
|
void Mode::calc_steering_from_lateral_acceleration(float lat_accel, bool reversed) |
|
{ |
|
// constrain to max G force |
|
lat_accel = constrain_float(lat_accel, -attitude_control.get_turn_lat_accel_max(), attitude_control.get_turn_lat_accel_max()); |
|
|
|
// send final steering command to motor library |
|
const float steering_out = attitude_control.get_steering_out_lat_accel(lat_accel, |
|
g2.motors.limit.steer_left, |
|
g2.motors.limit.steer_right, |
|
rover.G_Dt); |
|
set_steering(steering_out * 4500.0f); |
|
} |
|
|
|
// calculate steering output to drive towards desired heading |
|
// rate_max is a maximum turn rate in deg/s. set to zero to use default turn rate limits |
|
void Mode::calc_steering_to_heading(float desired_heading_cd, float rate_max_degs) |
|
{ |
|
// call heading controller |
|
const float steering_out = attitude_control.get_steering_out_heading(radians(desired_heading_cd*0.01f), |
|
radians(rate_max_degs), |
|
g2.motors.limit.steer_left, |
|
g2.motors.limit.steer_right, |
|
rover.G_Dt); |
|
set_steering(steering_out * 4500.0f); |
|
} |
|
|
|
void Mode::set_steering(float steering_value) |
|
{ |
|
if (allows_stick_mixing() && g2.stick_mixing > 0) { |
|
steering_value = channel_steer->stick_mixing((int16_t)steering_value); |
|
} |
|
g2.motors.set_steering(steering_value); |
|
} |
|
|
|
Mode *Rover::mode_from_mode_num(const enum Mode::Number num) |
|
{ |
|
Mode *ret = nullptr; |
|
switch (num) { |
|
case Mode::Number::MANUAL: |
|
ret = &mode_manual; |
|
break; |
|
case Mode::Number::ACRO: |
|
ret = &mode_acro; |
|
break; |
|
case Mode::Number::STEERING: |
|
ret = &mode_steering; |
|
break; |
|
case Mode::Number::HOLD: |
|
ret = &mode_hold; |
|
break; |
|
case Mode::Number::LOITER: |
|
ret = &mode_loiter; |
|
break; |
|
case Mode::Number::FOLLOW: |
|
ret = &mode_follow; |
|
break; |
|
case Mode::Number::SIMPLE: |
|
ret = &mode_simple; |
|
break; |
|
case Mode::Number::AUTO: |
|
ret = &mode_auto; |
|
break; |
|
case Mode::Number::RTL: |
|
ret = &mode_rtl; |
|
break; |
|
case Mode::Number::SMART_RTL: |
|
ret = &mode_smartrtl; |
|
break; |
|
case Mode::Number::GUIDED: |
|
ret = &mode_guided; |
|
break; |
|
case Mode::Number::INITIALISING: |
|
ret = &mode_initializing; |
|
break; |
|
default: |
|
break; |
|
} |
|
return ret; |
|
}
|
|
|