You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
571 lines
16 KiB
571 lines
16 KiB
/* |
|
DSM decoder, based on src/modules/px4iofirmware/dsm.c from PX4Firmware |
|
modified for use in AP_HAL_* by Andrew Tridgell |
|
*/ |
|
/**************************************************************************** |
|
* |
|
* Copyright (c) 2012-2014 PX4 Development Team. All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions |
|
* are met: |
|
* |
|
* 1. Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* 2. Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in |
|
* the documentation and/or other materials provided with the |
|
* distribution. |
|
* 3. Neither the name PX4 nor the names of its contributors may be |
|
* used to endorse or promote products derived from this software |
|
* without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS |
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED |
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
* POSSIBILITY OF SUCH DAMAGE. |
|
* |
|
****************************************************************************/ |
|
|
|
#include <stdint.h> |
|
#include <stdio.h> |
|
|
|
#include "dsm.h" |
|
|
|
#define DSM_FRAME_SIZE 16 /**<DSM frame size in bytes*/ |
|
#define DSM_FRAME_CHANNELS 7 /**<Max supported DSM channels*/ |
|
|
|
static uint64_t dsm_last_frame_time; /**< Timestamp for start of last dsm frame */ |
|
static unsigned dsm_channel_shift; /**< Channel resolution, 0=unknown, 10=10 bit, 11=11 bit */ |
|
|
|
//#define DEBUG |
|
|
|
#ifdef DEBUG |
|
# define debug(fmt, args...) printf(fmt "\n", ##args) |
|
#else |
|
# define debug(fmt, args...) do {} while(0) |
|
#endif |
|
|
|
/** |
|
* Attempt to decode a single channel raw channel datum |
|
* |
|
* The DSM* protocol doesn't provide any explicit framing, |
|
* so we detect dsm frame boundaries by the inter-dsm frame delay. |
|
* |
|
* The minimum dsm frame spacing is 11ms; with 16 bytes at 115200bps |
|
* dsm frame transmission time is ~1.4ms. |
|
* |
|
* We expect to only be called when bytes arrive for processing, |
|
* and if an interval of more than 5ms passes between calls, |
|
* the first byte we read will be the first byte of a dsm frame. |
|
* |
|
* In the case where byte(s) are dropped from a dsm frame, this also |
|
* provides a degree of protection. Of course, it would be better |
|
* if we didn't drop bytes... |
|
* |
|
* Upon receiving a full dsm frame we attempt to decode it |
|
* |
|
* @param[in] raw 16 bit raw channel value from dsm frame |
|
* @param[in] shift position of channel number in raw data |
|
* @param[out] channel pointer to returned channel number |
|
* @param[out] value pointer to returned channel value |
|
* @return true=raw value successfully decoded |
|
*/ |
|
static bool |
|
dsm_decode_channel(uint16_t raw, unsigned shift, unsigned *channel, unsigned *value) |
|
{ |
|
|
|
if (raw == 0xffff) |
|
return false; |
|
|
|
*channel = (raw >> shift) & 0xf; |
|
|
|
uint16_t data_mask = (1 << shift) - 1; |
|
*value = raw & data_mask; |
|
|
|
//debug("DSM: %d 0x%04x -> %d %d", shift, raw, *channel, *value); |
|
|
|
return true; |
|
} |
|
|
|
/** |
|
* Attempt to guess if receiving 10 or 11 bit channel values |
|
* |
|
* @param[in] reset true=reset the 10/11 bit state to unknown |
|
*/ |
|
static void |
|
dsm_guess_format(bool reset, const uint8_t dsm_frame[16]) |
|
{ |
|
static uint32_t cs10; |
|
static uint32_t cs11; |
|
static unsigned samples; |
|
|
|
/* reset the 10/11 bit sniffed channel masks */ |
|
if (reset) { |
|
cs10 = 0; |
|
cs11 = 0; |
|
samples = 0; |
|
dsm_channel_shift = 0; |
|
return; |
|
} |
|
|
|
/* scan the channels in the current dsm_frame in both 10- and 11-bit mode */ |
|
for (unsigned i = 0; i < DSM_FRAME_CHANNELS; i++) { |
|
|
|
const uint8_t *dp = &dsm_frame[2 + (2 * i)]; |
|
uint16_t raw = (dp[0] << 8) | dp[1]; |
|
unsigned channel, value; |
|
|
|
/* if the channel decodes, remember the assigned number */ |
|
if (dsm_decode_channel(raw, 10, &channel, &value) && (channel < 31)) |
|
cs10 |= (1 << channel); |
|
|
|
if (dsm_decode_channel(raw, 11, &channel, &value) && (channel < 31)) |
|
cs11 |= (1 << channel); |
|
|
|
/* XXX if we cared, we could look for the phase bit here to decide 1 vs. 2-dsm_frame format */ |
|
} |
|
|
|
/* wait until we have seen plenty of frames - 5 should normally be enough */ |
|
if (samples++ < 5) |
|
return; |
|
|
|
/* |
|
* Iterate the set of sensible sniffed channel sets and see whether |
|
* decoding in 10 or 11-bit mode has yielded anything we recognize. |
|
* |
|
* XXX Note that due to what seem to be bugs in the DSM2 high-resolution |
|
* stream, we may want to sniff for longer in some cases when we think we |
|
* are talking to a DSM2 receiver in high-resolution mode (so that we can |
|
* reject it, ideally). |
|
* See e.g. http://git.openpilot.org/cru/OPReview-116 for a discussion |
|
* of this issue. |
|
*/ |
|
static uint32_t masks[] = { |
|
0x3f, /* 6 channels (DX6) */ |
|
0x7f, /* 7 channels (DX7) */ |
|
0xff, /* 8 channels (DX8) */ |
|
0x1ff, /* 9 channels (DX9, etc.) */ |
|
0x3ff, /* 10 channels (DX10) */ |
|
0x1fff, /* 13 channels (DX10t) */ |
|
0x3fff /* 18 channels (DX10) */ |
|
}; |
|
unsigned votes10 = 0; |
|
unsigned votes11 = 0; |
|
|
|
for (unsigned i = 0; i < sizeof(masks)/sizeof(masks[0]); i++) { |
|
|
|
if (cs10 == masks[i]) |
|
votes10++; |
|
|
|
if (cs11 == masks[i]) |
|
votes11++; |
|
} |
|
|
|
if ((votes11 == 1) && (votes10 == 0)) { |
|
dsm_channel_shift = 11; |
|
debug("DSM: 11-bit format"); |
|
return; |
|
} |
|
|
|
if ((votes10 == 1) && (votes11 == 0)) { |
|
dsm_channel_shift = 10; |
|
debug("DSM: 10-bit format"); |
|
return; |
|
} |
|
|
|
/* call ourselves to reset our state ... we have to try again */ |
|
debug("DSM: format detect fail, 10: 0x%08x %d 11: 0x%08x %d", cs10, votes10, cs11, votes11); |
|
dsm_guess_format(true, dsm_frame); |
|
} |
|
|
|
/** |
|
* Decode the entire dsm frame (all contained channels) |
|
* |
|
*/ |
|
bool |
|
dsm_decode(uint64_t frame_time, const uint8_t dsm_frame[16], uint16_t *values, uint16_t *num_values, uint16_t max_values) |
|
{ |
|
/* |
|
debug("DSM dsm_frame %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x %02x%02x", |
|
dsm_frame[0], dsm_frame[1], dsm_frame[2], dsm_frame[3], dsm_frame[4], dsm_frame[5], dsm_frame[6], dsm_frame[7], |
|
dsm_frame[8], dsm_frame[9], dsm_frame[10], dsm_frame[11], dsm_frame[12], dsm_frame[13], dsm_frame[14], dsm_frame[15]); |
|
*/ |
|
/* |
|
* If we have lost signal for at least a second, reset the |
|
* format guessing heuristic. |
|
*/ |
|
if (((frame_time - dsm_last_frame_time) > 1000000) && (dsm_channel_shift != 0)) |
|
dsm_guess_format(true, dsm_frame); |
|
|
|
/* we have received something we think is a dsm_frame */ |
|
dsm_last_frame_time = frame_time; |
|
|
|
/* if we don't know the dsm_frame format, update the guessing state machine */ |
|
if (dsm_channel_shift == 0) { |
|
dsm_guess_format(false, dsm_frame); |
|
return false; |
|
} |
|
|
|
/* |
|
* The encoding of the first two bytes is uncertain, so we're |
|
* going to ignore them for now. |
|
* |
|
* Each channel is a 16-bit unsigned value containing either a 10- |
|
* or 11-bit channel value and a 4-bit channel number, shifted |
|
* either 10 or 11 bits. The MSB may also be set to indicate the |
|
* second dsm_frame in variants of the protocol where more than |
|
* seven channels are being transmitted. |
|
*/ |
|
|
|
for (unsigned i = 0; i < DSM_FRAME_CHANNELS; i++) { |
|
|
|
const uint8_t *dp = &dsm_frame[2 + (2 * i)]; |
|
uint16_t raw = (dp[0] << 8) | dp[1]; |
|
unsigned channel, value; |
|
|
|
if (!dsm_decode_channel(raw, dsm_channel_shift, &channel, &value)) |
|
continue; |
|
|
|
/* ignore channels out of range */ |
|
if (channel >= max_values) |
|
continue; |
|
|
|
/* update the decoded channel count */ |
|
if (channel >= *num_values) |
|
*num_values = channel + 1; |
|
|
|
/* convert 0-1024 / 0-2048 values to 1000-2000 ppm encoding. */ |
|
if (dsm_channel_shift == 10) |
|
value *= 2; |
|
|
|
/* |
|
* Spektrum scaling is special. There are these basic considerations |
|
* |
|
* * Midpoint is 1520 us |
|
* * 100% travel channels are +- 400 us |
|
* |
|
* We obey the original Spektrum scaling (so a default setup will scale from |
|
* 1100 - 1900 us), but we do not obey the weird 1520 us center point |
|
* and instead (correctly) center the center around 1500 us. This is in order |
|
* to get something useful without requiring the user to calibrate on a digital |
|
* link for no reason. |
|
*/ |
|
|
|
/* scaled integer for decent accuracy while staying efficient */ |
|
value = ((((int)value - 1024) * 1000) / 1700) + 1500; |
|
|
|
/* |
|
* Store the decoded channel into the R/C input buffer, taking into |
|
* account the different ideas about channel assignement that we have. |
|
* |
|
* Specifically, the first four channels in rc_channel_data are roll, pitch, thrust, yaw, |
|
* but the first four channels from the DSM receiver are thrust, roll, pitch, yaw. |
|
*/ |
|
switch (channel) { |
|
case 0: |
|
channel = 2; |
|
break; |
|
|
|
case 1: |
|
channel = 0; |
|
break; |
|
|
|
case 2: |
|
channel = 1; |
|
|
|
default: |
|
break; |
|
} |
|
|
|
values[channel] = value; |
|
} |
|
|
|
/* |
|
* Spektrum likes to send junk in higher channel numbers to fill |
|
* their packets. We don't know about a 13 channel model in their TX |
|
* lines, so if we get a channel count of 13, we'll return 12 (the last |
|
* data index that is stable). |
|
*/ |
|
if (*num_values == 13) |
|
*num_values = 12; |
|
|
|
#if 0 |
|
if (dsm_channel_shift == 11) { |
|
/* Set the 11-bit data indicator */ |
|
*num_values |= 0x8000; |
|
} |
|
#endif |
|
|
|
/* |
|
* XXX Note that we may be in failsafe here; we need to work out how to detect that. |
|
*/ |
|
return true; |
|
} |
|
|
|
#if defined(TEST_MAIN_PROGRAM) || defined(TEST_HEX_STRING) |
|
static uint8_t dsm_partial_frame_count; |
|
static uint8_t dsm_frame[DSM_FRAME_SIZE]; |
|
static enum DSM_DECODE_STATE { |
|
DSM_DECODE_STATE_DESYNC = 0, |
|
DSM_DECODE_STATE_SYNC |
|
} dsm_decode_state = DSM_DECODE_STATE_DESYNC; |
|
static uint64_t dsm_last_rx_time; /**< Timestamp when we last received data */ |
|
static uint16_t dsm_chan_count; |
|
static uint16_t dsm_frame_drops; |
|
|
|
static bool |
|
dsm_parse(uint64_t now, uint8_t *frame, unsigned len, uint16_t *values, |
|
uint16_t *num_values, bool *dsm_11_bit, unsigned *frame_drops, uint16_t max_channels) |
|
{ |
|
|
|
/* this is set by the decoding state machine and will default to false |
|
* once everything that was decodable has been decoded. |
|
*/ |
|
bool decode_ret = false; |
|
|
|
/* keep decoding until we have consumed the buffer */ |
|
for (unsigned d = 0; d < len; d++) { |
|
|
|
/* overflow check */ |
|
if (dsm_partial_frame_count == sizeof(dsm_frame) / sizeof(dsm_frame[0])) { |
|
dsm_partial_frame_count = 0; |
|
dsm_decode_state = DSM_DECODE_STATE_DESYNC; |
|
#ifdef DSM_DEBUG |
|
printf("DSM: RESET (BUF LIM)\n"); |
|
#endif |
|
} |
|
|
|
if (dsm_partial_frame_count == DSM_FRAME_SIZE) { |
|
dsm_partial_frame_count = 0; |
|
dsm_decode_state = DSM_DECODE_STATE_DESYNC; |
|
#ifdef DSM_DEBUG |
|
printf("DSM: RESET (PACKET LIM)\n"); |
|
#endif |
|
} |
|
|
|
#ifdef DSM_DEBUG |
|
#if 1 |
|
printf("dsm state: %s%s, count: %d, val: %02x\n", |
|
(dsm_decode_state == DSM_DECODE_STATE_DESYNC) ? "DSM_DECODE_STATE_DESYNC" : "", |
|
(dsm_decode_state == DSM_DECODE_STATE_SYNC) ? "DSM_DECODE_STATE_SYNC" : "", |
|
dsm_partial_frame_count, |
|
(unsigned)frame[d]); |
|
#endif |
|
#endif |
|
|
|
switch (dsm_decode_state) { |
|
case DSM_DECODE_STATE_DESYNC: |
|
|
|
/* we are de-synced and only interested in the frame marker */ |
|
if ((now - dsm_last_rx_time) > 5000) { |
|
printf("resync %u\n", dsm_partial_frame_count); |
|
dsm_decode_state = DSM_DECODE_STATE_SYNC; |
|
dsm_partial_frame_count = 0; |
|
dsm_chan_count = 0; |
|
dsm_frame[dsm_partial_frame_count++] = frame[d]; |
|
} |
|
|
|
break; |
|
|
|
case DSM_DECODE_STATE_SYNC: { |
|
dsm_frame[dsm_partial_frame_count++] = frame[d]; |
|
|
|
/* decode whatever we got and expect */ |
|
if (dsm_partial_frame_count < DSM_FRAME_SIZE) { |
|
break; |
|
} |
|
|
|
/* |
|
* Great, it looks like we might have a frame. Go ahead and |
|
* decode it. |
|
*/ |
|
decode_ret = dsm_decode(now, dsm_frame, values, &dsm_chan_count, max_channels); |
|
|
|
#if 1 |
|
printf("%u %u: ", ((unsigned)(now/1000)) % 1000000, len); |
|
for (uint8_t i=0; i<DSM_FRAME_SIZE; i++) { |
|
printf("%02x ", (unsigned)dsm_frame[i]); |
|
} |
|
printf("\n"); |
|
#endif |
|
|
|
|
|
/* we consumed the partial frame, reset */ |
|
dsm_partial_frame_count = 0; |
|
|
|
/* if decoding failed, set proto to desync */ |
|
if (decode_ret == false) { |
|
dsm_decode_state = DSM_DECODE_STATE_DESYNC; |
|
dsm_frame_drops++; |
|
printf("drop "); |
|
for (uint8_t i=0; i<DSM_FRAME_SIZE; i++) { |
|
printf("%02x ", (unsigned)dsm_frame[i]); |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
break; |
|
|
|
default: |
|
#ifdef DSM_DEBUG |
|
printf("UNKNOWN PROTO STATE"); |
|
#endif |
|
decode_ret = false; |
|
} |
|
|
|
|
|
} |
|
|
|
if (frame_drops) { |
|
*frame_drops = dsm_frame_drops; |
|
} |
|
|
|
if (decode_ret) { |
|
*num_values = dsm_chan_count; |
|
} |
|
|
|
dsm_last_rx_time = now; |
|
|
|
/* return false as default */ |
|
return decode_ret; |
|
} |
|
#endif |
|
|
|
|
|
#ifdef TEST_MAIN_PROGRAM |
|
/* |
|
test harness for use under Linux with USB serial adapter |
|
*/ |
|
#include <sys/types.h> |
|
#include <sys/stat.h> |
|
#include <fcntl.h> |
|
#include <time.h> |
|
#include <unistd.h> |
|
#include <stdlib.h> |
|
#include <termios.h> |
|
#include <string.h> |
|
|
|
static uint64_t micros64(void) |
|
{ |
|
struct timespec ts; |
|
clock_gettime(CLOCK_MONOTONIC, &ts); |
|
return 1.0e6*((ts.tv_sec + (ts.tv_nsec*1.0e-9))); |
|
} |
|
|
|
int main(int argc, const char *argv[]) |
|
{ |
|
int fd = open(argv[1], O_RDONLY|O_CLOEXEC); |
|
if (fd == -1) { |
|
perror(argv[1]); |
|
exit(1); |
|
} |
|
|
|
struct termios options; |
|
|
|
tcgetattr(fd, &options); |
|
|
|
cfsetispeed(&options, B115200); |
|
cfsetospeed(&options, B115200); |
|
|
|
options.c_cflag &= ~(PARENB|CSTOPB|CSIZE); |
|
options.c_cflag |= CS8; |
|
|
|
options.c_lflag &= ~(ICANON|ECHO|ECHOE|ISIG); |
|
options.c_iflag &= ~(IXON|IXOFF|IXANY); |
|
options.c_oflag &= ~OPOST; |
|
|
|
if (tcsetattr(fd, TCSANOW, &options) != 0) { |
|
perror("tcsetattr"); |
|
exit(1); |
|
} |
|
tcflush(fd, TCIOFLUSH); |
|
|
|
uint16_t values[18]; |
|
memset(values, 0, sizeof(values)); |
|
|
|
while (true) { |
|
uint8_t b[16]; |
|
uint16_t num_values = 0; |
|
fd_set fds; |
|
struct timeval tv; |
|
|
|
FD_ZERO(&fds); |
|
FD_SET(fd, &fds); |
|
|
|
tv.tv_sec = 1; |
|
tv.tv_usec = 0; |
|
|
|
// check if any bytes are available |
|
if (select(fd+1, &fds, nullptr, nullptr, &tv) != 1) { |
|
break; |
|
} |
|
|
|
ssize_t nread; |
|
if ((nread = read(fd, b, sizeof(b))) < 1) { |
|
break; |
|
} |
|
|
|
bool dsm_11_bit; |
|
unsigned frame_drops; |
|
|
|
if (dsm_parse(micros64(), b, nread, values, &num_values, &dsm_11_bit, &frame_drops, 18)) { |
|
#if 1 |
|
printf("%u: ", num_values); |
|
for (uint8_t i=0; i<num_values; i++) { |
|
printf("%u:%4u ", i+1, values[i]); |
|
} |
|
printf("\n"); |
|
#endif |
|
} |
|
} |
|
} |
|
#elif defined(TEST_HEX_STRING) |
|
/* |
|
test harness providing hex string to decode |
|
*/ |
|
#include <string.h> |
|
|
|
int main(int argc, const char *argv[]) |
|
{ |
|
uint8_t b[16]; |
|
uint64_t t = 0; |
|
|
|
for (uint8_t i=1; i<argc; i++) { |
|
unsigned v; |
|
if (sscanf(argv[i], "%02x", &v) != 1 || v > 255) { |
|
printf("Bad hex value at %u : %s\n", (unsigned)i, argv[i]); |
|
return 1; |
|
} |
|
b[i-1] = v; |
|
} |
|
uint16_t values[18]; |
|
memset(values, 0, sizeof(values)); |
|
|
|
while (true) { |
|
uint16_t num_values = 0; |
|
bool dsm_11_bit; |
|
unsigned frame_drops; |
|
|
|
t += 11000; |
|
|
|
if (dsm_parse(t, b, sizeof(b), values, &num_values, &dsm_11_bit, &frame_drops, 18)) { |
|
#if 1 |
|
printf("%u: ", num_values); |
|
for (uint8_t i=0; i<num_values; i++) { |
|
printf("%u:%4u ", i+1, values[i]); |
|
} |
|
printf("\n"); |
|
#endif |
|
} |
|
} |
|
} |
|
#endif
|
|
|