You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
717 lines
26 KiB
717 lines
26 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_MotorsHeli.cpp - ArduCopter motors library |
|
* Code by RandyMackay. DIYDrones.com |
|
* |
|
*/ |
|
#include <stdlib.h> |
|
#include <AP_HAL.h> |
|
#include "AP_MotorsHeli.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
const AP_Param::GroupInfo AP_MotorsHeli::var_info[] PROGMEM = { |
|
|
|
|
|
// @Param: SV1_POS |
|
// @DisplayName: Servo 1 Position |
|
// @Description: Angular location of swash servo #1 |
|
// @Range: -180 180 |
|
// @Units: Degrees |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV1_POS", 1, AP_MotorsHeli, _servo1_pos, AP_MOTORS_HELI_SERVO1_POS), |
|
|
|
// @Param: SV2_POS |
|
// @DisplayName: Servo 2 Position |
|
// @Description: Angular location of swash servo #2 |
|
// @Range: -180 180 |
|
// @Units: Degrees |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV2_POS", 2, AP_MotorsHeli, _servo2_pos, AP_MOTORS_HELI_SERVO2_POS), |
|
|
|
// @Param: SV3_POS |
|
// @DisplayName: Servo 3 Position |
|
// @Description: Angular location of swash servo #3 |
|
// @Range: -180 180 |
|
// @Units: Degrees |
|
// @User: Standard |
|
// @Increment: 1 |
|
AP_GROUPINFO("SV3_POS", 3, AP_MotorsHeli, _servo3_pos, AP_MOTORS_HELI_SERVO3_POS), |
|
|
|
// @Param: ROL_MAX |
|
// @DisplayName: Swash Roll Angle Max |
|
// @Description: Maximum roll angle of the swash plate |
|
// @Range: 0 18000 |
|
// @Units: Centi-Degrees |
|
// @Increment: 100 |
|
// @User: Advanced |
|
AP_GROUPINFO("ROL_MAX", 4, AP_MotorsHeli, _roll_max, AP_MOTORS_HELI_SWASH_ROLL_MAX), |
|
|
|
// @Param: PIT_MAX |
|
// @DisplayName: Swash Pitch Angle Max |
|
// @Description: Maximum pitch angle of the swash plate |
|
// @Range: 0 18000 |
|
// @Units: Centi-Degrees |
|
// @Increment: 100 |
|
// @User: Advanced |
|
AP_GROUPINFO("PIT_MAX", 5, AP_MotorsHeli, _pitch_max, AP_MOTORS_HELI_SWASH_PITCH_MAX), |
|
|
|
// @Param: COL_MIN |
|
// @DisplayName: Collective Pitch Minimum |
|
// @Description: Lowest possible servo position for the swashplate |
|
// @Range: 1000 2000 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("COL_MIN", 6, AP_MotorsHeli, _collective_min, AP_MOTORS_HELI_COLLECTIVE_MIN), |
|
|
|
// @Param: COL_MAX |
|
// @DisplayName: Collective Pitch Maximum |
|
// @Description: Highest possible servo position for the swashplate |
|
// @Range: 1000 2000 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("COL_MAX", 7, AP_MotorsHeli, _collective_max, AP_MOTORS_HELI_COLLECTIVE_MAX), |
|
|
|
// @Param: COL_MID |
|
// @DisplayName: Collective Pitch Mid-Point |
|
// @Description: Swash servo position corresponding to zero collective pitch (or zero lift for Assymetrical blades) |
|
// @Range: 1000 2000 |
|
// @Units: PWM |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("COL_MID", 8, AP_MotorsHeli, _collective_mid, AP_MOTORS_HELI_COLLECTIVE_MID), |
|
|
|
// @Param: TAIL_TYPE |
|
// @DisplayName: Tail Type |
|
// @Description: Tail type selection. Simpler yaw controller used if external gyro is selected |
|
// @Values: 0:Servo only,1:Servo w/ ExtGyro,2:DirectDrive VarPitch,3:DirectDrive FixedPitch |
|
// @User: Standard |
|
AP_GROUPINFO("TAIL_TYPE",9, AP_MotorsHeli, _tail_type, AP_MOTORS_HELI_TAILTYPE_SERVO), |
|
|
|
// @Param: SWASH_TYPE |
|
// @DisplayName: Swash Type |
|
// @Description: Swash Type Setting - either 3-servo CCPM or H1 Mechanical Mixing |
|
// @Values: 0:3-Servo CCPM, 1:H1 Mechanical Mixing |
|
// @User: Standard |
|
AP_GROUPINFO("SWASH_TYPE",10, AP_MotorsHeli, _swash_type, AP_MOTORS_HELI_SWASH_CCPM), |
|
|
|
// @Param: CH7_SETPOINT |
|
// @DisplayName: Ch7 PWM Setpoint |
|
// @Description: PWM output on Ch7 for External Gyro gain or Variable Pitch Direct Drive speed |
|
// @Range: 1000 2000 |
|
// @Units: PWM |
|
// @Increment: 10 |
|
// @User: Standard |
|
AP_GROUPINFO("CH7_SETPOINT", 11, AP_MotorsHeli, _ch7_pwm_setpoint, 1000), |
|
|
|
// @Param: SV_MAN |
|
// @DisplayName: Manual Servo Mode |
|
// @Description: Pass radio inputs directly to servos for set-up. Do not set this manually! |
|
// @Values: 0:Disabled,1:Enabled |
|
// @User: Standard |
|
AP_GROUPINFO("SV_MAN", 12, AP_MotorsHeli, _servo_manual, 0), |
|
|
|
// @Param: PHANG |
|
// @DisplayName: Swashplate Phase Angle Compensation |
|
// @Description: Phase angle correction for rotor head. If pitching the swash forward induces a roll, this can be correct the problem |
|
// @Range: -90 90 |
|
// @Units: Degrees |
|
// @User: Advanced |
|
// @Increment: 1 |
|
AP_GROUPINFO("PHANG", 13, AP_MotorsHeli, _phase_angle, 0), |
|
|
|
// @Param: COLYAW |
|
// @DisplayName: Collective-Yaw Mixing |
|
// @Description: Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics. |
|
// @Range: -10 10 |
|
AP_GROUPINFO("COLYAW", 14, AP_MotorsHeli, _collective_yaw_effect, 0), |
|
|
|
// @Param: GOV_SETPOINT |
|
// @DisplayName: External Motor Governor Setpoint |
|
// @Description: PWM passed to the external motor governor when external governor is enabled |
|
// @Range: 1000 2000 |
|
// @Units: PWM |
|
// @Increment: 10 |
|
// @User: Standard |
|
AP_GROUPINFO("GOV_SETPOINT", 15, AP_MotorsHeli, _ext_gov_setpoint, AP_MOTORS_HELI_EXT_GOVERNOR_SETPOINT), |
|
|
|
// @Param: RSC_MODE |
|
// @DisplayName: Rotor Speed Control Mode |
|
// @Description: Which main rotor ESC control mode is active |
|
// @Values: 0:None, 1:Ch8 passthrough, 2:External Governor |
|
// @User: Standard |
|
AP_GROUPINFO("RSC_MODE", 16, AP_MotorsHeli, _rsc_mode, AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH), |
|
|
|
// @Param: RSC_RATE |
|
// @DisplayName: RSC Ramp Rate |
|
// @Description: The time in 100th seconds the RSC takes to ramp up to speed |
|
// @Range: 0 6000 |
|
// @Units: 100ths of Seconds |
|
// @User: Standard |
|
AP_GROUPINFO("RSC_RATE", 17, AP_MotorsHeli, _rsc_ramp_up_rate, AP_MOTORS_HELI_RSC_RATE), |
|
|
|
// @Param: FLYBAR_MODE |
|
// @DisplayName: Flybar Mode Selector |
|
// @Description: Flybar present or not. Affects attitude controller used during ACRO flight mode |
|
// @Range: 0:NoFlybar 1:Flybar |
|
// @User: Standard |
|
AP_GROUPINFO("FLYBAR_MODE", 18, AP_MotorsHeli, _flybar_mode, AP_MOTORS_HELI_NOFLYBAR), |
|
|
|
// @Param: STAB_COL_MIN |
|
// @DisplayName: Stabilize Throttle Minimum |
|
// @Description: Minimum collective position while pilot directly controls collective |
|
// @Range: 0 50 |
|
// @Units: Percent |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("STAB_COL_MIN", 19, AP_MotorsHeli, _manual_collective_min, AP_MOTORS_HELI_MANUAL_COLLECTIVE_MIN), |
|
|
|
// @Param: STAB_COL_MAX |
|
// @DisplayName: Stabilize Throttle Maximum |
|
// @Description: Maximum collective position while pilot directly controls collective |
|
// @Range: 50 100 |
|
// @Units: Percent |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("STAB_COL_MAX", 20, AP_MotorsHeli, _manual_collective_max, AP_MOTORS_HELI_MANUAL_COLLECTIVE_MAX), |
|
|
|
// @Param: LAND_COL_MIN |
|
// @DisplayName: Landing Collective Minimum |
|
// @Description: Minimum collective position while landed or landing |
|
// @Range: 0 500 |
|
// @Units: pwm |
|
// @Increment: 1 |
|
// @User: Standard |
|
AP_GROUPINFO("LAND_COL_MIN", 21, AP_MotorsHeli, _land_collective_min, AP_MOTORS_HELI_LAND_COLLECTIVE_MIN), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
// |
|
// public methods |
|
// |
|
|
|
// init |
|
void AP_MotorsHeli::Init() |
|
{ |
|
// set update rate |
|
set_update_rate(_speed_hz); |
|
|
|
// ensure inputs are not passed through to servos |
|
_servo_manual = 0; |
|
|
|
// initialise swash plate |
|
init_swash(); |
|
} |
|
|
|
// set update rate to motors - a value in hertz |
|
void AP_MotorsHeli::set_update_rate( uint16_t speed_hz ) |
|
{ |
|
// record requested speed |
|
_speed_hz = speed_hz; |
|
|
|
// setup fast channels |
|
uint32_t mask = |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_1] | |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_2] | |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_3] | |
|
1U << _motor_to_channel_map[AP_MOTORS_MOT_4]; |
|
hal.rcout->set_freq(mask, _speed_hz); |
|
} |
|
|
|
// enable - starts allowing signals to be sent to motors |
|
void AP_MotorsHeli::enable() |
|
{ |
|
// enable output channels |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_1]); // swash servo 1 |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_2]); // swash servo 2 |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_3]); // swash servo 3 |
|
hal.rcout->enable_ch(_motor_to_channel_map[AP_MOTORS_MOT_4]); // yaw |
|
hal.rcout->enable_ch(AP_MOTORS_HELI_AUX); // output for gyro gain or direct drive variable pitch tail motor |
|
hal.rcout->enable_ch(AP_MOTORS_HELI_RSC); // output for main rotor esc |
|
} |
|
|
|
// output_min - sends minimum values out to the motors |
|
void AP_MotorsHeli::output_min() |
|
{ |
|
// move swash to mid |
|
move_swash(0,0,500,0); |
|
|
|
// override limits flags |
|
limit.roll_pitch = true; |
|
limit.yaw = true; |
|
limit.throttle_lower = true; |
|
limit.throttle_upper = false; |
|
} |
|
|
|
|
|
// output_test - wiggle servos in order to show connections are correct |
|
void AP_MotorsHeli::output_test() |
|
{ |
|
int16_t i; |
|
// Send minimum values to all motors |
|
output_min(); |
|
|
|
// servo 1 |
|
for( i=0; i<5; i++ ) { |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 100); |
|
hal.scheduler->delay(300); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim - 100); |
|
hal.scheduler->delay(300); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_trim + 0); |
|
hal.scheduler->delay(300); |
|
} |
|
|
|
// servo 2 |
|
for( i=0; i<5; i++ ) { |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 100); |
|
hal.scheduler->delay(300); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim - 100); |
|
hal.scheduler->delay(300); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_trim + 0); |
|
hal.scheduler->delay(300); |
|
} |
|
|
|
// servo 3 |
|
for( i=0; i<5; i++ ) { |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 100); |
|
hal.scheduler->delay(300); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim - 100); |
|
hal.scheduler->delay(300); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_trim + 0); |
|
hal.scheduler->delay(300); |
|
} |
|
|
|
// external gyro |
|
if (_tail_type == AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) { |
|
hal.rcout->write(AP_MOTORS_HELI_AUX, _ch7_pwm_setpoint); |
|
} |
|
|
|
// servo 4 |
|
for( i=0; i<5; i++ ) { |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 100); |
|
hal.scheduler->delay(300); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim - 100); |
|
hal.scheduler->delay(300); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_trim + 0); |
|
hal.scheduler->delay(300); |
|
} |
|
|
|
// Send minimum values to all motors |
|
output_min(); |
|
} |
|
|
|
// allow_arming - returns true if main rotor is spinning and it is ok to arm |
|
bool AP_MotorsHeli::allow_arming() |
|
{ |
|
// ensure main rotor has started |
|
if (_rsc_mode != AP_MOTORS_HELI_RSC_MODE_NONE && _rc_8->control_in >= 10) { |
|
return false; |
|
} |
|
|
|
// all other cases it is ok to arm |
|
return true; |
|
} |
|
|
|
// get_pilot_desired_collective - converts pilot input (from 0 ~ 1000) to a value that can be fed into the move_swash function |
|
int16_t AP_MotorsHeli::get_pilot_desired_collective(int16_t control_in) |
|
{ |
|
// return immediately if reduce collective range for manual flight has not been configured |
|
if (_manual_collective_min == 0 && _manual_collective_max == 100) { |
|
return control_in; |
|
} |
|
|
|
// scale |
|
int16_t collective_out; |
|
collective_out = _manual_collective_min*10 + control_in * _collective_scalar_manual; |
|
collective_out = constrain_int16(collective_out, 0, 1000); |
|
return collective_out; |
|
} |
|
|
|
// return true if the main rotor is up to speed |
|
bool AP_MotorsHeli::motor_runup_complete() |
|
{ |
|
// if we have no control of motors, assume pilot has spun them up |
|
if (_rsc_mode == AP_MOTORS_HELI_RSC_MODE_NONE) { |
|
return true; |
|
} |
|
|
|
return _heliflags.motor_runup_complete; |
|
} |
|
|
|
// |
|
// protected methods |
|
// |
|
|
|
// output_armed - sends commands to the motors |
|
void AP_MotorsHeli::output_armed() |
|
{ |
|
// if manual override (i.e. when setting up swash), pass pilot commands straight through to swash |
|
if (_servo_manual == 1) { |
|
_rc_roll->servo_out = _rc_roll->control_in; |
|
_rc_pitch->servo_out = _rc_pitch->control_in; |
|
_rc_throttle->servo_out = _rc_throttle->control_in; |
|
_rc_yaw->servo_out = _rc_yaw->control_in; |
|
} |
|
|
|
//static int counter = 0; |
|
_rc_roll->calc_pwm(); |
|
_rc_pitch->calc_pwm(); |
|
_rc_throttle->calc_pwm(); |
|
_rc_yaw->calc_pwm(); |
|
|
|
move_swash( _rc_roll->servo_out, _rc_pitch->servo_out, _rc_throttle->servo_out, _rc_yaw->servo_out ); |
|
|
|
rsc_control(); |
|
} |
|
|
|
// output_disarmed - sends commands to the motors |
|
void AP_MotorsHeli::output_disarmed() |
|
{ |
|
// for helis - armed or disarmed we allow servos to move |
|
output_armed(); |
|
} |
|
|
|
// |
|
// private methods |
|
// |
|
|
|
// reset_swash - free up swash for maximum movements. Used for set-up |
|
void AP_MotorsHeli::reset_swash() |
|
{ |
|
// free up servo ranges |
|
_servo_1->radio_min = 1000; |
|
_servo_1->radio_max = 2000; |
|
_servo_2->radio_min = 1000; |
|
_servo_2->radio_max = 2000; |
|
_servo_3->radio_min = 1000; |
|
_servo_3->radio_max = 2000; |
|
|
|
// calculate factors based on swash type and servo position |
|
calculate_roll_pitch_collective_factors(); |
|
|
|
// set roll, pitch and throttle scaling |
|
_roll_scaler = 1.0f; |
|
_pitch_scaler = 1.0f; |
|
_collective_scalar = ((float)(_rc_throttle->radio_max - _rc_throttle->radio_min))/1000.0f; |
|
_collective_scalar_manual = 1.0f; |
|
|
|
// we must be in set-up mode so mark swash as uninitialised |
|
_heliflags.swash_initialised = false; |
|
} |
|
|
|
// init_swash - initialise the swash plate |
|
void AP_MotorsHeli::init_swash() |
|
{ |
|
|
|
// swash servo initialisation |
|
_servo_1->set_range(0,1000); |
|
_servo_2->set_range(0,1000); |
|
_servo_3->set_range(0,1000); |
|
_servo_4->set_angle(4500); |
|
|
|
// range check collective min, max and mid |
|
if( _collective_min >= _collective_max ) { |
|
_collective_min = 1000; |
|
_collective_max = 2000; |
|
} |
|
_collective_mid = constrain_int16(_collective_mid, _collective_min, _collective_max); |
|
|
|
// calculate collective mid point as a number from 0 to 1000 |
|
_collective_mid_pwm = ((float)(_collective_mid-_collective_min))/((float)(_collective_max-_collective_min))*1000.0f; |
|
|
|
// determine roll, pitch and collective input scaling |
|
_roll_scaler = (float)_roll_max/4500.0f; |
|
_pitch_scaler = (float)_pitch_max/4500.0f; |
|
_collective_scalar = ((float)(_collective_max-_collective_min))/1000.0f; |
|
_collective_scalar_manual = ((float)(_manual_collective_max - _manual_collective_min))/100.0f; |
|
|
|
// calculate factors based on swash type and servo position |
|
calculate_roll_pitch_collective_factors(); |
|
|
|
// servo min/max values |
|
_servo_1->radio_min = 1000; |
|
_servo_1->radio_max = 2000; |
|
_servo_2->radio_min = 1000; |
|
_servo_2->radio_max = 2000; |
|
_servo_3->radio_min = 1000; |
|
_servo_3->radio_max = 2000; |
|
|
|
// mark swash as initialised |
|
_heliflags.swash_initialised = true; |
|
} |
|
|
|
// calculate_roll_pitch_collective_factors - calculate factors based on swash type and servo position |
|
void AP_MotorsHeli::calculate_roll_pitch_collective_factors() |
|
{ |
|
if (_swash_type == AP_MOTORS_HELI_SWASH_CCPM) { //CCPM Swashplate, perform control mixing |
|
|
|
// roll factors |
|
_rollFactor[CH_1] = cosf(radians(_servo1_pos + 90 - _phase_angle)); |
|
_rollFactor[CH_2] = cosf(radians(_servo2_pos + 90 - _phase_angle)); |
|
_rollFactor[CH_3] = cosf(radians(_servo3_pos + 90 - _phase_angle)); |
|
|
|
// pitch factors |
|
_pitchFactor[CH_1] = cosf(radians(_servo1_pos - _phase_angle)); |
|
_pitchFactor[CH_2] = cosf(radians(_servo2_pos - _phase_angle)); |
|
_pitchFactor[CH_3] = cosf(radians(_servo3_pos - _phase_angle)); |
|
|
|
// collective factors |
|
_collectiveFactor[CH_1] = 1; |
|
_collectiveFactor[CH_2] = 1; |
|
_collectiveFactor[CH_3] = 1; |
|
|
|
}else{ //H1 Swashplate, keep servo outputs seperated |
|
|
|
// roll factors |
|
_rollFactor[CH_1] = 1; |
|
_rollFactor[CH_2] = 0; |
|
_rollFactor[CH_3] = 0; |
|
|
|
// pitch factors |
|
_pitchFactor[CH_1] = 0; |
|
_pitchFactor[CH_2] = 1; |
|
_pitchFactor[CH_3] = 0; |
|
|
|
// collective factors |
|
_collectiveFactor[CH_1] = 0; |
|
_collectiveFactor[CH_2] = 0; |
|
_collectiveFactor[CH_3] = 1; |
|
} |
|
} |
|
|
|
// |
|
// heli_move_swash - moves swash plate to attitude of parameters passed in |
|
// - expected ranges: |
|
// roll : -4500 ~ 4500 |
|
// pitch: -4500 ~ 4500 |
|
// collective: 0 ~ 1000 |
|
// yaw: -4500 ~ 4500 |
|
// |
|
void AP_MotorsHeli::move_swash(int16_t roll_out, int16_t pitch_out, int16_t coll_in, int16_t yaw_out) |
|
{ |
|
int16_t yaw_offset = 0; |
|
int16_t coll_out_scaled; |
|
|
|
// initialize limits flag |
|
limit.roll_pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
if (_servo_manual == 1) { // are we in manual servo mode? (i.e. swash set-up mode)? |
|
// check if we need to free up the swash |
|
if (_heliflags.swash_initialised) { |
|
reset_swash(); |
|
} |
|
coll_out_scaled = coll_in * _collective_scalar + _rc_throttle->radio_min - 1000; |
|
}else{ // regular flight mode |
|
|
|
// check if we need to reinitialise the swash |
|
if (!_heliflags.swash_initialised) { |
|
init_swash(); |
|
} |
|
|
|
// rescale roll_out and pitch-out into the min and max ranges to provide linear motion |
|
// across the input range instead of stopping when the input hits the constrain value |
|
// these calculations are based on an assumption of the user specified roll_max and pitch_max |
|
// coming into this equation at 4500 or less, and based on the original assumption of the |
|
// total _servo_x.servo_out range being -4500 to 4500. |
|
roll_out = roll_out * _roll_scaler; |
|
if (roll_out < -_roll_max) { |
|
roll_out = -_roll_max; |
|
limit.roll_pitch = true; |
|
} |
|
if (roll_out > _roll_max) { |
|
roll_out = _roll_max; |
|
limit.roll_pitch = true; |
|
} |
|
|
|
// scale pitch and update limits |
|
pitch_out = pitch_out * _pitch_scaler; |
|
if (pitch_out < -_pitch_max) { |
|
pitch_out = -_pitch_max; |
|
limit.roll_pitch = true; |
|
} |
|
if (pitch_out > _pitch_max) { |
|
pitch_out = _pitch_max; |
|
limit.roll_pitch = true; |
|
} |
|
|
|
// constrain collective input |
|
_collective_out = coll_in; |
|
if (_collective_out <= 0) { |
|
_collective_out = 0; |
|
limit.throttle_lower = true; |
|
} |
|
if (_collective_out >= 1000) { |
|
_collective_out = 1000; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// ensure not below landed/landing collective |
|
if (_heliflags.landing_collective && _collective_out < _land_collective_min) { |
|
_collective_out = _land_collective_min; |
|
limit.throttle_lower = true; |
|
} |
|
|
|
// scale collective pitch |
|
coll_out_scaled = _collective_out * _collective_scalar + _collective_min - 1000; |
|
|
|
// rudder feed forward based on collective |
|
// the feed-forward is not required when the motor is shut down and not creating torque |
|
// also not required if we are using external gyro |
|
if (motor_runup_complete() && _tail_type != AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO) { |
|
yaw_offset = _collective_yaw_effect * abs(coll_out_scaled - _collective_mid_pwm); |
|
} |
|
} |
|
|
|
// swashplate servos |
|
_servo_1->servo_out = (_rollFactor[CH_1] * roll_out + _pitchFactor[CH_1] * pitch_out)/10 + _collectiveFactor[CH_1] * coll_out_scaled + (_servo_1->radio_trim-1500); |
|
_servo_2->servo_out = (_rollFactor[CH_2] * roll_out + _pitchFactor[CH_2] * pitch_out)/10 + _collectiveFactor[CH_2] * coll_out_scaled + (_servo_2->radio_trim-1500); |
|
if (_swash_type == AP_MOTORS_HELI_SWASH_H1) { |
|
_servo_1->servo_out += 500; |
|
_servo_2->servo_out += 500; |
|
} |
|
_servo_3->servo_out = (_rollFactor[CH_3] * roll_out + _pitchFactor[CH_3] * pitch_out)/10 + _collectiveFactor[CH_3] * coll_out_scaled + (_servo_3->radio_trim-1500); |
|
_servo_4->servo_out = yaw_out + yaw_offset; |
|
|
|
// constrain yaw and update limits |
|
if (_servo_4->servo_out < -4500) { |
|
_servo_4->servo_out = -4500; |
|
limit.yaw = true; |
|
} |
|
if (_servo_4->servo_out > 4500) { |
|
_servo_4->servo_out = 4500; |
|
limit.yaw = true; |
|
} |
|
|
|
// use servo_out to calculate pwm_out and radio_out |
|
_servo_1->calc_pwm(); |
|
_servo_2->calc_pwm(); |
|
_servo_3->calc_pwm(); |
|
_servo_4->calc_pwm(); |
|
|
|
// actually move the servos |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_1], _servo_1->radio_out); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_2], _servo_2->radio_out); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_3], _servo_3->radio_out); |
|
hal.rcout->write(_motor_to_channel_map[AP_MOTORS_MOT_4], _servo_4->radio_out); |
|
|
|
// to be compatible with other frame types |
|
motor_out[AP_MOTORS_MOT_1] = _servo_1->radio_out; |
|
motor_out[AP_MOTORS_MOT_2] = _servo_2->radio_out; |
|
motor_out[AP_MOTORS_MOT_3] = _servo_3->radio_out; |
|
motor_out[AP_MOTORS_MOT_4] = _servo_4->radio_out; |
|
|
|
switch (_tail_type) { |
|
case AP_MOTORS_HELI_TAILTYPE_SERVO: |
|
// do nothing |
|
break; |
|
|
|
case AP_MOTORS_HELI_TAILTYPE_SERVO_EXTGYRO: |
|
// output gyro value |
|
hal.rcout->write(AP_MOTORS_HELI_AUX, _ch7_pwm_setpoint); |
|
break; |
|
|
|
case AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_VARPITCH: |
|
// switch on the motor if Ch8 is not low |
|
if (armed() && _rc_8->control_in > 100) { |
|
hal.rcout->write(AP_MOTORS_HELI_AUX, _ch7_pwm_setpoint); |
|
} else { |
|
hal.rcout->write(AP_MOTORS_HELI_AUX, AP_MOTOR_HELI_TAIL_TYPE_DIRECTDRIVE_PWM_MIN); |
|
} |
|
break; |
|
|
|
case AP_MOTORS_HELI_TAILTYPE_DIRECTDRIVE_FIXEDPITCH: |
|
// output fixed-pitch speed control if Ch8 is high |
|
if (armed() && _rc_8->control_in > 100) { |
|
hal.rcout->write(AP_MOTORS_HELI_AUX, _servo_4->radio_out); |
|
} else { |
|
hal.rcout->write(AP_MOTORS_HELI_AUX, AP_MOTOR_HELI_TAIL_TYPE_DIRECTDRIVE_PWM_MIN); |
|
} |
|
break; |
|
} |
|
} |
|
|
|
static long map(long x, long in_min, long in_max, long out_min, long out_max) |
|
{ |
|
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; |
|
} |
|
|
|
// rsc_control - update value to send to main rotor's ESC |
|
void AP_MotorsHeli::rsc_control() |
|
{ |
|
if (armed() && (_rsc_ramp >= _rsc_ramp_up_rate)){ // rsc_ramp will never increase if rsc_mode = 0 |
|
if (_motor_runup_timer < AP_MOTORS_HELI_MOTOR_RUNUP_TIME){ // therefore motor_runup_complete can never be true |
|
_motor_runup_timer++; |
|
} else { |
|
_heliflags.motor_runup_complete = true; |
|
} |
|
} else { |
|
_heliflags.motor_runup_complete = false; // motor_runup_complete will go to false if we |
|
_motor_runup_timer = 0; // disarm or wind down the motor |
|
} |
|
|
|
switch (_rsc_mode) { |
|
|
|
case AP_MOTORS_HELI_RSC_MODE_CH8_PASSTHROUGH: |
|
if( armed() && (_rc_8->radio_in > (_rc_8->radio_min + 10))) { |
|
if (_rsc_ramp < _rsc_ramp_up_rate) { |
|
_rsc_ramp++; |
|
_rsc_output = map(_rsc_ramp, 0, _rsc_ramp_up_rate, _rc_8->radio_min, _rc_8->radio_in); |
|
} else { |
|
_rsc_output = _rc_8->radio_in; |
|
} |
|
} else { |
|
_rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart" |
|
if (_rsc_ramp < 0) { |
|
_rsc_ramp = 0; |
|
} |
|
_rsc_output = _rc_8->radio_min; |
|
} |
|
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, _rsc_output); |
|
break; |
|
|
|
case AP_MOTORS_HELI_RSC_MODE_EXT_GOVERNOR: |
|
|
|
if (armed() && _rc_8->control_in > 400) { |
|
if (_rsc_ramp < _rsc_ramp_up_rate) { |
|
_rsc_ramp++; |
|
_rsc_output = map(_rsc_ramp, 0, _rsc_ramp_up_rate, 1000, _ext_gov_setpoint); |
|
} else { |
|
_rsc_output = _ext_gov_setpoint; |
|
} |
|
} else { |
|
_rsc_ramp--; //Return RSC Ramp to 0 slowly, allowing for "warm restart" |
|
if (_rsc_ramp < 0) { |
|
_rsc_ramp = 0; |
|
} |
|
_rsc_output = 1000; //Just to be sure RSC output is 0 |
|
} |
|
hal.rcout->write(AP_MOTORS_HELI_EXT_RSC, _rsc_output); |
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
}
|
|
|