You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2108 lines
90 KiB
2108 lines
90 KiB
#include "AC_AutoTune.h" |
|
#include <GCS_MAVLink/GCS.h> |
|
#include <AP_Scheduler/AP_Scheduler.h> |
|
|
|
/* |
|
* autotune support for multicopters |
|
* |
|
* Instructions: |
|
* 1) Set up one flight mode switch position to be AltHold. |
|
* 2) Set the Ch7 Opt or Ch8 Opt to AutoTune to allow you to turn the auto tuning on/off with the ch7 or ch8 switch. |
|
* 3) Ensure the ch7 or ch8 switch is in the LOW position. |
|
* 4) Wait for a calm day and go to a large open area. |
|
* 5) Take off and put the vehicle into AltHold mode at a comfortable altitude. |
|
* 6) Set the ch7/ch8 switch to the HIGH position to engage auto tuning: |
|
* a) You will see it twitch about 20 degrees left and right for a few minutes, then it will repeat forward and back. |
|
* b) Use the roll and pitch stick at any time to reposition the copter if it drifts away (it will use the original PID gains during repositioning and between tests). |
|
* When you release the sticks it will continue auto tuning where it left off. |
|
* c) Move the ch7/ch8 switch into the LOW position at any time to abandon the autotuning and return to the origin PIDs. |
|
* d) Make sure that you do not have any trim set on your transmitter or the autotune may not get the signal that the sticks are centered. |
|
* 7) When the tune completes the vehicle will change back to the original PID gains. |
|
* 8) Put the ch7/ch8 switch into the LOW position then back to the HIGH position to test the tuned PID gains. |
|
* 9) Put the ch7/ch8 switch into the LOW position to fly using the original PID gains. |
|
* 10) If you are happy with the autotuned PID gains, leave the ch7/ch8 switch in the HIGH position, land and disarm to save the PIDs permanently. |
|
* If you DO NOT like the new PIDS, switch ch7/ch8 LOW to return to the original PIDs. The gains will not be saved when you disarm |
|
* |
|
* What it's doing during each "twitch": |
|
* a) invokes 90 deg/sec rate request |
|
* b) records maximum "forward" roll rate and bounce back rate |
|
* c) when copter reaches 20 degrees or 1 second has passed, it commands level |
|
* d) tries to keep max rotation rate between 80% ~ 100% of requested rate (90deg/sec) by adjusting rate P |
|
* e) increases rate D until the bounce back becomes greater than 10% of requested rate (90deg/sec) |
|
* f) decreases rate D until the bounce back becomes less than 10% of requested rate (90deg/sec) |
|
* g) increases rate P until the max rotate rate becomes greater than the request rate (90deg/sec) |
|
* h) invokes a 20deg angle request on roll or pitch |
|
* i) increases stab P until the maximum angle becomes greater than 110% of the requested angle (20deg) |
|
* j) decreases stab P by 25% |
|
* |
|
*/ |
|
|
|
#define AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS 500 // restart tuning if pilot has left sticks in middle for 2 seconds |
|
#if APM_BUILD_TYPE(APM_BUILD_ArduPlane) |
|
# define AUTOTUNE_LEVEL_ANGLE_CD 500 // angle which qualifies as level (Plane uses more relaxed 5deg) |
|
# define AUTOTUNE_LEVEL_RATE_RP_CD 1000 // rate which qualifies as level for roll and pitch (Plane uses more relaxed 10deg/sec) |
|
#else |
|
# define AUTOTUNE_LEVEL_ANGLE_CD 250 // angle which qualifies as level |
|
# define AUTOTUNE_LEVEL_RATE_RP_CD 500 // rate which qualifies as level for roll and pitch |
|
#endif |
|
#define AUTOTUNE_LEVEL_RATE_Y_CD 750 // rate which qualifies as level for yaw |
|
#define AUTOTUNE_REQUIRED_LEVEL_TIME_MS 500 // time we require the aircraft to be level |
|
#define AUTOTUNE_LEVEL_TIMEOUT_MS 2000 // time out for level |
|
#define AUTOTUNE_LEVEL_WARNING_INTERVAL_MS 5000 // level failure warning messages sent at this interval to users |
|
#define AUTOTUNE_Y_FILT_FREQ 10.0f // Autotune filter frequency when testing Yaw |
|
#define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning |
|
#define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning |
|
#define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration |
|
#define AUTOTUNE_ACCEL_Y_BACKOFF 1.0f // back off from maximum acceleration |
|
|
|
// roll and pitch axes |
|
#define AUTOTUNE_TARGET_ANGLE_RLLPIT_CD 2000 // target angle during TESTING_RATE step that will cause us to move to next step |
|
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 18000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step |
|
#define AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD 1000 // minimum target angle during TESTING_RATE step that will cause us to move to next step |
|
#define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step |
|
|
|
// yaw axis |
|
#define AUTOTUNE_TARGET_ANGLE_YAW_CD 3000 // target angle during TESTING_RATE step that will cause us to move to next step |
|
#define AUTOTUNE_TARGET_RATE_YAW_CDS 9000 // target yaw rate during AUTOTUNE_STEP_TWITCHING step |
|
#define AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD 500 // minimum target angle during TESTING_RATE step that will cause us to move to next step |
|
#define AUTOTUNE_TARGET_MIN_RATE_YAW_CDS 1500 // minimum target yaw rate during AUTOTUNE_STEP_TWITCHING step |
|
|
|
// ifdef is not working. Modified multi values to reflect heli requirements |
|
#if APM_BUILD_TYPE(APM_BUILD_Heli) |
|
// heli defines |
|
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 5000U // timeout for tuning mode's testing step |
|
#define AUTOTUNE_RP_ACCEL_MIN 20000.0f // Minimum acceleration for Roll and Pitch |
|
#define AUTOTUNE_Y_ACCEL_MIN 10000.0f // Minimum acceleration for Yaw |
|
#define AUTOTUNE_SP_BACKOFF 1.0f // Stab P gains are reduced to 90% of their maximum value discovered during tuning |
|
#else |
|
// Frame specific defaults |
|
#define AUTOTUNE_TESTING_STEP_TIMEOUT_MS 1000U // timeout for tuning mode's testing step |
|
#define AUTOTUNE_RP_ACCEL_MIN 4000.0f // Minimum acceleration for Roll and Pitch |
|
#define AUTOTUNE_Y_ACCEL_MIN 1000.0f // Minimum acceleration for Yaw |
|
#define AUTOTUNE_SP_BACKOFF 0.9f // Stab P gains are reduced to 90% of their maximum value discovered during tuning |
|
#endif // HELI_BUILD |
|
|
|
// second table of user settable parameters for quadplanes, this |
|
// allows us to go beyond the 64 parameter limit |
|
|
|
AC_AutoTune::AC_AutoTune() |
|
{ |
|
} |
|
|
|
// autotune_init - should be called when autotune mode is selected |
|
bool AC_AutoTune::init_internals(bool _use_poshold, |
|
AC_AttitudeControl *_attitude_control, |
|
AC_PosControl *_pos_control, |
|
AP_AHRS_View *_ahrs_view, |
|
AP_InertialNav *_inertial_nav) |
|
{ |
|
use_poshold = _use_poshold; |
|
attitude_control = _attitude_control; |
|
pos_control = _pos_control; |
|
ahrs_view = _ahrs_view; |
|
inertial_nav = _inertial_nav; |
|
motors = AP_Motors::get_singleton(); |
|
|
|
// exit immediately if motor are not armed |
|
if ((motors == nullptr) || !motors->armed()) { |
|
return false; |
|
} |
|
|
|
// initialise position controller |
|
init_position_controller(); |
|
|
|
switch (mode) { |
|
case FAILED: |
|
// fall through to restart the tuning |
|
FALLTHROUGH; |
|
|
|
case UNINITIALISED: |
|
// initializes dwell test sequence for rate_p_up and rate_d_up tests for tradheli |
|
freq_cnt = 0; |
|
start_freq = 0.0f; |
|
stop_freq = 0.0f; |
|
ff_up_first_iter = true; |
|
|
|
// autotune has never been run |
|
// so store current gains as original gains |
|
backup_gains_and_initialise(); |
|
// advance mode to tuning |
|
mode = TUNING; |
|
// send message to ground station that we've started tuning |
|
update_gcs(AUTOTUNE_MESSAGE_STARTED); |
|
break; |
|
|
|
case TUNING: |
|
// we are restarting tuning so restart where we left off |
|
// reset test variables to continue where we left off |
|
// reset dwell test variables if sweep was interrupted in order to restart sweep |
|
if (!is_equal(start_freq, stop_freq)) { |
|
freq_cnt = 0; |
|
start_freq = 0.0f; |
|
stop_freq = 0.0f; |
|
} |
|
step = WAITING_FOR_LEVEL; |
|
step_start_time_ms = AP_HAL::millis(); |
|
level_start_time_ms = step_start_time_ms; |
|
// reset gains to tuning-start gains (i.e. low I term) |
|
load_gains(GAIN_INTRA_TEST); |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_RESTART); |
|
update_gcs(AUTOTUNE_MESSAGE_STARTED); |
|
break; |
|
|
|
case SUCCESS: |
|
// we have completed a tune and the pilot wishes to test the new gains |
|
load_gains(GAIN_TUNED); |
|
update_gcs(AUTOTUNE_MESSAGE_TESTING); |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_PILOT_TESTING); |
|
break; |
|
} |
|
|
|
have_position = false; |
|
|
|
return true; |
|
} |
|
|
|
// stop - should be called when the ch7/ch8 switch is switched OFF |
|
void AC_AutoTune::stop() |
|
{ |
|
// set gains to their original values |
|
load_gains(GAIN_ORIGINAL); |
|
|
|
// re-enable angle-to-rate request limits |
|
attitude_control->use_sqrt_controller(true); |
|
|
|
update_gcs(AUTOTUNE_MESSAGE_STOPPED); |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_OFF); |
|
|
|
// Note: we leave the mode as it was so that we know how the autotune ended |
|
// we expect the caller will change the flight mode back to the flight mode indicated by the flight mode switch |
|
} |
|
|
|
// initialise position controller |
|
bool AC_AutoTune::init_position_controller(void) |
|
{ |
|
// initialize vertical maximum speeds and acceleration |
|
init_z_limits(); |
|
|
|
// initialise the vertical position controller |
|
pos_control->init_z_controller(); |
|
|
|
return true; |
|
} |
|
|
|
const char *AC_AutoTune::level_issue_string() const |
|
{ |
|
switch (level_problem.issue) { |
|
case LevelIssue::NONE: |
|
return "None"; |
|
case LevelIssue::ANGLE_ROLL: |
|
return "Angle(R)"; |
|
case LevelIssue::ANGLE_PITCH: |
|
return "Angle(P)"; |
|
case LevelIssue::ANGLE_YAW: |
|
return "Angle(Y)"; |
|
case LevelIssue::RATE_ROLL: |
|
return "Rate(R)"; |
|
case LevelIssue::RATE_PITCH: |
|
return "Rate(P)"; |
|
case LevelIssue::RATE_YAW: |
|
return "Rate(Y)"; |
|
} |
|
return "Bug"; |
|
} |
|
|
|
void AC_AutoTune::send_step_string() |
|
{ |
|
if (pilot_override) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Paused: Pilot Override Active"); |
|
return; |
|
} |
|
switch (step) { |
|
case WAITING_FOR_LEVEL: |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Leveling (%s %4.1f > %4.1f)", level_issue_string(), (double)(level_problem.current*0.01f), (double)(level_problem.maximum*0.01f)); |
|
return; |
|
case UPDATE_GAINS: |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Updating Gains"); |
|
return; |
|
case TESTING: |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Testing"); |
|
return; |
|
} |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: unknown step"); |
|
} |
|
|
|
const char *AC_AutoTune::type_string() const |
|
{ |
|
switch (tune_type) { |
|
case RD_UP: |
|
return "Rate D Up"; |
|
case RD_DOWN: |
|
return "Rate D Down"; |
|
case RP_UP: |
|
return "Rate P Up"; |
|
case RP_DOWN: |
|
return "Rate P Down"; |
|
case RFF_UP: |
|
return "Rate FF Up"; |
|
case RFF_DOWN: |
|
return "Rate FF Down"; |
|
case SP_UP: |
|
return "Angle P Up"; |
|
case SP_DOWN: |
|
return "Angle P Down"; |
|
case MAX_GAINS: |
|
return "Find Max Gains"; |
|
case TUNE_COMPLETE: |
|
return "Tune Complete"; |
|
} |
|
return "Bug"; |
|
} |
|
|
|
// run - runs the autotune flight mode |
|
// should be called at 100hz or more |
|
void AC_AutoTune::run() |
|
{ |
|
// initialize vertical speeds and acceleration |
|
init_z_limits(); |
|
|
|
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately |
|
// this should not actually be possible because of the init() checks |
|
if (!motors->armed() || !motors->get_interlock()) { |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::GROUND_IDLE); |
|
attitude_control->set_throttle_out(0.0f, true, 0.0f); |
|
pos_control->relax_z_controller(0.0f); |
|
return; |
|
} |
|
|
|
float target_roll_cd, target_pitch_cd, target_yaw_rate_cds; |
|
get_pilot_desired_rp_yrate_cd(target_roll_cd, target_pitch_cd, target_yaw_rate_cds); |
|
|
|
// get pilot desired climb rate |
|
const float target_climb_rate_cms = get_pilot_desired_climb_rate_cms(); |
|
|
|
const bool zero_rp_input = is_zero(target_roll_cd) && is_zero(target_pitch_cd); |
|
|
|
const uint32_t now = AP_HAL::millis(); |
|
if (!zero_rp_input || !is_zero(target_yaw_rate_cds) || !is_zero(target_climb_rate_cms)) { |
|
if (!pilot_override) { |
|
pilot_override = true; |
|
// set gains to their original values |
|
load_gains(GAIN_ORIGINAL); |
|
attitude_control->use_sqrt_controller(true); |
|
} |
|
// reset pilot override time |
|
override_time = now; |
|
if (!zero_rp_input) { |
|
// only reset position on roll or pitch input |
|
have_position = false; |
|
} |
|
} else if (pilot_override) { |
|
// check if we should resume tuning after pilot's override |
|
if (now - override_time > AUTOTUNE_PILOT_OVERRIDE_TIMEOUT_MS) { |
|
pilot_override = false; // turn off pilot override |
|
// set gains to their intra-test values (which are very close to the original gains) |
|
// load_gains(GAIN_INTRA_TEST); //I think we should be keeping the originals here to let the I term settle quickly |
|
step = WAITING_FOR_LEVEL; // set tuning step back from beginning |
|
step_start_time_ms = now; |
|
level_start_time_ms = now; |
|
desired_yaw_cd = ahrs_view->yaw_sensor; |
|
} |
|
} |
|
if (pilot_override) { |
|
if (now - last_pilot_override_warning > 1000) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: pilot overrides active"); |
|
last_pilot_override_warning = now; |
|
} |
|
} |
|
if (zero_rp_input) { |
|
// pilot input on throttle and yaw will still use position hold if enabled |
|
get_poshold_attitude(target_roll_cd, target_pitch_cd, desired_yaw_cd); |
|
} |
|
|
|
// set motors to full range |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); |
|
|
|
// if pilot override call attitude controller |
|
if (pilot_override || mode != TUNING) { |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_roll_cd, target_pitch_cd, target_yaw_rate_cds); |
|
} else { |
|
// somehow get attitude requests from autotuning |
|
control_attitude(); |
|
// tell the user what's going on |
|
do_gcs_announcements(); |
|
} |
|
|
|
// call position controller |
|
pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate_cms); |
|
pos_control->update_z_controller(); |
|
|
|
} |
|
|
|
// check if current is greater than maximum and update level_problem structure |
|
bool AC_AutoTune::check_level(const LevelIssue issue, const float current, const float maximum) |
|
{ |
|
if (current > maximum) { |
|
level_problem.current = current; |
|
level_problem.maximum = maximum; |
|
level_problem.issue = issue; |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
// return true if vehicle is close to level |
|
bool AC_AutoTune::currently_level() |
|
{ |
|
float threshold_mul = 1.0; |
|
|
|
uint32_t now_ms = AP_HAL::millis(); |
|
if (now_ms - level_start_time_ms > AUTOTUNE_LEVEL_TIMEOUT_MS) { |
|
// after a long wait we use looser threshold, to allow tuning |
|
// with poor initial gains |
|
threshold_mul *= 2; |
|
} |
|
|
|
// display warning if vehicle fails to level |
|
if ((now_ms - level_start_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS) && |
|
(now_ms - level_fail_warning_time_ms > AUTOTUNE_LEVEL_WARNING_INTERVAL_MS)) { |
|
gcs().send_text(MAV_SEVERITY_CRITICAL, "AutoTune: failing to level, please tune manually"); |
|
level_fail_warning_time_ms = now_ms; |
|
} |
|
|
|
if (!check_level(LevelIssue::ANGLE_ROLL, |
|
fabsf(ahrs_view->roll_sensor - roll_cd), |
|
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) { |
|
return false; |
|
} |
|
|
|
if (!check_level(LevelIssue::ANGLE_PITCH, |
|
fabsf(ahrs_view->pitch_sensor - pitch_cd), |
|
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) { |
|
return false; |
|
} |
|
if (!check_level(LevelIssue::ANGLE_YAW, |
|
fabsf(wrap_180_cd(ahrs_view->yaw_sensor - desired_yaw_cd)), |
|
threshold_mul*AUTOTUNE_LEVEL_ANGLE_CD)) { |
|
return false; |
|
} |
|
if (!check_level(LevelIssue::RATE_ROLL, |
|
(ToDeg(ahrs_view->get_gyro().x) * 100.0f), |
|
threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD)) { |
|
return false; |
|
} |
|
if (!check_level(LevelIssue::RATE_PITCH, |
|
(ToDeg(ahrs_view->get_gyro().y) * 100.0f), |
|
threshold_mul*AUTOTUNE_LEVEL_RATE_RP_CD)) { |
|
return false; |
|
} |
|
if (!check_level(LevelIssue::RATE_YAW, |
|
(ToDeg(ahrs_view->get_gyro().z) * 100.0f), |
|
threshold_mul*AUTOTUNE_LEVEL_RATE_Y_CD)) { |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
// main state machine to level vehicle, perform a test and update gains |
|
// directly updates attitude controller with targets |
|
void AC_AutoTune::control_attitude() |
|
{ |
|
rotation_rate = 0.0f; // rotation rate in radians/second |
|
lean_angle = 0.0f; |
|
const float direction_sign = positive_direction ? 1.0f : -1.0f; |
|
const uint32_t now = AP_HAL::millis(); |
|
|
|
// check tuning step |
|
switch (step) { |
|
|
|
case WAITING_FOR_LEVEL: { |
|
|
|
// Note: we should be using intra-test gains (which are very close to the original gains but have lower I) |
|
// re-enable rate limits |
|
attitude_control->use_sqrt_controller(true); |
|
|
|
get_poshold_attitude(roll_cd, pitch_cd, desired_yaw_cd); |
|
|
|
// hold level attitude |
|
attitude_control->input_euler_angle_roll_pitch_yaw(roll_cd, pitch_cd, desired_yaw_cd, true); |
|
|
|
// hold the copter level for 0.5 seconds before we begin a twitch |
|
// reset counter if we are no longer level |
|
if (!currently_level()) { |
|
step_start_time_ms = now; |
|
} |
|
|
|
// if we have been level for a sufficient amount of time (0.5 seconds) move onto tuning step |
|
if (now - step_start_time_ms > AUTOTUNE_REQUIRED_LEVEL_TIME_MS) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: Start Test"); |
|
// initiate variables for next step |
|
step = TESTING; |
|
step_start_time_ms = now; |
|
step_time_limit_ms = AUTOTUNE_TESTING_STEP_TIMEOUT_MS; |
|
// set gains to their to-be-tested values |
|
twitch_first_iter = true; |
|
test_rate_max = 0.0f; |
|
test_rate_min = 0.0f; |
|
test_angle_max = 0.0f; |
|
test_angle_min = 0.0f; |
|
rotation_rate_filt.reset(0.0f); |
|
rate_max = 0.0f; |
|
load_gains(GAIN_TEST); |
|
} else { |
|
// when waiting for level we use the intra-test gains |
|
load_gains(GAIN_INTRA_TEST); |
|
} |
|
|
|
// Initialize test-specific variables |
|
switch (axis) { |
|
case ROLL: |
|
abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD; |
|
start_rate = ToDeg(ahrs_view->get_gyro().x) * 100.0f; |
|
start_angle = ahrs_view->roll_sensor; |
|
break; |
|
case PITCH: |
|
abort_angle = AUTOTUNE_TARGET_ANGLE_RLLPIT_CD; |
|
start_rate = ToDeg(ahrs_view->get_gyro().y) * 100.0f; |
|
start_angle = ahrs_view->pitch_sensor; |
|
break; |
|
case YAW: |
|
abort_angle = AUTOTUNE_TARGET_ANGLE_YAW_CD; |
|
start_rate = ToDeg(ahrs_view->get_gyro().z) * 100.0f; |
|
start_angle = ahrs_view->yaw_sensor; |
|
break; |
|
} |
|
|
|
// tests must be initialized last as some rely on variables above |
|
test_init(); |
|
|
|
break; |
|
} |
|
|
|
case TESTING: { |
|
// Run the twitching step |
|
load_gains(GAIN_TEST); |
|
|
|
// run the test |
|
test_run(axis, direction_sign); |
|
|
|
// Check for failure causing reverse response |
|
if (lean_angle <= -AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD) { |
|
step = WAITING_FOR_LEVEL; |
|
} |
|
|
|
// protect from roll over |
|
if (ahrs_view->roll_sensor > 3000.0f || ahrs_view->roll_sensor < -3000.0f ||ahrs_view->pitch_sensor > 3000.0f || ahrs_view->pitch_sensor < -3000.0f) { |
|
step = WAITING_FOR_LEVEL; |
|
} |
|
|
|
// log this iterations lean angle and rotation rate |
|
Log_AutoTuneDetails(); |
|
ahrs_view->Write_Rate(*motors, *attitude_control, *pos_control); |
|
log_pids(); |
|
break; |
|
} |
|
|
|
case UPDATE_GAINS: |
|
|
|
// re-enable rate limits |
|
attitude_control->use_sqrt_controller(true); |
|
|
|
// log the latest gains |
|
Log_AutoTune(); |
|
|
|
switch (tune_type) { |
|
// Check results after mini-step to increase rate D gain |
|
case RD_UP: |
|
updating_rate_d_up_all(axis); |
|
break; |
|
// Check results after mini-step to decrease rate D gain |
|
case RD_DOWN: |
|
updating_rate_d_down_all(axis); |
|
break; |
|
// Check results after mini-step to increase rate P gain |
|
case RP_UP: |
|
updating_rate_p_up_all(axis); |
|
break; |
|
// Check results after mini-step to increase stabilize P gain |
|
case SP_DOWN: |
|
updating_angle_p_down_all(axis); |
|
break; |
|
// Check results after mini-step to increase stabilize P gain |
|
case SP_UP: |
|
updating_angle_p_up_all(axis); |
|
break; |
|
case RFF_UP: |
|
updating_rate_ff_up_all(axis); |
|
break; |
|
case MAX_GAINS: |
|
updating_max_gains_all(axis); |
|
break; |
|
case RP_DOWN: |
|
case RFF_DOWN: |
|
case TUNE_COMPLETE: |
|
break; |
|
} |
|
|
|
// we've complete this step, finalize pids and move to next step |
|
if (counter >= AUTOTUNE_SUCCESS_COUNT) { |
|
|
|
// reset counter |
|
counter = 0; |
|
|
|
// reset scaling factor |
|
step_scaler = 1.0f; |
|
|
|
|
|
// move to the next tuning type |
|
switch (tune_type) { |
|
case RD_UP: |
|
break; |
|
case RD_DOWN: |
|
switch (axis) { |
|
case ROLL: |
|
tune_roll_rd = MAX(min_d, tune_roll_rd * AUTOTUNE_RD_BACKOFF); |
|
tune_roll_rp = MAX(get_rp_min(), tune_roll_rp * AUTOTUNE_RD_BACKOFF); |
|
break; |
|
case PITCH: |
|
tune_pitch_rd = MAX(min_d, tune_pitch_rd * AUTOTUNE_RD_BACKOFF); |
|
tune_pitch_rp = MAX(get_rp_min(), tune_pitch_rp * AUTOTUNE_RD_BACKOFF); |
|
break; |
|
case YAW: |
|
tune_yaw_rLPF = MAX(get_yaw_rate_filt_min(), tune_yaw_rLPF * AUTOTUNE_RD_BACKOFF); |
|
tune_yaw_rp = MAX(get_rp_min(), tune_yaw_rp * AUTOTUNE_RD_BACKOFF); |
|
break; |
|
} |
|
break; |
|
case RP_UP: |
|
switch (axis) { |
|
case ROLL: |
|
tune_roll_rp = MAX(get_rp_min(), tune_roll_rp * AUTOTUNE_RP_BACKOFF); |
|
break; |
|
case PITCH: |
|
tune_pitch_rp = MAX(get_rp_min(), tune_pitch_rp * AUTOTUNE_RP_BACKOFF); |
|
break; |
|
case YAW: |
|
tune_yaw_rp = MAX(get_rp_min(), tune_yaw_rp * AUTOTUNE_RP_BACKOFF); |
|
break; |
|
} |
|
break; |
|
case SP_DOWN: |
|
break; |
|
case SP_UP: |
|
switch (axis) { |
|
case ROLL: |
|
tune_roll_sp = MAX(get_sp_min(), tune_roll_sp * AUTOTUNE_SP_BACKOFF); |
|
// trad heli uses original parameter value rather than max demostrated through test |
|
if (set_accel_to_max_test_value()) { |
|
tune_roll_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF); |
|
} |
|
break; |
|
case PITCH: |
|
tune_pitch_sp = MAX(get_sp_min(), tune_pitch_sp * AUTOTUNE_SP_BACKOFF); |
|
// trad heli uses original parameter value rather than max demostrated through test |
|
if (set_accel_to_max_test_value()) { |
|
tune_pitch_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF); |
|
} |
|
break; |
|
case YAW: |
|
tune_yaw_sp = MAX(get_sp_min(), tune_yaw_sp * AUTOTUNE_SP_BACKOFF); |
|
// trad heli uses original parameter value rather than max demostrated through test |
|
if (set_accel_to_max_test_value()) { |
|
tune_yaw_accel = MAX(AUTOTUNE_Y_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_Y_BACKOFF); |
|
} |
|
break; |
|
} |
|
break; |
|
case RP_DOWN: |
|
case RFF_UP: |
|
case RFF_DOWN: |
|
case MAX_GAINS: |
|
case TUNE_COMPLETE: |
|
break; |
|
} |
|
|
|
// increment the tune type to the next one in tune sequence |
|
tune_seq_curr++; |
|
tune_type = tune_seq[tune_seq_curr]; |
|
|
|
if (tune_type == TUNE_COMPLETE) { |
|
// we've reached the end of a D-up-down PI-up-down tune type cycle |
|
tune_seq_curr = 0; |
|
tune_type = tune_seq[tune_seq_curr]; |
|
|
|
// advance to the next axis |
|
bool complete = false; |
|
switch (axis) { |
|
case ROLL: |
|
axes_completed |= AUTOTUNE_AXIS_BITMASK_ROLL; |
|
if (pitch_enabled()) { |
|
axis = PITCH; |
|
} else if (yaw_enabled()) { |
|
axis = YAW; |
|
} else { |
|
complete = true; |
|
} |
|
break; |
|
case PITCH: |
|
axes_completed |= AUTOTUNE_AXIS_BITMASK_PITCH; |
|
if (yaw_enabled()) { |
|
axis = YAW; |
|
} else { |
|
complete = true; |
|
} |
|
break; |
|
case YAW: |
|
axes_completed |= AUTOTUNE_AXIS_BITMASK_YAW; |
|
complete = true; |
|
break; |
|
} |
|
|
|
// if we've just completed all axes we have successfully completed the autotune |
|
// change to TESTING mode to allow user to fly with new gains |
|
if (complete) { |
|
mode = SUCCESS; |
|
update_gcs(AUTOTUNE_MESSAGE_SUCCESS); |
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_SUCCESS); |
|
AP_Notify::events.autotune_complete = true; |
|
} else { |
|
AP_Notify::events.autotune_next_axis = true; |
|
} |
|
} |
|
} |
|
|
|
// reverse direction for multicopter twitch test |
|
positive_direction = twitch_reverse_direction(); |
|
|
|
if (axis == YAW) { |
|
attitude_control->input_euler_angle_roll_pitch_yaw(0.0f, 0.0f, ahrs_view->yaw_sensor, false); |
|
} |
|
|
|
// set gains to their intra-test values (which are very close to the original gains) |
|
load_gains(GAIN_INTRA_TEST); |
|
|
|
// reset testing step |
|
step = WAITING_FOR_LEVEL; |
|
step_start_time_ms = now; |
|
level_start_time_ms = step_start_time_ms; |
|
step_time_limit_ms = AUTOTUNE_REQUIRED_LEVEL_TIME_MS; |
|
break; |
|
} |
|
} |
|
|
|
// backup_gains_and_initialise - store current gains as originals |
|
// called before tuning starts to backup original gains |
|
void AC_AutoTune::backup_gains_and_initialise() |
|
{ |
|
// initialise state because this is our first time |
|
if (roll_enabled()) { |
|
axis = ROLL; |
|
} else if (pitch_enabled()) { |
|
axis = PITCH; |
|
} else if (yaw_enabled()) { |
|
axis = YAW; |
|
} |
|
// no axes are complete |
|
axes_completed = 0; |
|
|
|
// set the tune sequence |
|
set_tune_sequence(); |
|
|
|
// start at the beginning of tune sequence |
|
tune_seq_curr = 0; |
|
tune_type = tune_seq[tune_seq_curr]; |
|
|
|
positive_direction = false; |
|
step = WAITING_FOR_LEVEL; |
|
step_start_time_ms = AP_HAL::millis(); |
|
level_start_time_ms = step_start_time_ms; |
|
step_scaler = 1.0f; |
|
|
|
desired_yaw_cd = ahrs_view->yaw_sensor; |
|
|
|
aggressiveness = constrain_float(aggressiveness, 0.05f, 0.2f); |
|
|
|
orig_bf_feedforward = attitude_control->get_bf_feedforward(); |
|
|
|
// backup original pids and initialise tuned pid values |
|
orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); |
|
orig_roll_ri = attitude_control->get_rate_roll_pid().kI(); |
|
orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); |
|
orig_roll_rff = attitude_control->get_rate_roll_pid().ff(); |
|
orig_roll_fltt = attitude_control->get_rate_roll_pid().filt_T_hz(); |
|
orig_roll_smax = attitude_control->get_rate_roll_pid().slew_limit(); |
|
orig_roll_sp = attitude_control->get_angle_roll_p().kP(); |
|
orig_roll_accel = attitude_control->get_accel_roll_max_cdss(); |
|
tune_roll_rp = attitude_control->get_rate_roll_pid().kP(); |
|
tune_roll_rd = attitude_control->get_rate_roll_pid().kD(); |
|
tune_roll_rff = attitude_control->get_rate_roll_pid().ff(); |
|
tune_roll_sp = attitude_control->get_angle_roll_p().kP(); |
|
tune_roll_accel = attitude_control->get_accel_roll_max_cdss(); |
|
|
|
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); |
|
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI(); |
|
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); |
|
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); |
|
orig_pitch_fltt = attitude_control->get_rate_pitch_pid().filt_T_hz(); |
|
orig_pitch_smax = attitude_control->get_rate_pitch_pid().slew_limit(); |
|
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); |
|
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); |
|
tune_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); |
|
tune_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); |
|
tune_pitch_rff = attitude_control->get_rate_pitch_pid().ff(); |
|
tune_pitch_sp = attitude_control->get_angle_pitch_p().kP(); |
|
tune_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); |
|
|
|
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); |
|
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI(); |
|
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); |
|
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); |
|
orig_yaw_fltt = attitude_control->get_rate_yaw_pid().filt_T_hz(); |
|
orig_yaw_smax = attitude_control->get_rate_yaw_pid().slew_limit(); |
|
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); |
|
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); |
|
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); |
|
tune_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); |
|
tune_yaw_rd = attitude_control->get_rate_yaw_pid().kD(); |
|
tune_yaw_rff = attitude_control->get_rate_yaw_pid().ff(); |
|
tune_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz(); |
|
tune_yaw_sp = attitude_control->get_angle_yaw_p().kP(); |
|
tune_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); |
|
|
|
AP::logger().Write_Event(LogEvent::AUTOTUNE_INITIALISED); |
|
} |
|
|
|
// load_orig_gains - set gains to their original values |
|
// called by stop and failed functions |
|
void AC_AutoTune::load_orig_gains() |
|
{ |
|
attitude_control->bf_feedforward(orig_bf_feedforward); |
|
if (roll_enabled()) { |
|
if (!is_zero(orig_roll_rp) || allow_zero_rate_p()) { |
|
attitude_control->get_rate_roll_pid().kP(orig_roll_rp); |
|
attitude_control->get_rate_roll_pid().kI(orig_roll_ri); |
|
attitude_control->get_rate_roll_pid().kD(orig_roll_rd); |
|
attitude_control->get_rate_roll_pid().ff(orig_roll_rff); |
|
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); |
|
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); |
|
attitude_control->get_angle_roll_p().kP(orig_roll_sp); |
|
attitude_control->set_accel_roll_max_cdss(orig_roll_accel); |
|
} |
|
} |
|
if (pitch_enabled()) { |
|
if (!is_zero(orig_pitch_rp) || allow_zero_rate_p()) { |
|
attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp); |
|
attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri); |
|
attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd); |
|
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); |
|
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); |
|
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); |
|
attitude_control->get_angle_pitch_p().kP(orig_pitch_sp); |
|
attitude_control->set_accel_pitch_max_cdss(orig_pitch_accel); |
|
} |
|
} |
|
if (yaw_enabled()) { |
|
if (!is_zero(orig_yaw_rp)) { |
|
attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp); |
|
attitude_control->get_rate_yaw_pid().kI(orig_yaw_ri); |
|
attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd); |
|
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); |
|
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); |
|
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); |
|
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); |
|
attitude_control->get_angle_yaw_p().kP(orig_yaw_sp); |
|
attitude_control->set_accel_yaw_max_cdss(orig_yaw_accel); |
|
} |
|
} |
|
} |
|
|
|
// load_tuned_gains - load tuned gains |
|
void AC_AutoTune::load_tuned_gains() |
|
{ |
|
if (!attitude_control->get_bf_feedforward()) { |
|
attitude_control->bf_feedforward(true); |
|
attitude_control->set_accel_roll_max_cdss(0.0f); |
|
attitude_control->set_accel_pitch_max_cdss(0.0f); |
|
} |
|
if (roll_enabled()) { |
|
if (!is_zero(tune_roll_rp) || allow_zero_rate_p()) { |
|
attitude_control->get_rate_roll_pid().kP(tune_roll_rp); |
|
attitude_control->get_rate_roll_pid().kI(get_tuned_ri(axis)); |
|
attitude_control->get_rate_roll_pid().kD(tune_roll_rd); |
|
attitude_control->get_rate_roll_pid().ff(tune_roll_rff); |
|
attitude_control->get_angle_roll_p().kP(tune_roll_sp); |
|
attitude_control->set_accel_roll_max_cdss(tune_roll_accel); |
|
} |
|
} |
|
if (pitch_enabled()) { |
|
if (!is_zero(tune_pitch_rp) || allow_zero_rate_p()) { |
|
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); |
|
attitude_control->get_rate_pitch_pid().kI(get_tuned_ri(axis)); |
|
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); |
|
attitude_control->get_rate_pitch_pid().ff(tune_pitch_rff); |
|
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); |
|
attitude_control->set_accel_pitch_max_cdss(tune_pitch_accel); |
|
} |
|
} |
|
if (yaw_enabled()) { |
|
if (!is_zero(tune_yaw_rp)) { |
|
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); |
|
attitude_control->get_rate_yaw_pid().kI(get_tuned_ri(axis)); |
|
attitude_control->get_rate_yaw_pid().kD(get_tuned_yaw_rd()); |
|
attitude_control->get_rate_yaw_pid().ff(tune_yaw_rff); |
|
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); |
|
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); |
|
attitude_control->set_accel_yaw_max_cdss(tune_yaw_accel); |
|
} |
|
} |
|
} |
|
|
|
// load_intra_test_gains - gains used between tests |
|
// called during testing mode's update-gains step to set gains ahead of return-to-level step |
|
void AC_AutoTune::load_intra_test_gains() |
|
{ |
|
// we are restarting tuning so reset gains to tuning-start gains (i.e. low I term) |
|
// sanity check the gains |
|
attitude_control->bf_feedforward(true); |
|
if (roll_enabled()) { |
|
attitude_control->get_rate_roll_pid().kP(orig_roll_rp); |
|
attitude_control->get_rate_roll_pid().kI(get_intra_test_ri(axis)); |
|
attitude_control->get_rate_roll_pid().kD(orig_roll_rd); |
|
attitude_control->get_rate_roll_pid().ff(orig_roll_rff); |
|
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt); |
|
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax); |
|
attitude_control->get_angle_roll_p().kP(orig_roll_sp); |
|
attitude_control->set_accel_roll_max_cdss(orig_roll_accel); |
|
} |
|
if (pitch_enabled()) { |
|
attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp); |
|
attitude_control->get_rate_pitch_pid().kI(get_intra_test_ri(axis)); |
|
attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd); |
|
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff); |
|
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt); |
|
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax); |
|
attitude_control->get_angle_pitch_p().kP(orig_pitch_sp); |
|
attitude_control->set_accel_pitch_max_cdss(orig_pitch_accel); |
|
} |
|
if (yaw_enabled()) { |
|
attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp); |
|
attitude_control->get_rate_yaw_pid().kI(get_intra_test_ri(axis)); |
|
attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd); |
|
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff); |
|
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt); |
|
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax); |
|
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF); |
|
attitude_control->get_angle_yaw_p().kP(orig_yaw_sp); |
|
attitude_control->set_accel_yaw_max_cdss(orig_yaw_accel); |
|
} |
|
} |
|
|
|
|
|
// load_test_gains - load the to-be-tested gains for a single axis |
|
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches) |
|
void AC_AutoTune::load_test_gains() |
|
{ |
|
switch (axis) { |
|
case ROLL: |
|
if (tune_type == MAX_GAINS && !is_zero(tune_roll_rff)) { |
|
attitude_control->get_rate_roll_pid().kP(0.0f); |
|
attitude_control->get_rate_roll_pid().kD(0.0f); |
|
} else { |
|
attitude_control->get_rate_roll_pid().kP(tune_roll_rp); |
|
attitude_control->get_rate_roll_pid().kD(tune_roll_rd); |
|
} |
|
attitude_control->get_angle_roll_p().kP(tune_roll_sp); |
|
break; |
|
case PITCH: |
|
if (tune_type == MAX_GAINS && !is_zero(tune_pitch_rff)) { |
|
attitude_control->get_rate_pitch_pid().kP(0.0f); |
|
attitude_control->get_rate_pitch_pid().kD(0.0f); |
|
} else { |
|
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); |
|
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); |
|
} |
|
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); |
|
break; |
|
case YAW: |
|
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); |
|
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF); |
|
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); |
|
break; |
|
} |
|
} |
|
|
|
/* |
|
load a specified set of gains |
|
*/ |
|
void AC_AutoTune::load_gains(enum GainType gain_type) |
|
{ |
|
switch (gain_type) { |
|
case GAIN_ORIGINAL: |
|
load_orig_gains(); |
|
break; |
|
case GAIN_INTRA_TEST: |
|
load_intra_test_gains(); |
|
break; |
|
case GAIN_TEST: |
|
load_test_gains(); |
|
break; |
|
case GAIN_TUNED: |
|
load_tuned_gains(); |
|
break; |
|
} |
|
} |
|
|
|
// save_tuning_gains - save the final tuned gains for each axis |
|
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position) |
|
void AC_AutoTune::save_tuning_gains() |
|
{ |
|
// see if we successfully completed tuning of at least one axis |
|
if (axes_completed == 0) { |
|
return; |
|
} |
|
|
|
if (!attitude_control->get_bf_feedforward()) { |
|
attitude_control->bf_feedforward_save(true); |
|
attitude_control->save_accel_roll_max_cdss(0.0f); |
|
attitude_control->save_accel_pitch_max_cdss(0.0f); |
|
} |
|
|
|
// sanity check the rate P values |
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled() && (!is_zero(tune_roll_rp) || allow_zero_rate_p())) { |
|
// rate roll gains |
|
attitude_control->get_rate_roll_pid().kP(tune_roll_rp); |
|
attitude_control->get_rate_roll_pid().kD(tune_roll_rd); |
|
|
|
// stabilize roll |
|
attitude_control->get_angle_roll_p().kP(tune_roll_sp); |
|
attitude_control->get_angle_roll_p().save_gains(); |
|
|
|
// acceleration roll |
|
attitude_control->save_accel_roll_max_cdss(tune_roll_accel); |
|
|
|
// resave pids to originals in case the autotune is run again |
|
orig_roll_rp = attitude_control->get_rate_roll_pid().kP(); |
|
orig_roll_rd = attitude_control->get_rate_roll_pid().kD(); |
|
orig_roll_sp = attitude_control->get_angle_roll_p().kP(); |
|
orig_roll_accel = attitude_control->get_accel_roll_max_cdss(); |
|
} |
|
|
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled() && (!is_zero(tune_pitch_rp) || allow_zero_rate_p())) { |
|
// rate pitch gains |
|
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp); |
|
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd); |
|
|
|
// stabilize pitch |
|
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp); |
|
attitude_control->get_angle_pitch_p().save_gains(); |
|
|
|
// acceleration pitch |
|
attitude_control->save_accel_pitch_max_cdss(tune_pitch_accel); |
|
|
|
// resave pids to originals in case the autotune is run again |
|
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP(); |
|
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD(); |
|
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP(); |
|
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss(); |
|
} |
|
|
|
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) { |
|
// rate yaw gains |
|
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp); |
|
|
|
// stabilize yaw |
|
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp); |
|
attitude_control->get_angle_yaw_p().save_gains(); |
|
|
|
// acceleration yaw |
|
attitude_control->save_accel_yaw_max_cdss(tune_yaw_accel); |
|
|
|
// resave pids to originals in case the autotune is run again |
|
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP(); |
|
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP(); |
|
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss(); |
|
} |
|
} |
|
|
|
// update_gcs - send message to ground station |
|
void AC_AutoTune::update_gcs(uint8_t message_id) const |
|
{ |
|
switch (message_id) { |
|
case AUTOTUNE_MESSAGE_STARTED: |
|
gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Started"); |
|
break; |
|
case AUTOTUNE_MESSAGE_STOPPED: |
|
gcs().send_text(MAV_SEVERITY_INFO,"AutoTune: Stopped"); |
|
break; |
|
case AUTOTUNE_MESSAGE_SUCCESS: |
|
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Success"); |
|
break; |
|
case AUTOTUNE_MESSAGE_FAILED: |
|
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Failed"); |
|
break; |
|
case AUTOTUNE_MESSAGE_TESTING: |
|
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Pilot Testing"); |
|
break; |
|
case AUTOTUNE_MESSAGE_SAVED_GAINS: |
|
gcs().send_text(MAV_SEVERITY_NOTICE,"AutoTune: Saved gains for %s%s%s", |
|
(axes_completed&AUTOTUNE_AXIS_BITMASK_ROLL)?"Roll ":"", |
|
(axes_completed&AUTOTUNE_AXIS_BITMASK_PITCH)?"Pitch ":"", |
|
(axes_completed&AUTOTUNE_AXIS_BITMASK_YAW)?"Yaw":""); |
|
break; |
|
} |
|
} |
|
|
|
// axis helper functions |
|
bool AC_AutoTune::roll_enabled() const |
|
{ |
|
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_ROLL; |
|
} |
|
|
|
bool AC_AutoTune::pitch_enabled() const |
|
{ |
|
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_PITCH; |
|
} |
|
|
|
bool AC_AutoTune::yaw_enabled() const |
|
{ |
|
return axis_bitmask & AUTOTUNE_AXIS_BITMASK_YAW; |
|
} |
|
|
|
// twitching_test_rate - twitching tests |
|
// update min and max and test for end conditions |
|
void AC_AutoTune::twitching_test_rate(float rate, float rate_target_max, float &meas_rate_min, float &meas_rate_max) |
|
{ |
|
const uint32_t now = AP_HAL::millis(); |
|
|
|
// capture maximum rate |
|
if (rate > meas_rate_max) { |
|
// the measurement is continuing to increase without stopping |
|
meas_rate_max = rate; |
|
meas_rate_min = rate; |
|
} |
|
|
|
// capture minimum measurement after the measurement has peaked (aka "bounce back") |
|
if ((rate < meas_rate_min) && (meas_rate_max > rate_target_max * 0.5f)) { |
|
// the measurement is bouncing back |
|
meas_rate_min = rate; |
|
} |
|
|
|
// calculate early stopping time based on the time it takes to get to 75% |
|
if (meas_rate_max < rate_target_max * 0.75f) { |
|
// the measurement not reached the 75% threshold yet |
|
step_time_limit_ms = (now - step_start_time_ms) * 3; |
|
step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS); |
|
} |
|
|
|
if (meas_rate_max > rate_target_max) { |
|
// the measured rate has passed the maximum target rate |
|
step = UPDATE_GAINS; |
|
} |
|
|
|
if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) { |
|
// the measurement has passed 50% of the maximum rate and bounce back is larger than the threshold |
|
step = UPDATE_GAINS; |
|
} |
|
|
|
if (now - step_start_time_ms >= step_time_limit_ms) { |
|
// we have passed the maximum stop time |
|
step = UPDATE_GAINS; |
|
} |
|
} |
|
|
|
// twitching_test_rate - twitching tests |
|
// update min and max and test for end conditions |
|
void AC_AutoTune::twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min) |
|
{ |
|
if (angle >= angle_max) { |
|
if (is_equal(rate, meas_rate_min) && step_scaler > 0.5f) { |
|
// we have reached the angle limit before completing the measurement of maximum and minimum |
|
// reduce the maximum target rate |
|
step_scaler *= 0.9f; |
|
// ignore result and start test again |
|
step = WAITING_FOR_LEVEL; |
|
} else { |
|
step = UPDATE_GAINS; |
|
} |
|
} |
|
} |
|
|
|
// twitching_test_angle - twitching tests |
|
// update min and max and test for end conditions |
|
void AC_AutoTune::twitching_test_angle(float angle, float rate, float angle_target_max, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max) |
|
{ |
|
const uint32_t now = AP_HAL::millis(); |
|
|
|
// capture maximum angle |
|
if (angle > meas_angle_max) { |
|
// the angle still increasing |
|
meas_angle_max = angle; |
|
meas_angle_min = angle; |
|
} |
|
|
|
// capture minimum angle after we have reached a reasonable maximum angle |
|
if ((angle < meas_angle_min) && (meas_angle_max > angle_target_max * 0.5f)) { |
|
// the measurement is bouncing back |
|
meas_angle_min = angle; |
|
} |
|
|
|
// capture maximum rate |
|
if (rate > meas_rate_max) { |
|
// the measurement is still increasing |
|
meas_rate_max = rate; |
|
meas_rate_min = rate; |
|
} |
|
|
|
// capture minimum rate after we have reached maximum rate |
|
if (rate < meas_rate_min) { |
|
// the measurement is still decreasing |
|
meas_rate_min = rate; |
|
} |
|
|
|
// calculate early stopping time based on the time it takes to get to 75% |
|
if (meas_angle_max < angle_target_max * 0.75f) { |
|
// the measurement not reached the 75% threshold yet |
|
step_time_limit_ms = (now - step_start_time_ms) * 3; |
|
step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS); |
|
} |
|
|
|
if (meas_angle_max > angle_target_max) { |
|
// the measurement has passed the maximum angle |
|
step = UPDATE_GAINS; |
|
} |
|
|
|
if (meas_angle_max-meas_angle_min > meas_angle_max*aggressiveness) { |
|
// the measurement has passed 50% of the maximum angle and bounce back is larger than the threshold |
|
step = UPDATE_GAINS; |
|
} |
|
|
|
if (now - step_start_time_ms >= step_time_limit_ms) { |
|
// we have passed the maximum stop time |
|
step = UPDATE_GAINS; |
|
} |
|
} |
|
|
|
// twitching_measure_acceleration - measure rate of change of measurement |
|
void AC_AutoTune::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const |
|
{ |
|
if (rate_measurement_max < rate_measurement) { |
|
rate_measurement_max = rate_measurement; |
|
rate_of_change = (1000.0f*rate_measurement_max)/(AP_HAL::millis() - step_start_time_ms); |
|
} |
|
} |
|
|
|
/* |
|
check if we have a good position estimate |
|
*/ |
|
bool AC_AutoTune::position_ok(void) |
|
{ |
|
if (!AP::ahrs().have_inertial_nav()) { |
|
// do not allow navigation with dcm position |
|
return false; |
|
} |
|
|
|
// with EKF use filter status and ekf check |
|
nav_filter_status filt_status = inertial_nav->get_filter_status(); |
|
|
|
// require a good absolute position and EKF must not be in const_pos_mode |
|
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode); |
|
} |
|
|
|
// get attitude for slow position hold in autotune mode |
|
void AC_AutoTune::get_poshold_attitude(float &roll_cd_out, float &pitch_cd_out, float &yaw_cd_out) |
|
{ |
|
roll_cd_out = pitch_cd_out = 0; |
|
|
|
if (!use_poshold) { |
|
// we are not trying to hold position |
|
return; |
|
} |
|
|
|
// do we know where we are? If not then don't do poshold |
|
if (!position_ok()) { |
|
return; |
|
} |
|
|
|
if (!have_position) { |
|
have_position = true; |
|
start_position = inertial_nav->get_position_neu_cm(); |
|
} |
|
|
|
// don't go past 10 degrees, as autotune result would deteriorate too much |
|
const float angle_max_cd = 1000; |
|
|
|
// hit the 10 degree limit at 20 meters position error |
|
const float dist_limit_cm = 2000; |
|
|
|
// we only start adjusting yaw if we are more than 5m from the |
|
// target position. That corresponds to a lean angle of 2.5 degrees |
|
const float yaw_dist_limit_cm = 500; |
|
|
|
Vector3f pdiff = inertial_nav->get_position_neu_cm() - start_position; |
|
pdiff.z = 0; |
|
float dist_cm = pdiff.length(); |
|
if (dist_cm < 10) { |
|
// don't do anything within 10cm |
|
return; |
|
} |
|
|
|
/* |
|
very simple linear controller |
|
*/ |
|
float scaling = constrain_float(angle_max_cd * dist_cm / dist_limit_cm, 0, angle_max_cd); |
|
Vector2f angle_ne(pdiff.x, pdiff.y); |
|
angle_ne *= scaling / dist_cm; |
|
|
|
// rotate into body frame |
|
pitch_cd_out = angle_ne.x * ahrs_view->cos_yaw() + angle_ne.y * ahrs_view->sin_yaw(); |
|
roll_cd_out = angle_ne.x * ahrs_view->sin_yaw() - angle_ne.y * ahrs_view->cos_yaw(); |
|
|
|
if (dist_cm < yaw_dist_limit_cm) { |
|
// no yaw adjustment |
|
return; |
|
} |
|
|
|
/* |
|
also point so that twitching occurs perpendicular to the wind, |
|
if we have drifted more than yaw_dist_limit_cm from the desired |
|
position. This ensures that autotune doesn't have to deal with |
|
more than 2.5 degrees of attitude on the axis it is tuning |
|
*/ |
|
float target_yaw_cd = degrees(atan2f(pdiff.y, pdiff.x)) * 100; |
|
if (axis == PITCH) { |
|
// for roll and yaw tuning we point along the wind, for pitch |
|
// we point across the wind |
|
target_yaw_cd += 9000; |
|
} |
|
// go to the nearest 180 degree mark, with 5 degree slop to prevent oscillation |
|
if (fabsf(yaw_cd_out - target_yaw_cd) > 9500) { |
|
target_yaw_cd += 18000; |
|
} |
|
|
|
yaw_cd_out = target_yaw_cd; |
|
} |
|
|
|
void AC_AutoTune::twitch_test_init() |
|
{ |
|
float target_max_rate; |
|
switch (axis) { |
|
case ROLL: { |
|
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS); |
|
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate); |
|
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); |
|
rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_roll_pid().filt_D_hz()*2.0f); |
|
break; |
|
} |
|
case PITCH: { |
|
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS); |
|
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate); |
|
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD); |
|
rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_pitch_pid().filt_D_hz()*2.0f); |
|
break; |
|
} |
|
case YAW: { |
|
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_YAW_CDS); |
|
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, target_max_rate); |
|
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD); |
|
rotation_rate_filt.set_cutoff_frequency(AUTOTUNE_Y_FILT_FREQ); |
|
break; |
|
} |
|
} |
|
|
|
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { |
|
rotation_rate_filt.reset(start_rate); |
|
} else { |
|
rotation_rate_filt.reset(0); |
|
} |
|
|
|
} |
|
|
|
//run twitch test |
|
void AC_AutoTune::twitch_test_run(AxisType test_axis, const float dir_sign) |
|
{ |
|
// disable rate limits |
|
attitude_control->use_sqrt_controller(false); |
|
// hold current attitude |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); |
|
|
|
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) { |
|
// step angle targets on first iteration |
|
if (twitch_first_iter) { |
|
twitch_first_iter = false; |
|
// Testing increasing stabilize P gain so will set lean angle target |
|
switch (test_axis) { |
|
case ROLL: |
|
// request roll to 20deg |
|
attitude_control->input_angle_step_bf_roll_pitch_yaw(dir_sign * target_angle, 0.0f, 0.0f); |
|
break; |
|
case PITCH: |
|
// request pitch to 20deg |
|
attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, dir_sign * target_angle, 0.0f); |
|
break; |
|
case YAW: |
|
// request pitch to 20deg |
|
attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, 0.0f, dir_sign * target_angle); |
|
break; |
|
} |
|
} |
|
} else { |
|
// Testing rate P and D gains so will set body-frame rate targets. |
|
// Rate controller will use existing body-frame rates and convert to motor outputs |
|
// for all axes except the one we override here. |
|
switch (test_axis) { |
|
case ROLL: |
|
// override body-frame roll rate |
|
attitude_control->rate_bf_roll_target(dir_sign * target_rate + start_rate); |
|
break; |
|
case PITCH: |
|
// override body-frame pitch rate |
|
attitude_control->rate_bf_pitch_target(dir_sign * target_rate + start_rate); |
|
break; |
|
case YAW: |
|
// override body-frame yaw rate |
|
attitude_control->rate_bf_yaw_target(dir_sign * target_rate + start_rate); |
|
break; |
|
} |
|
} |
|
|
|
// capture this iteration's rotation rate and lean angle |
|
float gyro_reading = 0; |
|
switch (test_axis) { |
|
case ROLL: |
|
gyro_reading = ahrs_view->get_gyro().x; |
|
lean_angle = dir_sign * (ahrs_view->roll_sensor - (int32_t)start_angle); |
|
break; |
|
case PITCH: |
|
gyro_reading = ahrs_view->get_gyro().y; |
|
lean_angle = dir_sign * (ahrs_view->pitch_sensor - (int32_t)start_angle); |
|
break; |
|
case YAW: |
|
gyro_reading = ahrs_view->get_gyro().z; |
|
lean_angle = dir_sign * wrap_180_cd(ahrs_view->yaw_sensor-(int32_t)start_angle); |
|
break; |
|
} |
|
|
|
// Add filter to measurements |
|
float filter_value; |
|
switch (tune_type) { |
|
case SP_DOWN: |
|
case SP_UP: |
|
filter_value = dir_sign * (ToDeg(gyro_reading) * 100.0f); |
|
break; |
|
default: |
|
filter_value = dir_sign * (ToDeg(gyro_reading) * 100.0f - start_rate); |
|
break; |
|
} |
|
rotation_rate = rotation_rate_filt.apply(filter_value, |
|
AP::scheduler().get_loop_period_s()); |
|
|
|
switch (tune_type) { |
|
case RD_UP: |
|
case RD_DOWN: |
|
twitching_test_rate(rotation_rate, target_rate, test_rate_min, test_rate_max); |
|
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max); |
|
twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min); |
|
break; |
|
case RP_UP: |
|
twitching_test_rate(rotation_rate, target_rate*(1+0.5f*aggressiveness), test_rate_min, test_rate_max); |
|
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max); |
|
twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min); |
|
break; |
|
case SP_DOWN: |
|
case SP_UP: |
|
twitching_test_angle(lean_angle, rotation_rate, target_angle*(1+0.5f*aggressiveness), test_angle_min, test_angle_max, test_rate_min, test_rate_max); |
|
twitching_measure_acceleration(test_accel_max, rotation_rate - dir_sign * start_rate, rate_max); |
|
break; |
|
default: |
|
break; |
|
} |
|
} |
|
|
|
void AC_AutoTune::rate_ff_test_init() |
|
{ |
|
ff_test_phase = 0; |
|
rotation_rate_filt.reset(0); |
|
rotation_rate_filt.set_cutoff_frequency(5.0f); |
|
command_filt.reset(0); |
|
command_filt.set_cutoff_frequency(5.0f); |
|
target_rate_filt.reset(0); |
|
target_rate_filt.set_cutoff_frequency(5.0f); |
|
test_command_filt = 0.0f; |
|
test_rate_filt = 0.0f; |
|
test_tgt_rate_filt = 0.0f; |
|
filt_target_rate = 0.0f; |
|
settle_time = 200; |
|
phase_out_time = 500; |
|
} |
|
|
|
void AC_AutoTune::rate_ff_test_run(float max_angle_cd, float target_rate_cds, float dir_sign) |
|
{ |
|
float gyro_reading; |
|
float command_reading; |
|
float tgt_rate_reading; |
|
const uint32_t now = AP_HAL::millis(); |
|
|
|
// TODO make filter leak dependent on dt |
|
const float filt_alpha = 0.0123f; |
|
|
|
target_rate_cds = dir_sign * target_rate_cds; |
|
|
|
switch (axis) { |
|
case ROLL: |
|
gyro_reading = ahrs_view->get_gyro().x; |
|
command_reading = motors->get_roll(); |
|
tgt_rate_reading = attitude_control->rate_bf_targets().x; |
|
if (settle_time > 0) { |
|
settle_time--; |
|
trim_command_reading = motors->get_roll(); |
|
rate_request_cds = gyro_reading; |
|
} else if (((ahrs_view->roll_sensor <= max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->roll_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 0) { |
|
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f); |
|
} else if (((ahrs_view->roll_sensor > max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->roll_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 0) { |
|
ff_test_phase = 1; |
|
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f); |
|
attitude_control->rate_bf_roll_target(rate_request_cds); |
|
} else if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(rate_request_cds, 0.0f, 0.0f); |
|
attitude_control->rate_bf_roll_target(rate_request_cds); |
|
} else if (((ahrs_view->roll_sensor < -max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->roll_sensor > max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
ff_test_phase = 2; |
|
angle_request_cd = attitude_control->get_att_target_euler_cd().x; |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd, start_angles.y, 0.0f); |
|
} else if (ff_test_phase == 2 ) { |
|
angle_request_cd += (start_angles.x - angle_request_cd) * filt_alpha; |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(angle_request_cd, start_angles.y, 0.0f); |
|
phase_out_time--; |
|
} |
|
break; |
|
case PITCH: |
|
gyro_reading = ahrs_view->get_gyro().y; |
|
command_reading = motors->get_pitch(); |
|
tgt_rate_reading = attitude_control->rate_bf_targets().y; |
|
if (settle_time > 0) { |
|
settle_time--; |
|
trim_command_reading = motors->get_pitch(); |
|
rate_request_cds = gyro_reading; |
|
} else if (((ahrs_view->pitch_sensor <= max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 0) { |
|
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f); |
|
} else if (((ahrs_view->pitch_sensor > max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->pitch_sensor < -max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 0) { |
|
ff_test_phase = 1; |
|
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f); |
|
attitude_control->rate_bf_pitch_target(rate_request_cds); |
|
} else if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, rate_request_cds, 0.0f); |
|
attitude_control->rate_bf_pitch_target(rate_request_cds); |
|
} else if (((ahrs_view->pitch_sensor < -max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->pitch_sensor > max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
ff_test_phase = 2; |
|
angle_request_cd = attitude_control->get_att_target_euler_cd().y; |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd, 0.0f); |
|
} else if (ff_test_phase == 2 ) { |
|
angle_request_cd += (start_angles.x - angle_request_cd) * filt_alpha; |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(start_angles.x, angle_request_cd, 0.0f); |
|
phase_out_time--; |
|
} |
|
break; |
|
case YAW: |
|
gyro_reading = ahrs_view->get_gyro().z; |
|
command_reading = motors->get_yaw(); |
|
tgt_rate_reading = attitude_control->rate_bf_targets().z; |
|
if (settle_time > 0) { |
|
settle_time--; |
|
trim_command_reading = motors->get_yaw(); |
|
trim_heading = ahrs_view->yaw_sensor; |
|
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && is_positive(dir_sign)) |
|
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && !is_positive(dir_sign))) |
|
&& ff_test_phase == 0) { |
|
rate_request_cds += (target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds); |
|
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && is_positive(dir_sign)) |
|
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && !is_positive(dir_sign))) |
|
&& ff_test_phase == 0) { |
|
ff_test_phase = 1; |
|
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds); |
|
attitude_control->rate_bf_yaw_target(rate_request_cds); |
|
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign)) |
|
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
rate_request_cds += (-target_rate_cds - rate_request_cds) * filt_alpha; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, rate_request_cds); |
|
attitude_control->rate_bf_yaw_target(rate_request_cds); |
|
} else if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) < -2.0f * max_angle_cd && is_positive(dir_sign)) |
|
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) > 2.0f * max_angle_cd && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
ff_test_phase = 2; |
|
angle_request_cd = attitude_control->get_att_target_euler_cd().z; |
|
attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, angle_request_cd, false); |
|
} else if (ff_test_phase == 2 ) { |
|
angle_request_cd += wrap_180_cd(trim_heading - angle_request_cd) * filt_alpha; |
|
attitude_control->input_euler_angle_roll_pitch_yaw(start_angles.x, start_angles.y, angle_request_cd, false); |
|
} |
|
break; |
|
} |
|
|
|
rotation_rate = rotation_rate_filt.apply(gyro_reading, |
|
AP::scheduler().get_loop_period_s()); |
|
command_out = command_filt.apply((command_reading - trim_command_reading), |
|
AP::scheduler().get_loop_period_s()); |
|
filt_target_rate = target_rate_filt.apply(tgt_rate_reading, |
|
AP::scheduler().get_loop_period_s()); |
|
|
|
// record steady state rate and motor command |
|
switch (axis) { |
|
case ROLL: |
|
if (((ahrs_view->roll_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->roll_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
test_rate_filt = rotation_rate; |
|
test_command_filt = command_out; |
|
test_tgt_rate_filt = filt_target_rate; |
|
} |
|
break; |
|
case PITCH: |
|
if (((ahrs_view->pitch_sensor >= -max_angle_cd + start_angle && is_positive(dir_sign)) |
|
|| (ahrs_view->pitch_sensor <= max_angle_cd + start_angle && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
test_rate_filt = rotation_rate; |
|
test_command_filt = command_out; |
|
test_tgt_rate_filt = filt_target_rate; |
|
} |
|
break; |
|
case YAW: |
|
if (((wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) >= -2.0f * max_angle_cd && is_positive(dir_sign)) |
|
|| (wrap_180_cd(ahrs_view->yaw_sensor - trim_heading) <= 2.0f * max_angle_cd && !is_positive(dir_sign))) |
|
&& ff_test_phase == 1 ) { |
|
test_rate_filt = rotation_rate; |
|
test_command_filt = command_out; |
|
test_tgt_rate_filt = filt_target_rate; |
|
} |
|
break; |
|
} |
|
if (now - step_start_time_ms >= step_time_limit_ms || (ff_test_phase == 2 && phase_out_time == 0)) { |
|
// we have passed the maximum stop time |
|
step = UPDATE_GAINS; |
|
rate_request_cds = 0.0f; |
|
angle_request_cd = 0.0f; |
|
} |
|
|
|
} |
|
|
|
void AC_AutoTune::dwell_test_init(float filt_freq) |
|
{ |
|
rotation_rate_filt.reset(0); |
|
rotation_rate_filt.set_cutoff_frequency(filt_freq); |
|
command_filt.reset(0); |
|
command_filt.set_cutoff_frequency(filt_freq); |
|
target_rate_filt.reset(0); |
|
target_rate_filt.set_cutoff_frequency(filt_freq); |
|
test_command_filt = 0.0f; |
|
test_rate_filt = 0.0f; |
|
test_tgt_rate_filt = 0.0f; |
|
filt_target_rate = 0.0f; |
|
dwell_start_time_ms = 0.0f; |
|
settle_time = 200; |
|
if (!is_equal(start_freq, stop_freq)) { |
|
sweep.ph180_freq = 0.0f; |
|
sweep.ph180_gain = 0.0f; |
|
sweep.ph180_phase = 0.0f; |
|
sweep.ph270_freq = 0.0f; |
|
sweep.ph270_gain = 0.0f; |
|
sweep.ph270_phase = 0.0f; |
|
sweep.maxgain_gain = 0.0f; |
|
sweep.maxgain_freq = 0.0f; |
|
sweep.maxgain_phase = 0.0f; |
|
sweep.progress = 0; |
|
curr_test_gain = 0.0f; |
|
curr_test_phase = 0.0f; |
|
} |
|
|
|
// save the trim output from PID controller |
|
float ff_term = 0.0f; |
|
float p_term = 0.0f; |
|
switch (axis) { |
|
case ROLL: |
|
trim_meas_rate = ahrs_view->get_gyro().x; |
|
ff_term = attitude_control->get_rate_roll_pid().get_ff(); |
|
p_term = attitude_control->get_rate_roll_pid().get_p(); |
|
break; |
|
case PITCH: |
|
trim_meas_rate = ahrs_view->get_gyro().y; |
|
ff_term = attitude_control->get_rate_pitch_pid().get_ff(); |
|
p_term = attitude_control->get_rate_pitch_pid().get_p(); |
|
break; |
|
case YAW: |
|
trim_meas_rate = ahrs_view->get_gyro().z; |
|
ff_term = attitude_control->get_rate_yaw_pid().get_ff(); |
|
p_term = attitude_control->get_rate_yaw_pid().get_p(); |
|
break; |
|
} |
|
trim_pff_out = ff_term + p_term; |
|
} |
|
|
|
void AC_AutoTune::dwell_test_run(uint8_t freq_resp_input, float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase) |
|
{ |
|
float gyro_reading; |
|
float command_reading; |
|
float tgt_rate_reading; |
|
float tgt_attitude = 2.5f * 0.01745f; |
|
const uint32_t now = AP_HAL::millis(); |
|
float target_rate_cds; |
|
float sweep_time_ms = 23000; |
|
const float att_hold_gain = 4.5f; |
|
Vector3f attitude_cd; |
|
|
|
float dwell_freq = start_frq; |
|
float cycle_time_ms = 0; |
|
if (!is_zero(dwell_freq)) { |
|
cycle_time_ms = 1000.0f * 2.0f * M_PI / dwell_freq; |
|
} |
|
|
|
const float alpha = calc_lowpass_alpha_dt(0.0025f, 0.2f * start_frq); |
|
attitude_cd = Vector3f((float)ahrs_view->roll_sensor, (float)ahrs_view->pitch_sensor, (float)ahrs_view->yaw_sensor); |
|
Vector3f velocity_ned, velocity_bf; |
|
if (ahrs_view->get_velocity_NED(velocity_ned)) { |
|
velocity_bf.x = velocity_ned.x * ahrs_view->cos_yaw() + velocity_ned.y * ahrs_view->sin_yaw(); |
|
velocity_bf.y = -velocity_ned.x * ahrs_view->sin_yaw() + velocity_ned.y * ahrs_view->cos_yaw(); |
|
} |
|
|
|
// keep controller from requesting too high of a rate |
|
float target_rate_mag_cds = dwell_freq * tgt_attitude * 5730.0f; |
|
if (target_rate_mag_cds > 5000.0f) { |
|
target_rate_mag_cds = 5000.0f; |
|
} |
|
if (settle_time == 0) { |
|
// give gentler start for the dwell |
|
if ((float)(now - dwell_start_time_ms) < 0.5f * cycle_time_ms) { |
|
target_rate_cds = -0.5f * target_rate_mag_cds * sinf(dwell_freq * (now - dwell_start_time_ms) * 0.001); |
|
} else { |
|
if (is_equal(start_frq,stop_frq)) { |
|
target_rate_cds = - target_rate_mag_cds * cosf(dwell_freq * (now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001); |
|
} else { |
|
target_rate_cds = waveform((now - dwell_start_time_ms - 0.5f * cycle_time_ms) * 0.001, (sweep_time_ms - 0.5f * cycle_time_ms) * 0.001f, target_rate_mag_cds, start_frq, stop_frq); |
|
dwell_freq = waveform_freq_rads; |
|
} |
|
} |
|
filt_attitude_cd.x += alpha * (attitude_cd.x - filt_attitude_cd.x); |
|
filt_attitude_cd.y += alpha * (attitude_cd.y - filt_attitude_cd.y); |
|
filt_attitude_cd.z += alpha * wrap_180_cd(attitude_cd.z - filt_attitude_cd.z); |
|
filt_att_fdbk_from_velxy_cd.x += alpha * (-5730.0f * vel_hold_gain * velocity_bf.y - filt_att_fdbk_from_velxy_cd.x); |
|
filt_att_fdbk_from_velxy_cd.y += alpha * (5730.0f * vel_hold_gain * velocity_bf.x - filt_att_fdbk_from_velxy_cd.y); |
|
} else { |
|
target_rate_cds = 0.0f; |
|
settle_time--; |
|
dwell_start_time_ms = now; |
|
trim_command = command_out; |
|
filt_attitude_cd = attitude_cd; |
|
trim_attitude_cd = attitude_cd; |
|
filt_att_fdbk_from_velxy_cd = Vector2f(0.0f,0.0f); |
|
} |
|
|
|
// limit rate correction for position hold |
|
Vector3f trim_rate_cds; |
|
trim_rate_cds.x = att_hold_gain * ((trim_attitude_cd.x + filt_att_fdbk_from_velxy_cd.x) - filt_attitude_cd.x); |
|
trim_rate_cds.y = att_hold_gain * ((trim_attitude_cd.y + filt_att_fdbk_from_velxy_cd.y) - filt_attitude_cd.y); |
|
trim_rate_cds.z = att_hold_gain * wrap_180_cd(trim_attitude_cd.z - filt_attitude_cd.z); |
|
trim_rate_cds.x = constrain_float(trim_rate_cds.x, -15000.0f, 15000.0f); |
|
trim_rate_cds.y = constrain_float(trim_rate_cds.y, -15000.0f, 15000.0f); |
|
trim_rate_cds.z = constrain_float(trim_rate_cds.z, -15000.0f, 15000.0f); |
|
|
|
switch (axis) { |
|
case ROLL: |
|
gyro_reading = ahrs_view->get_gyro().x; |
|
command_reading = motors->get_roll(); |
|
tgt_rate_reading = attitude_control->rate_bf_targets().x; |
|
if (settle_time == 0) { |
|
float ff_rate_contr = 0.0f; |
|
if (tune_roll_rff > 0.0f) { |
|
ff_rate_contr = 5730.0f * trim_command / tune_roll_rff; |
|
} |
|
trim_rate_cds.x += ff_rate_contr; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, trim_rate_cds.y, 0.0f); |
|
attitude_control->rate_bf_roll_target(target_rate_cds + trim_rate_cds.x); |
|
} else { |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); |
|
if (!is_zero(attitude_control->get_rate_roll_pid().ff() + attitude_control->get_rate_roll_pid().kP())) { |
|
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_roll_pid().kP()) / (attitude_control->get_rate_roll_pid().ff() + attitude_control->get_rate_roll_pid().kP()); |
|
attitude_control->rate_bf_roll_target(trim_tgt_rate_cds); |
|
} |
|
} |
|
break; |
|
case PITCH: |
|
gyro_reading = ahrs_view->get_gyro().y; |
|
command_reading = motors->get_pitch(); |
|
tgt_rate_reading = attitude_control->rate_bf_targets().y; |
|
if (settle_time == 0) { |
|
float ff_rate_contr = 0.0f; |
|
if (tune_pitch_rff > 0.0f) { |
|
ff_rate_contr = 5730.0f * trim_command / tune_pitch_rff; |
|
} |
|
trim_rate_cds.y += ff_rate_contr; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(trim_rate_cds.x, 0.0f, 0.0f); |
|
attitude_control->rate_bf_pitch_target(target_rate_cds + trim_rate_cds.y); |
|
} else { |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); |
|
if (!is_zero(attitude_control->get_rate_pitch_pid().ff() + attitude_control->get_rate_pitch_pid().kP())) { |
|
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_pitch_pid().kP()) / (attitude_control->get_rate_pitch_pid().ff() + attitude_control->get_rate_pitch_pid().kP()); |
|
attitude_control->rate_bf_pitch_target(trim_tgt_rate_cds); |
|
} |
|
} |
|
break; |
|
case YAW: |
|
gyro_reading = ahrs_view->get_gyro().z; |
|
command_reading = motors->get_yaw(); |
|
tgt_rate_reading = attitude_control->rate_bf_targets().z; |
|
if (settle_time == 0) { |
|
float rp_rate_contr = 0.0f; |
|
if (tune_yaw_rp > 0.0f) { |
|
rp_rate_contr = 5730.0f * trim_command / tune_yaw_rp; |
|
} |
|
trim_rate_cds.z += rp_rate_contr; |
|
attitude_control->input_rate_bf_roll_pitch_yaw(trim_rate_cds.x, trim_rate_cds.y, 0.0f); |
|
attitude_control->rate_bf_yaw_target(target_rate_cds + trim_rate_cds.z); |
|
} else { |
|
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f); |
|
if (!is_zero(attitude_control->get_rate_yaw_pid().ff() + attitude_control->get_rate_yaw_pid().kP())) { |
|
float trim_tgt_rate_cds = 5730.0f * (trim_pff_out + trim_meas_rate * attitude_control->get_rate_yaw_pid().kP()) / (attitude_control->get_rate_yaw_pid().ff() + attitude_control->get_rate_yaw_pid().kP()); |
|
attitude_control->rate_bf_yaw_target(trim_tgt_rate_cds); |
|
} |
|
} |
|
break; |
|
} |
|
|
|
if (settle_time == 0) { |
|
filt_command_reading += alpha * (command_reading - filt_command_reading); |
|
filt_gyro_reading += alpha * (gyro_reading - filt_gyro_reading); |
|
filt_tgt_rate_reading += alpha * (tgt_rate_reading - filt_tgt_rate_reading); |
|
} else { |
|
filt_command_reading = command_reading; |
|
filt_gyro_reading = gyro_reading; |
|
filt_tgt_rate_reading = tgt_rate_reading; |
|
} |
|
|
|
// looks at gain and phase of input rate to output rate |
|
rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading), |
|
AP::scheduler().get_loop_period_s()); |
|
filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading), |
|
AP::scheduler().get_loop_period_s()); |
|
command_out = command_filt.apply((command_reading - filt_command_reading), |
|
AP::scheduler().get_loop_period_s()); |
|
|
|
// wait for dwell to start before determining gain and phase or just start if sweep |
|
if ((float)(now - dwell_start_time_ms) > 6.25f * cycle_time_ms || (!is_equal(start_frq,stop_frq) && settle_time == 0)) { |
|
if (freq_resp_input == 1) { |
|
freqresp_rate.update_rate(filt_target_rate,rotation_rate, dwell_freq); |
|
} else { |
|
freqresp_rate.update_rate(command_out,rotation_rate, dwell_freq); |
|
} |
|
if (freqresp_rate.is_cycle_complete()) { |
|
if (!is_equal(start_frq,stop_frq)) { |
|
curr_test_freq = freqresp_rate.get_freq(); |
|
curr_test_gain = freqresp_rate.get_gain(); |
|
curr_test_phase = freqresp_rate.get_phase(); |
|
// reset cycle_complete to allow indication of next cycle |
|
freqresp_rate.reset_cycle_complete(); |
|
// log sweep data |
|
Log_AutoTuneSweep(); |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f phase=%f", (double)(curr_test_freq), (double)(curr_test_gain), (double)(curr_test_phase)); |
|
} else { |
|
dwell_gain = freqresp_rate.get_gain(); |
|
dwell_phase = freqresp_rate.get_phase(); |
|
} |
|
|
|
} |
|
} |
|
|
|
// set sweep data if a frequency sweep is being conducted |
|
if (!is_equal(start_frq,stop_frq) && (float)(now - dwell_start_time_ms) > 2.5f * cycle_time_ms) { |
|
// track sweep phase to prevent capturing 180 deg and 270 deg data after phase has wrapped. |
|
if (curr_test_phase > 180.0f && sweep.progress == 0) { |
|
sweep.progress = 1; |
|
} else if (curr_test_phase > 270.0f && sweep.progress == 1) { |
|
sweep.progress = 2; |
|
} |
|
if (curr_test_phase <= 160.0f && curr_test_phase >= 150.0f && sweep.progress == 0) { |
|
sweep.ph180_freq = curr_test_freq; |
|
sweep.ph180_gain = curr_test_gain; |
|
sweep.ph180_phase = curr_test_phase; |
|
} |
|
if (curr_test_phase <= 250.0f && curr_test_phase >= 240.0f && sweep.progress == 1) { |
|
sweep.ph270_freq = curr_test_freq; |
|
sweep.ph270_gain = curr_test_gain; |
|
sweep.ph270_phase = curr_test_phase; |
|
} |
|
if (curr_test_gain > sweep.maxgain_gain) { |
|
sweep.maxgain_gain = curr_test_gain; |
|
sweep.maxgain_freq = curr_test_freq; |
|
sweep.maxgain_phase = curr_test_phase; |
|
} |
|
if (now - step_start_time_ms >= sweep_time_ms + 200) { |
|
// we have passed the maximum stop time |
|
step = UPDATE_GAINS; |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: max_freq=%f max_gain=%f", (double)(sweep.maxgain_freq), (double)(sweep.maxgain_gain)); |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: ph180_freq=%f ph180_gain=%f", (double)(sweep.ph180_freq), (double)(sweep.ph180_gain)); |
|
} |
|
|
|
} else { |
|
if (now - step_start_time_ms >= step_time_limit_ms || freqresp_rate.is_cycle_complete()) { |
|
// we have passed the maximum stop time |
|
step = UPDATE_GAINS; |
|
} |
|
} |
|
} |
|
|
|
void AC_AutoTune::angle_dwell_test_init(float filt_freq) |
|
{ |
|
rotation_rate_filt.set_cutoff_frequency(filt_freq); |
|
command_filt.set_cutoff_frequency(filt_freq); |
|
target_rate_filt.set_cutoff_frequency(filt_freq); |
|
dwell_start_time_ms = 0.0f; |
|
settle_time = 200; |
|
switch (axis) { |
|
case ROLL: |
|
rotation_rate_filt.reset(((float)ahrs_view->roll_sensor) / 5730.0f); |
|
command_filt.reset(motors->get_roll()); |
|
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f); |
|
rotation_rate = ((float)ahrs_view->roll_sensor) / 5730.0f; |
|
command_out = motors->get_roll(); |
|
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f; |
|
break; |
|
case PITCH: |
|
rotation_rate_filt.reset(((float)ahrs_view->pitch_sensor) / 5730.0f); |
|
command_filt.reset(motors->get_pitch()); |
|
target_rate_filt.reset(((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f); |
|
rotation_rate = ((float)ahrs_view->pitch_sensor) / 5730.0f; |
|
command_out = motors->get_pitch(); |
|
filt_target_rate = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f; |
|
break; |
|
case YAW: |
|
// yaw angle will be centered on zero by removing trim heading |
|
rotation_rate_filt.reset(0.0f); |
|
command_filt.reset(motors->get_yaw()); |
|
target_rate_filt.reset(0.0f); |
|
rotation_rate = 0.0f; |
|
command_out = motors->get_yaw(); |
|
filt_target_rate = 0.0f; |
|
break; |
|
} |
|
if (!is_equal(start_freq, stop_freq)) { |
|
sweep.ph180_freq = 0.0f; |
|
sweep.ph180_gain = 0.0f; |
|
sweep.ph180_phase = 0.0f; |
|
sweep.ph270_freq = 0.0f; |
|
sweep.ph270_gain = 0.0f; |
|
sweep.ph270_phase = 0.0f; |
|
sweep.maxgain_gain = 0.0f; |
|
sweep.maxgain_freq = 0.0f; |
|
sweep.maxgain_phase = 0.0f; |
|
curr_test_gain = 0.0f; |
|
curr_test_phase = 0.0f; |
|
} |
|
} |
|
|
|
void AC_AutoTune::angle_dwell_test_run(float start_frq, float stop_frq, float &dwell_gain, float &dwell_phase) |
|
{ |
|
float gyro_reading; |
|
float command_reading; |
|
float tgt_rate_reading; |
|
float tgt_attitude = 5.0f * 0.01745f; |
|
const uint32_t now = AP_HAL::millis(); |
|
float target_angle_cd; |
|
float sweep_time_ms = 23000; |
|
float dwell_freq = start_frq; |
|
|
|
const float alpha = calc_lowpass_alpha_dt(0.0025f, 0.2f * start_frq); |
|
|
|
// adjust target attitude based on input_tc so amplitude decrease with increased frequency is minimized |
|
const float freq_co = 1.0f / attitude_control->get_input_tc(); |
|
const float added_ampl = (safe_sqrt(powf(dwell_freq,2.0) + powf(freq_co,2.0)) / freq_co) - 1.0f; |
|
tgt_attitude = constrain_float(0.08725f * (1.0f + 0.2f * added_ampl), 0.08725f, 0.5235f); |
|
|
|
float cycle_time_ms = 0; |
|
if (!is_zero(dwell_freq)) { |
|
cycle_time_ms = 1000.0f * 6.28f / dwell_freq; |
|
} |
|
|
|
// body frame calculation of velocity |
|
Vector3f velocity_ned, velocity_bf; |
|
if (ahrs_view->get_velocity_NED(velocity_ned)) { |
|
velocity_bf.x = velocity_ned.x * ahrs_view->cos_yaw() + velocity_ned.y * ahrs_view->sin_yaw(); |
|
velocity_bf.y = -velocity_ned.x * ahrs_view->sin_yaw() + velocity_ned.y * ahrs_view->cos_yaw(); |
|
} |
|
|
|
if (settle_time == 0) { |
|
// give gentler start for the dwell |
|
if ((float)(now - dwell_start_time_ms) < 0.5f * cycle_time_ms) { |
|
target_angle_cd = 0.5f * tgt_attitude * 5730.0f * (cosf(dwell_freq * (now - dwell_start_time_ms) * 0.001) - 1.0f); |
|
} else { |
|
if (is_equal(start_frq,stop_frq)) { |
|
target_angle_cd = -tgt_attitude * 5730.0f * sinf(dwell_freq * (now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001); |
|
} else { |
|
target_angle_cd = -waveform((now - dwell_start_time_ms - 0.25f * cycle_time_ms) * 0.001, (sweep_time_ms - 0.25f * cycle_time_ms) * 0.001f, tgt_attitude * 5730.0f, start_frq, stop_frq); |
|
dwell_freq = waveform_freq_rads; |
|
} |
|
} |
|
filt_att_fdbk_from_velxy_cd.x += alpha * (-5730.0f * vel_hold_gain * velocity_bf.y - filt_att_fdbk_from_velxy_cd.x); |
|
filt_att_fdbk_from_velxy_cd.y += alpha * (5730.0f * vel_hold_gain * velocity_bf.x - filt_att_fdbk_from_velxy_cd.y); |
|
filt_att_fdbk_from_velxy_cd.x = constrain_float(filt_att_fdbk_from_velxy_cd.x, -2000.0f, 2000.0f); |
|
filt_att_fdbk_from_velxy_cd.y = constrain_float(filt_att_fdbk_from_velxy_cd.y, -2000.0f, 2000.0f); |
|
} else { |
|
target_angle_cd = 0.0f; |
|
trim_yaw_tgt_reading = (float)attitude_control->get_att_target_euler_cd().z; |
|
trim_yaw_heading_reading = (float)ahrs_view->yaw_sensor; |
|
settle_time--; |
|
dwell_start_time_ms = now; |
|
filt_att_fdbk_from_velxy_cd = Vector2f(0.0f,0.0f); |
|
} |
|
|
|
switch (axis) { |
|
case ROLL: |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(target_angle_cd + filt_att_fdbk_from_velxy_cd.x, filt_att_fdbk_from_velxy_cd.y, 0.0f); |
|
command_reading = motors->get_roll(); |
|
tgt_rate_reading = ((float)attitude_control->get_att_target_euler_cd().x) / 5730.0f; |
|
gyro_reading = ((float)ahrs_view->roll_sensor) / 5730.0f; |
|
break; |
|
case PITCH: |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(filt_att_fdbk_from_velxy_cd.x, target_angle_cd + filt_att_fdbk_from_velxy_cd.y, 0.0f); |
|
command_reading = motors->get_pitch(); |
|
tgt_rate_reading = ((float)attitude_control->get_att_target_euler_cd().y) / 5730.0f; |
|
gyro_reading = ((float)ahrs_view->pitch_sensor) / 5730.0f; |
|
break; |
|
case YAW: |
|
command_reading = motors->get_yaw(); |
|
tgt_rate_reading = (wrap_180_cd((float)attitude_control->get_att_target_euler_cd().z - trim_yaw_tgt_reading)) / 5730.0f; |
|
gyro_reading = (wrap_180_cd((float)ahrs_view->yaw_sensor - trim_yaw_heading_reading)) / 5730.0f; |
|
attitude_control->input_euler_angle_roll_pitch_yaw(filt_att_fdbk_from_velxy_cd.x, filt_att_fdbk_from_velxy_cd.y, wrap_180_cd(trim_yaw_tgt_reading + target_angle_cd), false); |
|
break; |
|
} |
|
|
|
if (settle_time == 0) { |
|
filt_command_reading += alpha * (command_reading - filt_command_reading); |
|
filt_gyro_reading += alpha * (gyro_reading - filt_gyro_reading); |
|
filt_tgt_rate_reading += alpha * (tgt_rate_reading - filt_tgt_rate_reading); |
|
} else { |
|
filt_command_reading = command_reading; |
|
filt_gyro_reading = gyro_reading; |
|
filt_tgt_rate_reading = tgt_rate_reading; |
|
} |
|
|
|
// looks at gain and phase of input rate to output rate |
|
rotation_rate = rotation_rate_filt.apply((gyro_reading - filt_gyro_reading), |
|
AP::scheduler().get_loop_period_s()); |
|
filt_target_rate = target_rate_filt.apply((tgt_rate_reading - filt_tgt_rate_reading), |
|
AP::scheduler().get_loop_period_s()); |
|
command_out = command_filt.apply((command_reading - filt_command_reading), |
|
AP::scheduler().get_loop_period_s()); |
|
|
|
// wait for dwell to start before determining gain and phase |
|
if ((float)(now - dwell_start_time_ms) > 6.25f * cycle_time_ms || (!is_equal(start_frq,stop_frq) && settle_time == 0)) { |
|
freqresp_angle.update_angle(command_out, filt_target_rate, rotation_rate, dwell_freq); |
|
if (freqresp_angle.is_cycle_complete()) { |
|
if (!is_equal(start_frq,stop_frq)) { |
|
curr_test_freq = freqresp_angle.get_freq(); |
|
curr_test_gain = freqresp_angle.get_gain(); |
|
curr_test_phase = freqresp_angle.get_phase(); |
|
test_accel_max = freqresp_angle.get_accel_max(); |
|
// reset cycle_complete to allow indication of next cycle |
|
freqresp_angle.reset_cycle_complete(); |
|
// log sweep data |
|
Log_AutoTuneSweep(); |
|
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: freq=%f gain=%f phase=%f", (double)(curr_test_freq), (double)(curr_test_gain), (double)(curr_test_phase)); |
|
} else { |
|
dwell_gain = freqresp_angle.get_gain(); |
|
dwell_phase = freqresp_angle.get_phase(); |
|
test_accel_max = freqresp_angle.get_accel_max(); |
|
} |
|
} |
|
} |
|
|
|
// set sweep data if a frequency sweep is being conducted |
|
if (!is_equal(start_frq,stop_frq)) { |
|
if (curr_test_phase <= 160.0f && curr_test_phase >= 150.0f) { |
|
sweep.ph180_freq = curr_test_freq; |
|
sweep.ph180_gain = curr_test_gain; |
|
sweep.ph180_phase = curr_test_phase; |
|
} |
|
if (curr_test_phase <= 250.0f && curr_test_phase >= 240.0f) { |
|
sweep.ph270_freq = curr_test_freq; |
|
sweep.ph270_gain = curr_test_gain; |
|
sweep.ph270_phase = curr_test_phase; |
|
} |
|
if (curr_test_gain > sweep.maxgain_gain) { |
|
sweep.maxgain_gain = curr_test_gain; |
|
sweep.maxgain_freq = curr_test_freq; |
|
sweep.maxgain_phase = curr_test_phase; |
|
} |
|
if (now - step_start_time_ms >= sweep_time_ms + 200) { |
|
// we have passed the maximum stop time |
|
step = UPDATE_GAINS; |
|
} |
|
} else { |
|
if (now - step_start_time_ms >= step_time_limit_ms || freqresp_angle.is_cycle_complete()) { |
|
// we have passed the maximum stop time |
|
step = UPDATE_GAINS; |
|
} |
|
} |
|
} |
|
|
|
// init_test - initialises the test |
|
float AC_AutoTune::waveform(float time, float time_record, float waveform_magnitude, float wMin, float wMax) |
|
{ |
|
float time_fade_in = 0.0f; // Time to reach maximum amplitude of chirp |
|
float time_fade_out = 0.1 * time_record; // Time to reach zero amplitude after chirp finishes |
|
float time_const_freq = 0.0f; |
|
|
|
float window; |
|
float output; |
|
|
|
float B = logf(wMax / wMin); |
|
|
|
if (time <= 0.0f) { |
|
window = 0.0f; |
|
} else if (time <= time_fade_in) { |
|
window = 0.5 - 0.5 * cosf(M_PI * time / time_fade_in); |
|
} else if (time <= time_record - time_fade_out) { |
|
window = 1.0; |
|
} else if (time <= time_record) { |
|
window = 0.5 - 0.5 * cosf(M_PI * (time - (time_record - time_fade_out)) / time_fade_out + M_PI); |
|
} else { |
|
window = 0.0; |
|
} |
|
|
|
if (time <= 0.0f) { |
|
waveform_freq_rads = wMin; |
|
output = 0.0f; |
|
} else if (time <= time_const_freq) { |
|
waveform_freq_rads = wMin; |
|
output = window * waveform_magnitude * sinf(wMin * time - wMin * time_const_freq); |
|
} else if (time <= time_record) { |
|
waveform_freq_rads = wMin * expf(B * (time - time_const_freq) / (time_record - time_const_freq)); |
|
output = window * waveform_magnitude * sinf((wMin * (time_record - time_const_freq) / B) * (expf(B * (time - time_const_freq) / (time_record - time_const_freq)) - 1)); |
|
} else { |
|
waveform_freq_rads = wMax; |
|
output = 0.0f; |
|
} |
|
return output; |
|
} |
|
|
|
|