You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
705 lines
21 KiB
705 lines
21 KiB
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
* |
|
* Code by Andrew Tridgell and Siddharth Bharat Purohit |
|
*/ |
|
#include "RCOutput.h" |
|
#include <AP_Math/AP_Math.h> |
|
#include <AP_BoardConfig/AP_BoardConfig.h> |
|
|
|
#if HAL_USE_PWM == TRUE |
|
|
|
using namespace ChibiOS; |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
#if HAL_WITH_IO_MCU |
|
#include <AP_IOMCU/AP_IOMCU.h> |
|
extern AP_IOMCU iomcu; |
|
#endif |
|
|
|
struct RCOutput::pwm_group RCOutput::pwm_group_list[] = { HAL_PWM_GROUPS }; |
|
|
|
#define NUM_GROUPS ARRAY_SIZE_SIMPLE(pwm_group_list) |
|
|
|
#define CHAN_DISABLED 255 |
|
|
|
void RCOutput::init() |
|
{ |
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
//Start Pwm groups |
|
pwm_group &group = pwm_group_list[i]; |
|
group.ch_mask = 0; |
|
group.current_mode = MODE_PWM_NORMAL; |
|
for (uint8_t j = 0; j < 4; j++ ) { |
|
if (group.chan[j] != CHAN_DISABLED) { |
|
total_channels = MAX(total_channels, group.chan[j]+1); |
|
group.ch_mask |= (1U<<group.chan[j]); |
|
} |
|
} |
|
if (group.ch_mask != 0) { |
|
pwmStart(group.pwm_drv, &group.pwm_cfg); |
|
} |
|
} |
|
|
|
#if HAL_WITH_IO_MCU |
|
if (AP_BoardConfig::io_enabled()) { |
|
iomcu.init(); |
|
// with IOMCU the local channels start at 8 |
|
chan_offset = 8; |
|
total_channels += chan_offset; |
|
} |
|
#endif |
|
chMtxObjectInit(&trigger_mutex); |
|
} |
|
|
|
void RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz) |
|
{ |
|
//check if the request spans accross any of the channel groups |
|
uint8_t update_mask = 0; |
|
|
|
#if HAL_WITH_IO_MCU |
|
if (AP_BoardConfig::io_enabled()) { |
|
iomcu.set_freq(chmask, freq_hz); |
|
} |
|
#endif |
|
|
|
chmask >>= chan_offset; |
|
if (chmask == 0) { |
|
return; |
|
} |
|
|
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
// greater than 400 doesn't give enough room at higher periods for |
|
// the down pulse. This still allows for high rate with oneshot and dshot. |
|
pwm_group &group = pwm_group_list[i]; |
|
uint16_t group_freq = freq_hz; |
|
if (group_freq > 400 && group.current_mode != MODE_PWM_BRUSHED) { |
|
group_freq = 400; |
|
} |
|
if ((group.ch_mask & chmask) != 0) { |
|
/* |
|
we enable the new frequency on all groups that have one |
|
of the requested channels. This means we may enable high |
|
speed on some channels that aren't requested, but that |
|
is needed in order to fly a vehicle such a a hex |
|
multicopter properly |
|
*/ |
|
update_mask |= group.ch_mask; |
|
uint16_t freq_set = group_freq; |
|
uint32_t old_clock = group.pwm_cfg.frequency; |
|
|
|
if (freq_set > 400 && group.pwm_cfg.frequency == 1000000) { |
|
// need to change to an 8MHz clock |
|
group.pwm_cfg.frequency = 8000000; |
|
} else if (freq_set <= 400 && group.pwm_cfg.frequency == 8000000) { |
|
// need to change to an 1MHz clock |
|
group.pwm_cfg.frequency = 1000000; |
|
} |
|
|
|
// check if the frequency is possible, and keep halving |
|
// down to 1MHz until it is OK with the hardware timer we |
|
// are using. If we don't do this we'll hit an assert in |
|
// the ChibiOS PWM driver on some timers |
|
PWMDriver *pwmp = group.pwm_drv; |
|
uint32_t psc = (pwmp->clock / pwmp->config->frequency) - 1; |
|
while ((psc > 0xFFFF || ((psc + 1) * pwmp->config->frequency) != pwmp->clock) && |
|
group.pwm_cfg.frequency > 1000000) { |
|
group.pwm_cfg.frequency /= 2; |
|
psc = (pwmp->clock / pwmp->config->frequency) - 1; |
|
} |
|
|
|
if (old_clock != group.pwm_cfg.frequency) { |
|
// we need to stop and start to setup the new clock |
|
pwmStop(group.pwm_drv); |
|
pwmStart(group.pwm_drv, &group.pwm_cfg); |
|
} |
|
pwmChangePeriod(group.pwm_drv, |
|
group.pwm_cfg.frequency/freq_set); |
|
} |
|
if (group_freq > 50) { |
|
fast_channel_mask |= group.ch_mask; |
|
} |
|
} |
|
if (chmask != update_mask) { |
|
hal.console->printf("RCOutput: Failed to set PWM frequency req %x set %x\n", (unsigned)chmask, (unsigned)update_mask); |
|
} |
|
} |
|
|
|
/* |
|
set default output rate |
|
*/ |
|
void RCOutput::set_default_rate(uint16_t freq_hz) |
|
{ |
|
#if HAL_WITH_IO_MCU |
|
if (AP_BoardConfig::io_enabled()) { |
|
iomcu.set_default_rate(freq_hz); |
|
} |
|
#endif |
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
if ((group.ch_mask & fast_channel_mask) || group.ch_mask == 0) { |
|
// don't change fast channels |
|
continue; |
|
} |
|
pwmChangePeriod(group.pwm_drv, |
|
group.pwm_cfg.frequency/freq_hz); |
|
} |
|
} |
|
|
|
uint16_t RCOutput::get_freq(uint8_t chan) |
|
{ |
|
if (chan >= total_channels) { |
|
return 0; |
|
} |
|
#if HAL_WITH_IO_MCU |
|
if (chan < chan_offset) { |
|
return iomcu.get_freq(chan); |
|
} |
|
#endif |
|
chan -= chan_offset; |
|
|
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
for (uint8_t j = 0; j < 4; j++) { |
|
if (group.chan[j] == chan) { |
|
return group.pwm_drv->config->frequency / group.pwm_drv->period; |
|
} |
|
} |
|
} |
|
// assume 50Hz default |
|
return 50; |
|
} |
|
|
|
void RCOutput::enable_ch(uint8_t chan) |
|
{ |
|
if (chan >= total_channels) { |
|
return; |
|
} |
|
if (chan < chan_offset) { |
|
return; |
|
} |
|
chan -= chan_offset; |
|
|
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
for (uint8_t j = 0; j < 4; j++) { |
|
if ((group.chan[j] == chan) && !(en_mask & 1<<chan)) { |
|
en_mask |= 1<<chan; |
|
} |
|
} |
|
} |
|
} |
|
|
|
void RCOutput::disable_ch(uint8_t chan) |
|
{ |
|
if (chan >= total_channels) { |
|
return; |
|
} |
|
if (chan < chan_offset) { |
|
return; |
|
} |
|
chan -= chan_offset; |
|
|
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
for (uint8_t j = 0; j < 4; j++) { |
|
if (group.chan[j] == chan) { |
|
pwmDisableChannel(group.pwm_drv, j); |
|
en_mask &= ~(1<<chan); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void RCOutput::write(uint8_t chan, uint16_t period_us) |
|
{ |
|
if (chan >= total_channels) { |
|
return; |
|
} |
|
last_sent[chan] = period_us; |
|
|
|
#if HAL_WITH_IO_MCU |
|
// handle IO MCU channels |
|
if (AP_BoardConfig::io_enabled()) { |
|
iomcu.write_channel(chan, period_us); |
|
} |
|
#endif |
|
if (chan < chan_offset) { |
|
return; |
|
} |
|
chan -= chan_offset; |
|
|
|
period[chan] = period_us; |
|
num_channels = MAX(chan+1, num_channels); |
|
if (!corked) { |
|
push_local(); |
|
} |
|
} |
|
|
|
/* |
|
push values to local channels from period[] array |
|
*/ |
|
void RCOutput::push_local(void) |
|
{ |
|
if (num_channels == 0) { |
|
return; |
|
} |
|
uint16_t outmask = (1U<<num_channels)-1; |
|
outmask &= en_mask; |
|
|
|
uint16_t widest_pulse = 0; |
|
uint8_t need_trigger = 0; |
|
|
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
for (uint8_t j = 0; j < 4; j++) { |
|
uint8_t chan = group.chan[j]; |
|
if (chan == CHAN_DISABLED) { |
|
continue; |
|
} |
|
if (outmask & (1UL<<chan)) { |
|
uint32_t period_us = period[chan]; |
|
if (group.current_mode == MODE_PWM_BRUSHED) { |
|
if (period_us <= _esc_pwm_min) { |
|
period_us = 0; |
|
} else if (period_us >= _esc_pwm_max) { |
|
period_us = PWM_FRACTION_TO_WIDTH(group.pwm_drv, 1, 1); |
|
} else { |
|
period_us = PWM_FRACTION_TO_WIDTH(group.pwm_drv,\ |
|
(_esc_pwm_max - _esc_pwm_min), (period_us - _esc_pwm_min)); |
|
} |
|
pwmEnableChannel(group.pwm_drv, j, period_us); |
|
} else if (group.current_mode < MODE_PWM_DSHOT150) { |
|
uint32_t width = (group.pwm_cfg.frequency/1000000) * period_us; |
|
pwmEnableChannel(group.pwm_drv, j, width); |
|
} else if (group.current_mode >= MODE_PWM_DSHOT150 && group.current_mode <= MODE_PWM_DSHOT1200) { |
|
// set period_us to time for pulse output, to enable very fast rates |
|
period_us = dshot_pulse_time_us; |
|
} |
|
if (period_us > widest_pulse) { |
|
widest_pulse = period_us; |
|
} |
|
if (group.current_mode == MODE_PWM_ONESHOT || |
|
(group.current_mode >= MODE_PWM_DSHOT150 && |
|
group.current_mode <= MODE_PWM_DSHOT1200)) { |
|
need_trigger |= (1U<<i); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (widest_pulse > 2300) { |
|
widest_pulse = 2300; |
|
} |
|
trigger_widest_pulse = widest_pulse; |
|
|
|
trigger_groupmask = need_trigger; |
|
|
|
if (trigger_groupmask) { |
|
trigger_groups(); |
|
} |
|
} |
|
|
|
uint16_t RCOutput::read(uint8_t chan) |
|
{ |
|
if (chan >= total_channels) { |
|
return 0; |
|
} |
|
#if HAL_WITH_IO_MCU |
|
if (chan < chan_offset) { |
|
return iomcu.read_channel(chan); |
|
} |
|
#endif |
|
chan -= chan_offset; |
|
return period[chan]; |
|
} |
|
|
|
void RCOutput::read(uint16_t* period_us, uint8_t len) |
|
{ |
|
if (len > total_channels) { |
|
len = total_channels; |
|
} |
|
#if HAL_WITH_IO_MCU |
|
for (uint8_t i=0; i<MIN(len, chan_offset); i++) { |
|
period_us[i] = iomcu.read_channel(i); |
|
} |
|
#endif |
|
if (len <= chan_offset) { |
|
return; |
|
} |
|
len -= chan_offset; |
|
period_us += chan_offset; |
|
|
|
memcpy(period_us, period, len*sizeof(uint16_t)); |
|
} |
|
|
|
uint16_t RCOutput::read_last_sent(uint8_t chan) |
|
{ |
|
if (chan >= total_channels) { |
|
return 0; |
|
} |
|
return last_sent[chan]; |
|
} |
|
|
|
void RCOutput::read_last_sent(uint16_t* period_us, uint8_t len) |
|
{ |
|
if (len > total_channels) { |
|
len = total_channels; |
|
} |
|
for (uint8_t i=0; i<len; i++) { |
|
period_us[i] = read_last_sent(i); |
|
} |
|
} |
|
|
|
/* |
|
setup output mode |
|
*/ |
|
void RCOutput::set_output_mode(uint16_t mask, enum output_mode mode) |
|
{ |
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
if (((group.ch_mask << chan_offset) & mask) == 0) { |
|
// this group is not affected |
|
continue; |
|
} |
|
group.current_mode = mode; |
|
if (mode == MODE_PWM_BRUSHED) { |
|
// force zero output initially |
|
for (uint8_t i=chan_offset; i<16; i++) { |
|
if ((group.ch_mask << chan_offset) & (1U<<i)) { |
|
write(i, 0); |
|
} |
|
} |
|
} |
|
if (mode >= MODE_PWM_DSHOT150 && mode <= MODE_PWM_DSHOT1200) { |
|
if (!group.have_up_dma) { |
|
// fallback to ONESHOT125 |
|
hal.console->printf("DShot unavailable on mask 0x%04x\n", group.ch_mask); |
|
group.current_mode = MODE_PWM_NORMAL; |
|
} else { |
|
if (!group.dma_buffer) { |
|
group.dma_buffer = (uint32_t *)hal.util->malloc_type(dshot_buffer_length, AP_HAL::Util::MEM_DMA_SAFE); |
|
if (!group.dma_buffer) { |
|
hal.console->printf("DShot setup no memory\n"); |
|
group.current_mode = MODE_PWM_NORMAL; |
|
continue; |
|
} |
|
} |
|
// for dshot we setup for DMAR based output |
|
if (!group.dma) { |
|
group.dma = STM32_DMA_STREAM(group.dma_up_stream_id); |
|
group.dma_handle = new Shared_DMA(group.dma_up_stream_id, SHARED_DMA_NONE, |
|
FUNCTOR_BIND_MEMBER(&RCOutput::dma_allocate, void, Shared_DMA *), |
|
FUNCTOR_BIND_MEMBER(&RCOutput::dma_deallocate, void, Shared_DMA *)); |
|
if (!group.dma_handle) { |
|
hal.console->printf("DShot setup no memory\n"); |
|
group.current_mode = MODE_PWM_NORMAL; |
|
continue; |
|
} |
|
} |
|
const uint16_t rates[(1 + MODE_PWM_DSHOT1200) - MODE_PWM_DSHOT150] = { 150, 300, 600, 1200 }; |
|
uint32_t rate = rates[uint8_t(mode - MODE_PWM_DSHOT150)] * 1000UL; |
|
const uint32_t bit_period = 19; |
|
// configure timer driver for DMAR at requested rate |
|
pwmStop(group.pwm_drv); |
|
group.pwm_cfg.frequency = rate * bit_period; |
|
group.pwm_cfg.period = bit_period; |
|
group.pwm_cfg.dier = TIM_DIER_UDE; |
|
group.pwm_cfg.cr2 = 0; |
|
pwmStart(group.pwm_drv, &group.pwm_cfg); |
|
for (uint8_t j=0; j<4; j++) { |
|
if (group.chan[j] != CHAN_DISABLED) { |
|
pwmEnableChannel(group.pwm_drv, j, 0); |
|
} |
|
} |
|
// calculate min time between pulses |
|
dshot_pulse_time_us = 1000000UL * dshot_bit_length / rate; |
|
} |
|
} |
|
if (group.current_mode == MODE_PWM_ONESHOT) { |
|
// for oneshot we force 1Hz output and then trigger on each loop |
|
pwmChangePeriod(group.pwm_drv, group.pwm_cfg.frequency); |
|
} |
|
} |
|
#if HAL_WITH_IO_MCU |
|
if (mode == MODE_PWM_ONESHOT && |
|
(mask & ((1U<<chan_offset)-1)) && |
|
AP_BoardConfig::io_enabled()) { |
|
return iomcu.set_oneshot_mode(); |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
force the safety switch on, disabling PWM output from the IO board |
|
*/ |
|
bool RCOutput::force_safety_on(void) |
|
{ |
|
#if HAL_WITH_IO_MCU |
|
if (AP_BoardConfig::io_enabled()) { |
|
return iomcu.force_safety_on(); |
|
} |
|
#endif |
|
return false; |
|
} |
|
|
|
/* |
|
force the safety switch off, enabling PWM output from the IO board |
|
*/ |
|
void RCOutput::force_safety_off(void) |
|
{ |
|
#if HAL_WITH_IO_MCU |
|
if (AP_BoardConfig::io_enabled()) { |
|
iomcu.force_safety_off(); |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
start corking output |
|
*/ |
|
void RCOutput::cork(void) |
|
{ |
|
corked = true; |
|
#if HAL_WITH_IO_MCU |
|
if (AP_BoardConfig::io_enabled()) { |
|
iomcu.cork(); |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
stop corking output |
|
*/ |
|
void RCOutput::push(void) |
|
{ |
|
corked = false; |
|
push_local(); |
|
#if HAL_WITH_IO_MCU |
|
if (AP_BoardConfig::io_enabled()) { |
|
iomcu.push(); |
|
} |
|
#endif |
|
} |
|
|
|
/* |
|
enable sbus output |
|
*/ |
|
bool RCOutput::enable_px4io_sbus_out(uint16_t rate_hz) |
|
{ |
|
#if HAL_WITH_IO_MCU |
|
if (AP_BoardConfig::io_enabled()) { |
|
return iomcu.enable_sbus_out(rate_hz); |
|
} |
|
#endif |
|
return false; |
|
} |
|
|
|
/* |
|
trigger output groups for oneshot or dshot modes |
|
*/ |
|
void RCOutput::trigger_groups(void) |
|
{ |
|
if (!chMtxTryLock(&trigger_mutex)) { |
|
return; |
|
} |
|
uint64_t now = AP_HAL::micros64(); |
|
if (now < min_pulse_trigger_us) { |
|
// guarantee minimum pulse separation |
|
hal.scheduler->delay_microseconds(min_pulse_trigger_us - now); |
|
} |
|
osalSysLock(); |
|
for (uint8_t i = 0; i < NUM_GROUPS; i++) { |
|
pwm_group &group = pwm_group_list[i]; |
|
if (group.current_mode == MODE_PWM_ONESHOT) { |
|
if (trigger_groupmask & (1U<<i)) { |
|
// this triggers pulse output for a channel group |
|
group.pwm_drv->tim->EGR = STM32_TIM_EGR_UG; |
|
} |
|
} else if (group.current_mode >= MODE_PWM_DSHOT150 && group.current_mode <= MODE_PWM_DSHOT1200) { |
|
dshot_send(group, false); |
|
} |
|
} |
|
osalSysUnlock(); |
|
|
|
/* |
|
calculate time that we are allowed to trigger next pulse |
|
to guarantee at least a 50us gap between pulses |
|
*/ |
|
min_pulse_trigger_us = AP_HAL::micros64() + trigger_widest_pulse + 50; |
|
|
|
chMtxUnlock(&trigger_mutex); |
|
} |
|
|
|
/* |
|
periodic timer. The only need for a periodic timer is in oneshot |
|
mode where we want to sustain a minimum output rate for when the |
|
main loop is busy doing something like gyro calibration |
|
|
|
A mininum output rate helps with some oneshot ESCs |
|
*/ |
|
void RCOutput::timer_tick(void) |
|
{ |
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
if (dshot_delayed_trigger_mask & (1U<<i)) { |
|
// do a blocking send now |
|
dshot_send(group, true); |
|
} |
|
} |
|
if (trigger_groupmask == 0 || |
|
min_pulse_trigger_us == 0) { |
|
return; |
|
} |
|
uint64_t now = AP_HAL::micros64(); |
|
if (now > min_pulse_trigger_us && |
|
now - min_pulse_trigger_us > 10000) { |
|
// trigger at a minimum of 100Hz |
|
trigger_groups(); |
|
} |
|
} |
|
|
|
/* |
|
allocate DMA channel |
|
*/ |
|
void RCOutput::dma_allocate(Shared_DMA *ctx) |
|
{ |
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
if (group.dma_handle == ctx) { |
|
dmaStreamAllocate(group.dma, 10, dma_irq_callback, &group); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
deallocate DMA channel |
|
*/ |
|
void RCOutput::dma_deallocate(Shared_DMA *ctx) |
|
{ |
|
for (uint8_t i = 0; i < NUM_GROUPS; i++ ) { |
|
pwm_group &group = pwm_group_list[i]; |
|
if (group.dma_handle == ctx) { |
|
dmaStreamRelease(group.dma); |
|
} |
|
} |
|
} |
|
|
|
/* |
|
create a DSHOT 16 bit packet. Based on prepareDshotPacket from betaflight |
|
*/ |
|
uint16_t RCOutput::create_dshot_packet(const uint16_t value) |
|
{ |
|
uint16_t packet = (value << 1); // no telemetry request |
|
|
|
// compute checksum |
|
uint16_t csum = 0; |
|
uint16_t csum_data = packet; |
|
for (uint8_t i = 0; i < 3; i++) { |
|
csum ^= csum_data; |
|
csum_data >>= 4; |
|
} |
|
csum &= 0xf; |
|
// append checksum |
|
packet = (packet << 4) | csum; |
|
|
|
return packet; |
|
} |
|
|
|
/* |
|
fill in a DMA buffer for dshot |
|
*/ |
|
void RCOutput::fill_DMA_buffer_dshot(uint32_t *buffer, uint8_t stride, uint16_t packet) |
|
{ |
|
const uint8_t DSHOT_MOTOR_BIT_0 = 7; |
|
const uint8_t DSHOT_MOTOR_BIT_1 = 14; |
|
for (uint16_t i = 0; i < 16; i++) { |
|
buffer[i * stride] = (packet & 0x8000) ? DSHOT_MOTOR_BIT_1 : DSHOT_MOTOR_BIT_0; |
|
packet <<= 1; |
|
} |
|
} |
|
|
|
/* |
|
send a set of DShot packets for a channel group |
|
This call be called in blocking mode from the timer, in which case it waits for the DMA lock. |
|
In normal operation it doesn't wait for the DMA lock. |
|
*/ |
|
void RCOutput::dshot_send(pwm_group &group, bool blocking) |
|
{ |
|
uint8_t groupidx = &group - pwm_group_list; |
|
if (blocking) { |
|
group.dma_handle->lock(); |
|
dshot_delayed_trigger_mask &= ~(1U<<groupidx); |
|
} else { |
|
if (!group.dma_handle->lock_nonblock()) { |
|
dshot_delayed_trigger_mask |= 1U<<groupidx; |
|
return; |
|
} |
|
} |
|
for (uint8_t i=0; i<4; i++) { |
|
uint8_t chan = group.chan[i]; |
|
if (chan != CHAN_DISABLED) { |
|
uint16_t pwm = period[chan]; |
|
pwm = constrain_int16(pwm, _esc_pwm_min, _esc_pwm_max); |
|
uint16_t value = 2000UL * uint32_t(pwm - _esc_pwm_min) / uint32_t(_esc_pwm_max - _esc_pwm_min); |
|
if (value != 0) { |
|
// dshot values are from 48 to 2047. Zero means off. |
|
value += 47; |
|
} |
|
uint16_t packet = create_dshot_packet(value); |
|
fill_DMA_buffer_dshot(group.dma_buffer + i, 4, packet); |
|
} |
|
} |
|
|
|
/* |
|
The DMA approach we are using is based on the DMAR method from |
|
betaflight. We use the TIMn_UP DMA channel for the timer, and |
|
setup an interleaved set of pulse durations, with a stride of 4 |
|
(for the 4 channels). We use the DMAR register to point the DMA |
|
engine at the 4 CCR registers of the timer, so it fills in the |
|
pulse widths for each timer in turn. This means we only use a |
|
single DMA channel for groups of 4 timer channels. See the "DMA |
|
address for full transfer TIMx_DMAR" section of the |
|
datasheet. Many thanks to the betaflight developers for coming |
|
up with this great method. |
|
*/ |
|
dmaStreamSetPeripheral(group.dma, &(group.pwm_drv->tim->DMAR)); |
|
dmaStreamSetMemory0(group.dma, group.dma_buffer); |
|
dmaStreamSetTransactionSize(group.dma, dshot_buffer_length/sizeof(uint32_t)); |
|
dmaStreamSetFIFO(group.dma, STM32_DMA_FCR_DMDIS | STM32_DMA_FCR_FTH_FULL); |
|
dmaStreamSetMode(group.dma, |
|
STM32_DMA_CR_CHSEL(group.dma_up_channel) | |
|
STM32_DMA_CR_DIR_M2P | STM32_DMA_CR_PSIZE_WORD | STM32_DMA_CR_MSIZE_WORD | |
|
STM32_DMA_CR_MINC | STM32_DMA_CR_PL(3) | |
|
STM32_DMA_CR_TEIE | STM32_DMA_CR_TCIE); |
|
|
|
// setup for 4 burst strided transfers. 0x0D is the register |
|
// address offset of the CCR registers in the timer peripheral |
|
group.pwm_drv->tim->DCR = 0x0D | STM32_TIM_DCR_DBL(3); |
|
|
|
dmaStreamEnable(group.dma); |
|
} |
|
|
|
/* |
|
DMA interrupt handler. Used to mark DMA completed for DShot |
|
*/ |
|
void RCOutput::dma_irq_callback(void *p, uint32_t flags) |
|
{ |
|
pwm_group *group = (pwm_group *)p; |
|
dmaStreamDisable(group->dma); |
|
group->dma_handle->unlock(); |
|
} |
|
|
|
#endif // HAL_USE_PWM
|
|
|