You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
617 lines
23 KiB
617 lines
23 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
#include <AP_HAL.h> |
|
#include <AC_PosControl.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AC_PosControl::var_info[] PROGMEM = { |
|
// @Param: THR_HOVER |
|
// @DisplayName: Throttle Hover |
|
// @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode |
|
// @Range: 0 1000 |
|
// @Units: Percent*10 |
|
// @User: Advanced |
|
AP_GROUPINFO("THR_HOVER", 0, AC_PosControl, _throttle_hover, POSCONTROL_THROTTLE_HOVER), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// Default constructor. |
|
// Note that the Vector/Matrix constructors already implicitly zero |
|
// their values. |
|
// |
|
AC_PosControl::AC_PosControl(const AP_AHRS& ahrs, const AP_InertialNav& inav, |
|
const AP_Motors& motors, AC_AttitudeControl& attitude_control, |
|
APM_PI& pi_alt_pos, AC_PID& pid_alt_rate, AC_PID& pid_alt_accel, |
|
APM_PI& pi_pos_lat, APM_PI& pi_pos_lon, AC_PID& pid_rate_lat, AC_PID& pid_rate_lon) : |
|
_ahrs(ahrs), |
|
_inav(inav), |
|
_motors(motors), |
|
_attitude_control(attitude_control), |
|
_pi_alt_pos(pi_alt_pos), |
|
_pid_alt_rate(pid_alt_rate), |
|
_pid_alt_accel(pid_alt_accel), |
|
_pi_pos_lat(pi_pos_lat), |
|
_pi_pos_lon(pi_pos_lon), |
|
_pid_rate_lat(pid_rate_lat), |
|
_pid_rate_lon(pid_rate_lon), |
|
_dt(POSCONTROL_DT_10HZ), |
|
_last_update_ms(0), |
|
_last_update_rate_ms(0), |
|
_last_update_accel_ms(0), |
|
_step(0), |
|
_speed_cms(POSCONTROL_SPEED), |
|
_vel_z_min(POSCONTROL_VEL_Z_MIN), |
|
_vel_z_max(POSCONTROL_VEL_Z_MAX), |
|
_accel_cms(POSCONTROL_ACCEL_XY_MAX), // To-Do: check this default |
|
_cos_yaw(1.0), |
|
_sin_yaw(0.0), |
|
_cos_pitch(1.0), |
|
_desired_roll(0.0), |
|
_desired_pitch(0.0), |
|
_leash(POSCONTROL_LEASH_LENGTH_MIN) |
|
{ |
|
AP_Param::setup_object_defaults(this, var_info); |
|
|
|
// calculate leash length |
|
//calculate_leash_length(); |
|
} |
|
|
|
/// |
|
/// z-axis position controller |
|
/// |
|
|
|
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home |
|
void AC_PosControl::set_target_to_stopping_point_z() |
|
{ |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt |
|
float linear_velocity; // the velocity we swap between linear and sqrt |
|
|
|
// calculate the velocity at which we switch from calculating the stopping point using a linear funcction to a sqrt function |
|
linear_velocity = POSCONTROL_ALT_HOLD_ACCEL_MAX/_pi_alt_pos.kP(); |
|
|
|
if (fabs(curr_vel.z) < linear_velocity) { |
|
// if our current velocity is below the cross-over point we use a linear function |
|
_pos_target.z = curr_pos.z + curr_vel.z/_pi_alt_pos.kP(); |
|
} else { |
|
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX/(2.0f*_pi_alt_pos.kP()*_pi_alt_pos.kP()); |
|
if (curr_vel.z > 0){ |
|
_pos_target.z = curr_pos.z + (linear_distance + curr_vel.z*curr_vel.z/(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX)); |
|
} else { |
|
_pos_target.z = curr_pos.z - (linear_distance + curr_vel.z*curr_vel.z/(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX)); |
|
} |
|
} |
|
_pos_target.z = constrain_float(_pos_target.z, curr_pos.z - POSCONTROL_STOPPING_DIST_Z_MAX, curr_pos.z + POSCONTROL_STOPPING_DIST_Z_MAX); |
|
} |
|
|
|
/// init_takeoff - initialises target altitude if we are taking off |
|
void AC_PosControl::init_takeoff() |
|
{ |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
|
|
_pos_target.z = curr_pos.z + POSCONTROL_TAKEOFF_JUMP_CM; |
|
|
|
// clear i term from acceleration controller |
|
if (_pid_alt_accel.get_integrator() < 0) { |
|
_pid_alt_accel.reset_I(); |
|
} |
|
} |
|
|
|
/// fly_to_target_z - fly to altitude in cm above home |
|
void AC_PosControl::fly_to_target_z() |
|
{ |
|
// call position controller |
|
pos_to_rate_z(); |
|
} |
|
|
|
/// climb_at_rate - climb at rate provided in cm/s |
|
void AC_PosControl::climb_at_rate(const float rate_target_cms) |
|
{ |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
|
|
// clear position limit flags |
|
_limit.pos_up = false; |
|
_limit.pos_down = false; |
|
|
|
// adjust desired alt if motors have not hit their limits |
|
// To-Do: should we use some other limits? this controller's vel limits? |
|
if ((rate_target_cms<0 && !_motors.limit.throttle_lower) || (rate_target_cms>0 && !_motors.limit.throttle_upper)) { |
|
_pos_target.z += rate_target_cms * _dt; |
|
} |
|
|
|
// do not let target altitude get too far from current altitude |
|
if (_pos_target.z < curr_pos.z - POSCONTROL_LEASH_Z) { |
|
_pos_target.z = curr_pos.z - POSCONTROL_LEASH_Z; |
|
_limit.pos_down = true; |
|
} |
|
if (_pos_target.z > curr_pos.z + POSCONTROL_LEASH_Z) { |
|
_pos_target.z = curr_pos.z + POSCONTROL_LEASH_Z; |
|
_limit.pos_up = true; |
|
} |
|
|
|
// do not let target alt get above limit |
|
if (_alt_max > 0 && _pos_target.z > _alt_max) { |
|
_pos_target.z = _alt_max; |
|
_limit.pos_up = true; |
|
} |
|
|
|
// call position controller |
|
pos_to_rate_z(); |
|
} |
|
|
|
// pos_to_rate_z - position to rate controller for Z axis |
|
// calculates desired rate in earth-frame z axis and passes to rate controller |
|
// vel_up_max, vel_down_max should have already been set before calling this method |
|
void AC_PosControl::pos_to_rate_z() |
|
{ |
|
const Vector3f& curr_pos = _inav.get_position(); |
|
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt. |
|
|
|
// calculate altitude error |
|
_pos_error.z = _pos_target.z - curr_pos.z; |
|
|
|
// check kP to avoid division by zero |
|
if (_pi_alt_pos.kP() != 0) { |
|
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX/(2.0f*_pi_alt_pos.kP()*_pi_alt_pos.kP()); |
|
if (_pos_error.z > 2*linear_distance ) { |
|
_vel_target.z = safe_sqrt(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX*(_pos_error.z-linear_distance)); |
|
}else if (_pos_error.z < -2.0f*linear_distance) { |
|
_vel_target.z = -safe_sqrt(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX*(-_pos_error.z-linear_distance)); |
|
}else{ |
|
_vel_target.z = _pi_alt_pos.get_p(_pos_error.z); |
|
} |
|
}else{ |
|
_vel_target.z = 0; |
|
} |
|
|
|
// call rate based throttle controller which will update accel based throttle controller targets |
|
rate_to_accel_z(_vel_target.z); |
|
} |
|
|
|
// rate_to_accel_z - calculates desired accel required to achieve the velocity target |
|
// calculates desired acceleration and calls accel throttle controller |
|
void AC_PosControl::rate_to_accel_z(float vel_target_z) |
|
{ |
|
uint32_t now = hal.scheduler->millis(); |
|
const Vector3f& curr_vel = _inav.get_velocity(); |
|
float z_target_speed_delta; // The change in requested speed |
|
float p; // used to capture pid values for logging |
|
float desired_accel; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors |
|
|
|
// check speed limits |
|
// To-Do: check these speed limits here or in the pos->rate controller |
|
_limit.vel_up = false; |
|
_limit.vel_down = false; |
|
if (_vel_target.z < _vel_z_min) { |
|
_vel_target.z = _vel_z_min; |
|
_limit.vel_down = true; |
|
} |
|
if (_vel_target.z > _vel_z_max) { |
|
_vel_target.z = _vel_z_max; |
|
_limit.vel_up = true; |
|
} |
|
|
|
// reset velocity error and filter if this controller has just been engaged |
|
if (now - _last_update_rate_ms > 100 ) { |
|
// Reset Filter |
|
_vel_error.z = 0; |
|
_vel_target_filt_z = vel_target_z; |
|
desired_accel = 0; |
|
} else { |
|
// calculate rate error and filter with cut off frequency of 2 Hz |
|
//To-Do: adjust constant below based on update rate |
|
_vel_error.z = _vel_error.z + 0.20085f * ((vel_target_z - curr_vel.z) - _vel_error.z); |
|
// feed forward acceleration based on change in the filtered desired speed. |
|
z_target_speed_delta = 0.20085f * (vel_target_z - _vel_target_filt_z); |
|
_vel_target_filt_z = _vel_target_filt_z + z_target_speed_delta; |
|
desired_accel = z_target_speed_delta / _dt; |
|
} |
|
_last_update_rate_ms = now; |
|
|
|
// calculate p |
|
p = _pid_alt_rate.kP() * _vel_error.z; |
|
|
|
// consolidate and constrain target acceleration |
|
desired_accel += p; |
|
desired_accel = constrain_int32(desired_accel, -32000, 32000); |
|
|
|
// To-Do: re-enable PID logging? |
|
// TO-DO: ensure throttle cruise is updated some other way in the main code or attitude control |
|
|
|
// set target for accel based throttle controller |
|
accel_to_throttle(desired_accel); |
|
} |
|
|
|
// accel_to_throttle - alt hold's acceleration controller |
|
// calculates a desired throttle which is sent directly to the motors |
|
void AC_PosControl::accel_to_throttle(float accel_target_z) |
|
{ |
|
uint32_t now = hal.scheduler->millis(); |
|
float z_accel_meas; // actual acceleration |
|
int32_t p,i,d; // used to capture pid values for logging |
|
|
|
// Calculate Earth Frame Z acceleration |
|
z_accel_meas = -(_ahrs.get_accel_ef().z + GRAVITY_MSS) * 100.0f; |
|
|
|
// reset target altitude if this controller has just been engaged |
|
if (now - _last_update_accel_ms > 100) { |
|
// Reset Filter |
|
_accel_error.z = 0; |
|
} else { |
|
// calculate accel error and Filter with fc = 2 Hz |
|
// To-Do: replace constant below with one that is adjusted for update rate |
|
_accel_error.z = _accel_error.z + 0.11164f * (constrain_float(accel_target_z - z_accel_meas, -32000, 32000) - _accel_error.z); |
|
} |
|
_last_update_accel_ms = now; |
|
|
|
// separately calculate p, i, d values for logging |
|
p = _pid_alt_accel.get_p(_accel_error.z); |
|
|
|
// get i term |
|
i = _pid_alt_accel.get_integrator(); |
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce |
|
// To-Do: should this be replaced with limits check from attitude_controller? |
|
if ((!_motors.limit.throttle_lower && !_motors.limit.throttle_upper) || (i>0&&_accel_error.z<0) || (i<0&&_accel_error.z>0)) { |
|
i = _pid_alt_accel.get_i(_accel_error.z, _dt); |
|
} |
|
|
|
// get d term |
|
d = _pid_alt_accel.get_d(_accel_error.z, _dt); |
|
|
|
// To-Do: pull min/max throttle from motors |
|
// To-Do: where to get hover throttle? |
|
// To-Do: we had a contraint here but it's now removed, is this ok? with the motors library handle it ok? |
|
_attitude_control.set_throttle_out((int16_t)p+i+d+_throttle_hover, true); |
|
|
|
// to-do add back in PID logging? |
|
} |
|
/* |
|
// get_throttle_althold_with_slew - altitude controller with slew to avoid step changes in altitude target |
|
// calls normal althold controller which updates accel based throttle controller targets |
|
static void |
|
get_throttle_althold_with_slew(int32_t target_alt, int16_t min_climb_rate, int16_t max_climb_rate) |
|
{ |
|
float alt_change = target_alt-controller_desired_alt; |
|
// adjust desired alt if motors have not hit their limits |
|
if ((alt_change<0 && !motors.limit.throttle_lower) || (alt_change>0 && !motors.limit.throttle_upper)) { |
|
controller_desired_alt += constrain_float(alt_change, min_climb_rate*0.02f, max_climb_rate*0.02f); |
|
} |
|
|
|
// do not let target altitude get too far from current altitude |
|
controller_desired_alt = constrain_float(controller_desired_alt,current_loc.alt-750,current_loc.alt+750); |
|
|
|
get_throttle_althold(controller_desired_alt, min_climb_rate-250, max_climb_rate+250); // 250 is added to give head room to alt hold controller |
|
} |
|
|
|
// get_throttle_rate_stabilized - rate controller with additional 'stabilizer' |
|
// 'stabilizer' ensure desired rate is being met |
|
// calls normal throttle rate controller which updates accel based throttle controller targets |
|
static void |
|
get_throttle_rate_stabilized(int16_t target_rate) |
|
{ |
|
// adjust desired alt if motors have not hit their limits |
|
if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) { |
|
controller_desired_alt += target_rate * 0.02f; |
|
} |
|
|
|
// do not let target altitude get too far from current altitude |
|
controller_desired_alt = constrain_float(controller_desired_alt,current_loc.alt-750,current_loc.alt+750); |
|
|
|
#if AC_FENCE == ENABLED |
|
// do not let target altitude be too close to the fence |
|
// To-Do: add this to other altitude controllers |
|
if((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) { |
|
float alt_limit = fence.get_safe_alt() * 100.0f; |
|
if (controller_desired_alt > alt_limit) { |
|
controller_desired_alt = alt_limit; |
|
} |
|
} |
|
#endif |
|
|
|
// update target altitude for reporting purposes |
|
set_target_alt_for_reporting(controller_desired_alt); |
|
|
|
get_throttle_althold(controller_desired_alt, -g.pilot_velocity_z_max-250, g.pilot_velocity_z_max+250); // 250 is added to give head room to alt hold controller |
|
} |
|
*/ |
|
|
|
/// |
|
/// position controller |
|
/// |
|
/* |
|
/// get_stopping_point - returns vector to stopping point based on a horizontal position and velocity |
|
void AC_PosControl::get_stopping_point(const Vector3f& position, const Vector3f& velocity, Vector3f &target) const |
|
{ |
|
float linear_distance; // half the distace we swap between linear and sqrt and the distace we offset sqrt. |
|
float linear_velocity; // the velocity we swap between linear and sqrt. |
|
float vel_total; |
|
float target_dist; |
|
float kP = _pid_pos_lat->kP(); |
|
|
|
// calculate current velocity |
|
vel_total = safe_sqrt(velocity.x*velocity.x + velocity.y*velocity.y); |
|
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero |
|
if (vel_total < 10.0f || kP <= 0.0f || _wp_accel_cms <= 0.0f) { |
|
target = position; |
|
return; |
|
} |
|
|
|
// calculate point at which velocity switches from linear to sqrt |
|
linear_velocity = _wp_accel_cms/kP; |
|
|
|
// calculate distance within which we can stop |
|
if (vel_total < linear_velocity) { |
|
target_dist = vel_total/kP; |
|
} else { |
|
linear_distance = _wp_accel_cms/(2.0f*kP*kP); |
|
target_dist = linear_distance + (vel_total*vel_total)/(2.0f*_wp_accel_cms); |
|
} |
|
target_dist = constrain_float(target_dist, 0, _wp_leash_xy*2.0f); |
|
|
|
target.x = position.x + (target_dist * velocity.x / vel_total); |
|
target.y = position.y + (target_dist * velocity.y / vel_total); |
|
target.z = position.z; |
|
} |
|
|
|
/// set_pos_target in cm from home |
|
void AC_PosControl::set_pos_target(const Vector3f& position) |
|
{ |
|
_target = position; |
|
_target_vel.x = 0; |
|
_target_vel.y = 0; |
|
} |
|
|
|
/// init_pos_target - set initial loiter target based on current position and velocity |
|
void AC_PosControl::init_pos_target(const Vector3f& position, const Vector3f& velocity) |
|
{ |
|
// set target position and velocity based on current pos and velocity |
|
_target.x = position.x; |
|
_target.y = position.y; |
|
_target_vel.x = velocity.x; |
|
_target_vel.y = velocity.y; |
|
|
|
// initialise desired roll and pitch to current roll and pitch. This avoids a random twitch between now and when the loiter controller is first run |
|
_desired_roll = constrain_int32(_ahrs->roll_sensor,-_lean_angle_max_cd,_lean_angle_max_cd); |
|
_desired_pitch = constrain_int32(_ahrs->pitch_sensor,-_lean_angle_max_cd,_lean_angle_max_cd); |
|
|
|
// initialise pilot input |
|
_pilot_vel_forward_cms = 0; |
|
_pilot_vel_right_cms = 0; |
|
|
|
// set last velocity to current velocity |
|
// To-Do: remove the line below by instead forcing reset_I to be called on the first loiter_update call |
|
_vel_last = _inav->get_velocity(); |
|
} |
|
|
|
/// get_distance_to_target - get horizontal distance to loiter target in cm |
|
float AC_PosControl::get_distance_to_target() const |
|
{ |
|
return _distance_to_target; |
|
} |
|
|
|
/// get_bearing_to_target - get bearing to loiter target in centi-degrees |
|
int32_t AC_PosControl::get_bearing_to_target() const |
|
{ |
|
return get_bearing_cd(_inav->get_position(), _target); |
|
} |
|
|
|
/// update_loiter - run the loiter controller - should be called at 10hz |
|
void AC_PosControl::update_loiter() |
|
{ |
|
// calculate dt |
|
uint32_t now = hal.scheduler->millis(); |
|
float dt = (now - _loiter_last_update) / 1000.0f; |
|
|
|
// catch if we've just been started |
|
if( dt >= 1.0 ) { |
|
dt = 0.0; |
|
reset_I(); |
|
_loiter_step = 0; |
|
} |
|
|
|
// reset step back to 0 if 0.1 seconds has passed and we completed the last full cycle |
|
if (dt > 0.095f && _loiter_step > 3) { |
|
_loiter_step = 0; |
|
} |
|
|
|
// run loiter steps |
|
switch (_loiter_step) { |
|
case 0: |
|
// capture time since last iteration |
|
_loiter_dt = dt; |
|
_loiter_last_update = now; |
|
|
|
// translate any adjustments from pilot to loiter target |
|
translate_loiter_target_movements(_loiter_dt); |
|
_loiter_step++; |
|
break; |
|
case 1: |
|
// run loiter's position to velocity step |
|
get_loiter_position_to_velocity(_loiter_dt, WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR); |
|
_loiter_step++; |
|
break; |
|
case 2: |
|
// run loiter's velocity to acceleration step |
|
get_loiter_velocity_to_acceleration(desired_vel.x, desired_vel.y, _loiter_dt); |
|
_loiter_step++; |
|
break; |
|
case 3: |
|
// run loiter's acceleration to lean angle step |
|
get_loiter_acceleration_to_lean_angles(desired_accel.x, desired_accel.y); |
|
_loiter_step++; |
|
break; |
|
} |
|
} |
|
|
|
/// calculate_leash_length - calculates the maximum distance in cm that the target position may be from the current location |
|
void AC_PosControl::calculate_leash_length() |
|
{ |
|
// get loiter position P |
|
float kP = _pid_pos_lat->kP(); |
|
|
|
// check loiter speed |
|
if( _loiter_speed_cms < 100.0f) { |
|
_loiter_speed_cms = 100.0f; |
|
} |
|
|
|
// set loiter acceleration to 1/2 loiter speed |
|
_loiter_accel_cms = _loiter_speed_cms / 2.0f; |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f || _wp_accel_cms <= 0.0f) { |
|
_loiter_leash = WPNAV_MIN_LEASH_LENGTH; |
|
return; |
|
} |
|
|
|
// calculate horizontal leash length |
|
if(WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR <= _wp_accel_cms / kP) { |
|
// linear leash length based on speed close in |
|
_loiter_leash = WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / kP; |
|
}else{ |
|
// leash length grows at sqrt of speed further out |
|
_loiter_leash = (_wp_accel_cms / (2.0f*kP*kP)) + (WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR*WPNAV_LOITER_SPEED_MAX_TO_CORRECT_ERROR / (2.0f*_wp_accel_cms)); |
|
} |
|
|
|
// ensure leash is at least 1m long |
|
if( _loiter_leash < WPNAV_MIN_LEASH_LENGTH ) { |
|
_loiter_leash = WPNAV_MIN_LEASH_LENGTH; |
|
} |
|
} |
|
|
|
/// |
|
/// shared methods |
|
/// |
|
|
|
/// get_loiter_position_to_velocity - loiter position controller |
|
/// converts desired position held in _target vector to desired velocity |
|
void AC_PosControl::get_loiter_position_to_velocity(float dt, float max_speed_cms) |
|
{ |
|
Vector3f curr = _inav->get_position(); |
|
float dist_error_total; |
|
|
|
float vel_sqrt; |
|
float vel_total; |
|
|
|
float linear_distance; // the distace we swap between linear and sqrt. |
|
float kP = _pid_pos_lat->kP(); |
|
|
|
// avoid divide by zero |
|
if (kP <= 0.0f) { |
|
desired_vel.x = 0.0; |
|
desired_vel.y = 0.0; |
|
}else{ |
|
// calculate distance error |
|
dist_error.x = _target.x - curr.x; |
|
dist_error.y = _target.y - curr.y; |
|
|
|
linear_distance = _wp_accel_cms/(2.0f*kP*kP); |
|
|
|
dist_error_total = safe_sqrt(dist_error.x*dist_error.x + dist_error.y*dist_error.y); |
|
_distance_to_target = dist_error_total; // for reporting purposes |
|
|
|
if( dist_error_total > 2.0f*linear_distance ) { |
|
vel_sqrt = safe_sqrt(2.0f*_wp_accel_cms*(dist_error_total-linear_distance)); |
|
desired_vel.x = vel_sqrt * dist_error.x/dist_error_total; |
|
desired_vel.y = vel_sqrt * dist_error.y/dist_error_total; |
|
}else{ |
|
desired_vel.x = _pid_pos_lat->kP() * dist_error.x; |
|
desired_vel.y = _pid_pos_lon->kP() * dist_error.y; |
|
} |
|
|
|
// ensure velocity stays within limits |
|
vel_total = safe_sqrt(desired_vel.x*desired_vel.x + desired_vel.y*desired_vel.y); |
|
if( vel_total > max_speed_cms ) { |
|
desired_vel.x = max_speed_cms * desired_vel.x/vel_total; |
|
desired_vel.y = max_speed_cms * desired_vel.y/vel_total; |
|
} |
|
|
|
// feed forward velocity request |
|
desired_vel.x += _target_vel.x; |
|
desired_vel.y += _target_vel.y; |
|
} |
|
} |
|
|
|
/// get_loiter_velocity_to_acceleration - loiter velocity controller |
|
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame |
|
void AC_PosControl::get_loiter_velocity_to_acceleration(float vel_lat, float vel_lon, float dt) |
|
{ |
|
const Vector3f &vel_curr = _inav->get_velocity(); // current velocity in cm/s |
|
Vector3f vel_error; // The velocity error in cm/s. |
|
float accel_total; // total acceleration in cm/s/s |
|
|
|
// reset last velocity if this controller has just been engaged or dt is zero |
|
if( dt == 0.0 ) { |
|
desired_accel.x = 0; |
|
desired_accel.y = 0; |
|
} else { |
|
// feed forward desired acceleration calculation |
|
desired_accel.x = (vel_lat - _vel_last.x)/dt; |
|
desired_accel.y = (vel_lon - _vel_last.y)/dt; |
|
} |
|
|
|
// store this iteration's velocities for the next iteration |
|
_vel_last.x = vel_lat; |
|
_vel_last.y = vel_lon; |
|
|
|
// calculate velocity error |
|
vel_error.x = vel_lat - vel_curr.x; |
|
vel_error.y = vel_lon - vel_curr.y; |
|
|
|
// combine feed foward accel with PID outpu from velocity error |
|
desired_accel.x += _pid_rate_lat->get_pid(vel_error.x, dt); |
|
desired_accel.y += _pid_rate_lon->get_pid(vel_error.y, dt); |
|
|
|
// scale desired acceleration if it's beyond acceptable limit |
|
accel_total = safe_sqrt(desired_accel.x*desired_accel.x + desired_accel.y*desired_accel.y); |
|
if( accel_total > WPNAV_ACCEL_MAX ) { |
|
desired_accel.x = WPNAV_ACCEL_MAX * desired_accel.x/accel_total; |
|
desired_accel.y = WPNAV_ACCEL_MAX * desired_accel.y/accel_total; |
|
} |
|
} |
|
|
|
/// get_loiter_acceleration_to_lean_angles - loiter acceleration controller |
|
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles |
|
void AC_PosControl::get_loiter_acceleration_to_lean_angles(float accel_lat, float accel_lon) |
|
{ |
|
float z_accel_meas = -GRAVITY_MSS * 100; // gravity in cm/s/s |
|
float accel_forward; |
|
float accel_right; |
|
|
|
// To-Do: add 1hz filter to accel_lat, accel_lon |
|
|
|
// rotate accelerations into body forward-right frame |
|
accel_forward = accel_lat*_cos_yaw + accel_lon*_sin_yaw; |
|
accel_right = -accel_lat*_sin_yaw + accel_lon*_cos_yaw; |
|
|
|
// update angle targets that will be passed to stabilize controller |
|
_desired_roll = constrain_float(fast_atan(accel_right*_cos_pitch/(-z_accel_meas))*(18000/M_PI), -_lean_angle_max_cd, _lean_angle_max_cd); |
|
_desired_pitch = constrain_float(fast_atan(-accel_forward/(-z_accel_meas))*(18000/M_PI), -_lean_angle_max_cd, _lean_angle_max_cd); |
|
} |
|
|
|
// get_bearing_cd - return bearing in centi-degrees between two positions |
|
// To-Do: move this to math library |
|
float AC_PosControl::get_bearing_cd(const Vector3f &origin, const Vector3f &destination) const |
|
{ |
|
float bearing = 9000 + atan2f(-(destination.x-origin.x), destination.y-origin.y) * 5729.57795f; |
|
if (bearing < 0) { |
|
bearing += 36000; |
|
} |
|
return bearing; |
|
} |
|
|
|
/// reset_I - clears I terms from loiter PID controller |
|
void AC_PosControl::reset_I() |
|
{ |
|
_pid_pos_lon->reset_I(); |
|
_pid_pos_lat->reset_I(); |
|
_pid_rate_lon->reset_I(); |
|
_pid_rate_lat->reset_I(); |
|
|
|
// set last velocity to current velocity |
|
_vel_last = _inav->get_velocity(); |
|
} |
|
*/ |