You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
511 lines
14 KiB
511 lines
14 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- |
|
|
|
/***************************************************************************** |
|
The init_ardupilot function processes everything we need for an in - air restart |
|
We will determine later if we are actually on the ground and process a |
|
ground start in that case. |
|
|
|
*****************************************************************************/ |
|
|
|
// Functions called from the top-level menu |
|
extern int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde |
|
extern int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde |
|
extern int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp |
|
|
|
// This is the help function |
|
// PSTR is an AVR macro to read strings from flash memory |
|
// printf_P is a version of print_f that reads from flash memory |
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
Serial.printf_P(PSTR("Commands:\n" |
|
" logs log readback/setup mode\n" |
|
" setup setup mode\n" |
|
" test test mode\n" |
|
"\n" |
|
"Move the slide switch and reset to FLY.\n" |
|
"\n")); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
const struct Menu::command main_menu_commands[] PROGMEM = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", process_logs}, |
|
{"setup", setup_mode}, |
|
{"test", test_mode}, |
|
{"help", main_menu_help} |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, "ArduPilotMega", main_menu_commands); |
|
|
|
void init_ardupilot() |
|
{ |
|
|
|
byte last_log_num; |
|
int last_log_start; |
|
int last_log_end; |
|
|
|
// Console serial port |
|
// |
|
// The console port buffers are defined to be sufficiently large to support |
|
// the console's use as a logging device, optionally as the GPS port when |
|
// GPS_PROTOCOL_IMU is selected, and as the telemetry port. |
|
// |
|
// XXX This could be optimised to reduce the buffer sizes in the cases |
|
// where they are not otherwise required. |
|
// |
|
Serial.begin(SERIAL0_BAUD, 128, 128); |
|
|
|
// GPS serial port. |
|
// |
|
// Not used if the IMU/X-Plane GPS is in use. |
|
// |
|
// XXX currently the EM406 (SiRF receiver) is nominally configured |
|
// at 57600, however it's not been supported to date. We should |
|
// probably standardise on 38400. |
|
// |
|
// XXX the 128 byte receive buffer may be too small for NMEA, depending |
|
// on the message set configured. |
|
// |
|
#if HIL_MODE != HIL_MODE_DISABLED && HIL_PORT == 1 // TODO: figure out a better way to do this |
|
// Steal gps port for hardware in the loop |
|
Serial1.begin(115200, 128, 128); |
|
#else |
|
// standard gps running |
|
Serial1.begin(38400, 128, 16); |
|
#endif |
|
|
|
// Telemetry port. |
|
// |
|
// Not used if telemetry is going to the console. |
|
// |
|
// XXX for unidirectional protocols, we could (should) minimize |
|
// the receive buffer, and the transmit buffer could also be |
|
// shrunk for protocols that don't send large messages. |
|
// |
|
Serial3.begin(SERIAL3_BAUD, 128, 128); |
|
|
|
Serial.printf_P(PSTR("\n\n" |
|
"Init ArduPilotMega (unstable development version)\n\n" |
|
"Firmware Version: %d freeRAM: %lu\n"), |
|
FIRMWARE_VERSION, freeRAM()); |
|
|
|
// !!! Check firmware version before loading any |
|
// data from EEPROM !!! |
|
if (FIRMWARE_VERSION != get(PARAM_FIRMWARE_VER)) |
|
{ |
|
Serial.printf_P(PSTR("\n\n" |
|
"Firmware Mismatch! ROM Firmware Version: %d\n" |
|
"\nA factory reset is being performed."),get(PARAM_FIRMWARE_VER)); |
|
|
|
// If firmware mismatches a factory reset is forced |
|
param_reset_defaults(); |
|
} |
|
|
|
|
|
APM_RC.Init(); // APM Radio initialization |
|
//read_EEPROM_startup(); // Read critical config information to start |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
adc.Init(); // APM ADC library initialization |
|
pitot.Init(); // APM Abs Pressure sensor initialization |
|
compass.init(); // I2C initialization |
|
#endif |
|
DataFlash.Init(); // DataFlash log initialization |
|
gps.init(); // GPS Initialization |
|
|
|
// init the GCS |
|
#if GCS_PORT == 3 |
|
gcs.init(&Serial3); |
|
#else |
|
gcs.init(&Serial); |
|
#endif |
|
|
|
// init the HIL |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
|
|
#if HIL_PORT == 3 |
|
hil.init(&Serial3); |
|
#elif HIL_PORT == 1 |
|
hil.init(&Serial1); |
|
#else |
|
hil.init(&Serial); |
|
#endif |
|
|
|
#endif |
|
|
|
APM_RC.OutputCh(CH_ROLL, radio_trim(CH_ROLL)); // Initialization of servo outputs |
|
APM_RC.OutputCh(CH_PITCH, radio_trim(CH_PITCH)); |
|
APM_RC.OutputCh(CH_THROTTLE, radio_trim(CH_THROTTLE)); |
|
APM_RC.OutputCh(CH_RUDDER, radio_trim(CH_RUDDER)); |
|
|
|
pinMode(C_LED_PIN, OUTPUT); // GPS status LED |
|
pinMode(A_LED_PIN, OUTPUT); // GPS status LED |
|
pinMode(B_LED_PIN, OUTPUT); // GPS status LED |
|
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode |
|
pinMode(PUSHBUTTON_PIN, INPUT); // unused |
|
DDRL |= B00000100; // Set Port L, pin 2 to output for the relay |
|
|
|
// If the switch is in 'menu' mode, run the main menu. |
|
// |
|
// Since we can't be sure that the setup or test mode won't leave |
|
// the system in an odd state, we don't let the user exit the top |
|
// menu; they must reset in order to fly. |
|
// |
|
if (digitalRead(SLIDE_SWITCH_PIN) == 0) { |
|
digitalWrite(A_LED_PIN,HIGH); // turn on setup-mode LED |
|
Serial.printf_P(PSTR("\n" |
|
"Entering interactive setup mode...\n" |
|
"\n" |
|
"If using the Arduino Serial Monitor, ensure Line Ending is set to Carriage Return.\n" |
|
"Type 'help' to list commands, 'exit' to leave a submenu.\n" |
|
"Visit the 'setup' menu for first-time configuration.\n")); |
|
for (;;) { |
|
Serial.printf_P(PSTR("\n" |
|
"Move the slide switch and reset to FLY.\n" |
|
"\n")); |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
|
|
if(get(PARAM_LOG_BITMASK) > 0){ |
|
// Here we will check on the length of the last log |
|
// We don't want to create a bunch of little logs due to powering on and off |
|
// XXX: TODO implement for new struct |
|
//last_log_num = eeprom_read_byte((uint8_t *) EE_LAST_LOG_NUM); |
|
//last_log_start = eeprom_read_word((uint16_t *) (EE_LOG_1_START+(last_log_num - 1) * 0x02)); |
|
//last_log_end = eeprom_read_word((uint16_t *) EE_LAST_LOG_PAGE); |
|
|
|
if(last_log_num == 0) { |
|
// The log space is empty. Start a write session on page 1 |
|
DataFlash.StartWrite(1); |
|
eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (1)); |
|
eeprom_write_word((uint16_t *) EE_LOG_1_START, (1)); |
|
|
|
} else if (last_log_end <= last_log_start + 10) { |
|
// The last log is small. We consider it junk. Overwrite it. |
|
DataFlash.StartWrite(last_log_start); |
|
|
|
} else { |
|
// The last log is valid. Start a new log |
|
if(last_log_num >= 19) { |
|
Serial.println("Number of log files exceeds max. Log 19 will be overwritten."); |
|
last_log_num --; |
|
} |
|
DataFlash.StartWrite(last_log_end + 1); |
|
eeprom_write_byte((uint8_t *) EE_LAST_LOG_NUM, (last_log_num + 1)); |
|
eeprom_write_word((uint16_t *) (EE_LOG_1_START+(last_log_num)*0x02), (last_log_end + 1)); |
|
} |
|
} |
|
|
|
// read in the flight switches |
|
update_servo_switches(); |
|
|
|
if(DEBUG_SUBSYSTEM > 0){ |
|
debug_subsystem(); |
|
|
|
} else if (ENABLE_AIR_START == 1) { |
|
// Perform an air start and get back to flying |
|
gcs.send_text(SEVERITY_LOW,"<init_ardupilot> AIR START"); |
|
|
|
// Get necessary data from EEPROM |
|
//---------------- |
|
//read_EEPROM_airstart_critical(); |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
imu.load_gyro_eeprom(); |
|
imu.load_accel_eeprom(); |
|
#endif |
|
|
|
// This delay is important for the APM_RC library to work. |
|
// We need some time for the comm between the 328 and 1280 to be established. |
|
int old_pulse = 0; |
|
while (millis()<=1000 && (abs(old_pulse - APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH))) > 5 || |
|
APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH)) == 1000 || |
|
APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH)) == 1200)) { |
|
old_pulse = APM_RC.InputCh(get(PARAM_FLIGHT_MODE_CH)); |
|
delay(25); |
|
} |
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_CMD) |
|
Log_Write_Startup(TYPE_AIRSTART_MSG); |
|
reload_commands(); // Get set to resume AUTO from where we left off |
|
|
|
}else { |
|
startup_ground(); |
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_CMD) |
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG); |
|
} |
|
|
|
// set the correct flight mode |
|
// --------------------------- |
|
reset_control_switch(); |
|
} |
|
|
|
//******************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//******************************************************************************** |
|
void startup_ground(void) |
|
{ |
|
gcs.send_text(SEVERITY_LOW,"<startup_ground> GROUND START"); |
|
|
|
#if(GROUND_START_DELAY > 0) |
|
gcs.send_text(SEVERITY_LOW,"<startup_ground> With Delay"); |
|
delay(GROUND_START_DELAY * 1000); |
|
#endif |
|
|
|
// Output waypoints for confirmation |
|
// -------------------------------- |
|
for(int i = 1; i < get(PARAM_WP_TOTAL) + 1; i++) { |
|
gcs.send_message(MSG_COMMAND_LIST, i); |
|
} |
|
|
|
// Makes the servos wiggle |
|
// step 1 = 1 wiggle |
|
// ----------------------- |
|
demo_servos(1); |
|
|
|
//IMU ground start |
|
//------------------------ |
|
// |
|
startup_IMU_ground(); |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
# if AIRSPEED_SENSOR == ENABLED |
|
// initialize airspeed sensor |
|
// -------------------------- |
|
zero_airspeed(); |
|
gcs.send_text(SEVERITY_LOW,"<startup_ground> zero airspeed calibrated"); |
|
# else |
|
gcs.send_text(SEVERITY_LOW,"<startup_ground> NO airspeed"); |
|
# endif |
|
#endif |
|
|
|
// Save the settings for in-air restart |
|
// ------------------------------------ |
|
//save_EEPROM_groundstart(); |
|
|
|
// initialize commands |
|
// ------------------- |
|
init_commands(); |
|
|
|
// Makes the servos wiggle - 3 times signals ready to fly |
|
// ----------------------- |
|
demo_servos(3); |
|
|
|
gcs.send_text(SEVERITY_LOW,"\n\n Ready to FLY."); |
|
} |
|
|
|
void set_mode(byte mode) |
|
{ |
|
if(control_mode == mode){ |
|
// don't switch modes if we are already in the correct mode. |
|
return; |
|
} |
|
if(get(PARAM_TRIM_AUTO) > 0 || control_mode == MANUAL) |
|
trim_control_surfaces(); |
|
|
|
control_mode = mode; |
|
crash_timer = 0; |
|
|
|
switch(control_mode) |
|
{ |
|
case MANUAL: |
|
break; |
|
|
|
case STABILIZE: |
|
break; |
|
|
|
case FLY_BY_WIRE_A: |
|
break; |
|
|
|
case FLY_BY_WIRE_B: |
|
break; |
|
|
|
case AUTO: |
|
update_auto(); |
|
break; |
|
|
|
case RTL: |
|
return_to_launch(); |
|
break; |
|
|
|
case LOITER: |
|
loiter_at_location(); |
|
break; |
|
|
|
case TAKEOFF: |
|
break; |
|
|
|
case LAND: |
|
break; |
|
|
|
default: |
|
return_to_launch(); |
|
break; |
|
} |
|
|
|
// output control mode to the ground station |
|
gcs.send_message(MSG_MODE_CHANGE); |
|
|
|
if (get(PARAM_LOG_BITMASK) & MASK_LOG_MODE) |
|
Log_Write_Mode(control_mode); |
|
} |
|
|
|
void set_failsafe(boolean mode) |
|
{ |
|
// only act on changes |
|
// ------------------- |
|
if(failsafe != mode){ |
|
|
|
// store the value so we don't trip the gate twice |
|
// ----------------------------------------------- |
|
failsafe = mode; |
|
|
|
if (failsafe == false){ |
|
// We're back in radio contact |
|
// --------------------------- |
|
|
|
// re-read the switch so we can return to our preferred mode |
|
reset_control_switch(); |
|
|
|
// Reset control integrators |
|
// --------------------- |
|
reset_I(); |
|
|
|
}else{ |
|
// We've lost radio contact |
|
// ------------------------ |
|
// nothing to do right now |
|
} |
|
|
|
// Let the user know what's up so they can override the behavior |
|
// ------------------------------------------------------------- |
|
failsafe_event(); |
|
} |
|
} |
|
|
|
|
|
void startup_IMU_ground(void) |
|
{ |
|
#if HIL_MODE != HIL_MODE_ATTITUDE |
|
uint16_t store = 0; |
|
int flashcount = 0; |
|
SendDebugln("<startup_IMU_ground> Warming up ADC..."); |
|
delay(500); |
|
|
|
// Makes the servos wiggle twice - about to begin IMU calibration - HOLD LEVEL AND STILL!! |
|
// ----------------------- |
|
demo_servos(2); |
|
SendDebugln("<startup_IMU_ground> Beginning IMU calibration; do not move plane"); |
|
delay(1000); |
|
|
|
imu.init_accel(); |
|
imu.init_gyro(); |
|
|
|
# if HIL_MODE == HIL_MODE_SENSORS |
|
hil.update(); // look for inbound hil packets for initialization |
|
# endif |
|
|
|
pitot.Read(); // Get initial data from absolute pressure sensor |
|
abs_press_gnd = pitot.Press; |
|
ground_temperature = pitot.Temp; |
|
delay(20); |
|
// *********** |
|
|
|
for(int i = 0; i < 200; i++){ // We take some readings... |
|
|
|
# if HIL_MODE == HIL_MODE_SENSORS |
|
hil.update(); // look for inbound hil packets |
|
# endif |
|
|
|
pitot.Read(); // Get initial data from absolute pressure sensor |
|
abs_press_gnd = (abs_press_gnd * 9l + pitot.Press) / 10l; |
|
ground_temperature = (ground_temperature * 9 + pitot.Temp) / 10; |
|
|
|
delay(20); |
|
if(flashcount == 5) { |
|
digitalWrite(C_LED_PIN, LOW); |
|
digitalWrite(A_LED_PIN, HIGH); |
|
digitalWrite(B_LED_PIN, LOW); |
|
} |
|
if(flashcount >= 10) { |
|
flashcount = 0; |
|
digitalWrite(C_LED_PIN, HIGH); |
|
digitalWrite(A_LED_PIN, LOW); |
|
digitalWrite(B_LED_PIN, HIGH); |
|
} |
|
flashcount++; |
|
|
|
} |
|
SendDebugln(" <startup_IMU_ground> Calibration complete."); |
|
#endif // HIL_MODE_ATTITUDE |
|
|
|
digitalWrite(B_LED_PIN, HIGH); // Set LED B high to indicate IMU ready |
|
digitalWrite(A_LED_PIN, LOW); |
|
digitalWrite(C_LED_PIN, LOW); |
|
} |
|
|
|
|
|
void update_GPS_light(void) |
|
{ |
|
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data |
|
// --------------------------------------------------------------------- |
|
switch (gps.status()) { |
|
case(2): |
|
digitalWrite(C_LED_PIN, HIGH); //Turn LED C on when gps has valid fix. |
|
break; |
|
|
|
case(1): |
|
if (gps.valid_read == true){ |
|
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock |
|
if (GPS_light){ |
|
digitalWrite(C_LED_PIN, LOW); |
|
} else { |
|
digitalWrite(C_LED_PIN, HIGH); |
|
} |
|
gps.valid_read = false; |
|
} |
|
break; |
|
|
|
default: |
|
digitalWrite(C_LED_PIN, LOW); |
|
break; |
|
} |
|
} |
|
|
|
|
|
|
|
void resetPerfData(void) { |
|
mainLoop_count = 0; |
|
G_Dt_max = 0; |
|
gyro_sat_count = 0; |
|
adc_constraints = 0; |
|
renorm_sqrt_count = 0; |
|
renorm_blowup_count = 0; |
|
gps_fix_count = 0; |
|
perf_mon_timer = millis(); |
|
} |
|
|
|
|
|
/* |
|
* This function gets the current value of the heap and stack pointers. |
|
* The stack pointer starts at the top of RAM and grows downwards. The heap pointer |
|
* starts just above the static variables etc. and grows upwards. SP should always |
|
* be larger than HP or you'll be in big trouble! The smaller the gap, the more |
|
* careful you need to be. Julian Gall 6 - Feb - 2009. |
|
*/ |
|
unsigned long freeRAM() { |
|
uint8_t * heapptr, * stackptr; |
|
stackptr = (uint8_t *)malloc(4); // use stackptr temporarily |
|
heapptr = stackptr; // save value of heap pointer |
|
free(stackptr); // free up the memory again (sets stackptr to 0) |
|
stackptr = (uint8_t *)(SP); // save value of stack pointer |
|
return stackptr - heapptr; |
|
} |
|
|
|
|