You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
4.1 KiB
113 lines
4.1 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- |
|
|
|
// Code by Jon Challinger |
|
// Modified by Paul Riseborough to implement a three loop autopilot |
|
// topology |
|
// |
|
// This library is free software; you can redistribute it and / or |
|
// modify it under the terms of the GNU Lesser General Public |
|
// License as published by the Free Software Foundation; either |
|
// version 2.1 of the License, or (at your option) any later version. |
|
|
|
#include <AP_Math.h> |
|
#include <AP_HAL.h> |
|
#include "AP_YawController.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AP_YawController::var_info[] PROGMEM = { |
|
AP_GROUPINFO("K_A", 0, AP_YawController, _K_A, 0), |
|
AP_GROUPINFO("K_I", 1, AP_YawController, _K_I, 0), |
|
AP_GROUPINFO("K_D", 2, AP_YawController, _K_D, 0), |
|
AP_GROUPINFO("K_RLL", 3, AP_YawController, _K_FF, 1), |
|
AP_GROUPEND |
|
}; |
|
|
|
int32_t AP_YawController::get_servo_out(float scaler, bool stabilize, int16_t aspd_min, int16_t aspd_max) |
|
{ |
|
uint32_t tnow = hal.scheduler->millis(); |
|
uint32_t dt = tnow - _last_t; |
|
if (_last_t == 0 || dt > 1000) { |
|
dt = 0; |
|
} |
|
_last_t = tnow; |
|
|
|
if(_ins == NULL) { // can't control without a reference |
|
return 0; |
|
} |
|
|
|
float delta_time = (float) dt / 1000.0f; |
|
|
|
// Calculate yaw rate required to keep up with a constant height coordinated turn |
|
float aspeed; |
|
float rate_offset; |
|
float bank_angle = _ahrs->roll; |
|
// limit bank angle between +- 80 deg if right way up |
|
if (fabsf(bank_angle) < 1.5707964f) { |
|
bank_angle = constrain_float(bank_angle,-1.3962634f,1.3962634f); |
|
} |
|
if (!_ahrs->airspeed_estimate(&aspeed)) { |
|
// If no airspeed available use average of min and max |
|
aspeed = 0.5f*(float(aspd_min) + float(aspd_max)); |
|
} |
|
rate_offset = (9.807f / max(aspeed , float(aspd_min))) * tanf(bank_angle) * cosf(bank_angle) * _K_FF; |
|
|
|
// Get body rate vector (radians/sec) |
|
float omega_z = _ahrs->get_gyro().z; |
|
|
|
// Get the accln vector (m/s^2) |
|
float accel_y = _ins->get_accel().y; |
|
|
|
// Subtract the steady turn component of rate from the measured rate |
|
// to calculate the rate relative to the turn requirement in degrees/sec |
|
float rate_hp_in = ToDeg(omega_z - rate_offset); |
|
|
|
// Apply a high-pass filter to the rate to washout any steady state error |
|
// due to bias errors in rate_offset |
|
// Use a cut-off frequency of omega = 0.2 rad/sec |
|
// Could make this adjustable by replacing 0.9960080 with (1 - omega * dt) |
|
float rate_hp_out = 0.9960080f * _last_rate_hp_out + rate_hp_in - _last_rate_hp_in; |
|
_last_rate_hp_out = rate_hp_out; |
|
_last_rate_hp_in = rate_hp_in; |
|
|
|
//Calculate input to integrator |
|
float integ_in = - _K_I * (_K_A * accel_y + rate_hp_out); |
|
|
|
// Apply integrator, but clamp input to prevent control saturation and freeze integrator below min FBW speed |
|
// Don't integrate if in stabilise mode as the integrator will wind up against the pilots inputs |
|
// Don't integrate if _K_D is zero as integrator will keep winding up |
|
if (!stabilize && _K_D > 0) { |
|
//only integrate if airspeed above min value |
|
if (aspeed > float(aspd_min)) |
|
{ |
|
// prevent the integrator from increasing if surface defln demand is above the upper limit |
|
if (_last_out < -45) _integrator += max(integ_in * delta_time , 0); |
|
// prevent the integrator from decreasing if surface defln demand is below the lower limit |
|
else if (_last_out > 45) _integrator += min(integ_in * delta_time , 0); |
|
else _integrator += integ_in * delta_time; |
|
} |
|
} else { |
|
_integrator = 0; |
|
} |
|
|
|
// Protect against increases to _K_D during in-flight tuning from creating large control transients |
|
// due to stored integrator values |
|
if (_K_D > _K_D_last && _K_D > 0) { |
|
_integrator = _K_D_last/_K_D * _integrator; |
|
} |
|
_K_D_last = _K_D; |
|
|
|
// Calculate demanded rudder deflection, +Ve deflection yaws nose right |
|
// Save to last value before application of limiter so that integrator limiting |
|
// can detect exceedance next frame |
|
// Scale using inverse dynamic pressure (1/V^2) |
|
_last_out = _K_D * (_integrator - rate_hp_out) * scaler * scaler; |
|
|
|
// Convert to centi-degrees and constrain |
|
return constrain_float(_last_out * 100, -4500, 4500); |
|
} |
|
|
|
void AP_YawController::reset_I() |
|
{ |
|
_integrator = 0; |
|
}
|
|
|