You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
246 lines
7.6 KiB
246 lines
7.6 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#ifndef AP_MATH_H |
|
#define AP_MATH_H |
|
|
|
// Assorted useful math operations for ArduPilot(Mega) |
|
|
|
#include <AP_Common/AP_Common.h> |
|
#include <AP_Param/AP_Param.h> |
|
#include <math.h> |
|
#ifdef __AVR__ |
|
# include "AP_Math_AVR_Compat.h" |
|
#endif |
|
#include <stdint.h> |
|
#include "rotations.h" |
|
#include "vector2.h" |
|
#include "vector3.h" |
|
#include "matrix3.h" |
|
#include "quaternion.h" |
|
#include "polygon.h" |
|
#include "edc.h" |
|
#include "float.h" |
|
#include <AP_Param/AP_Param.h> |
|
|
|
#ifndef M_PI_F |
|
#define M_PI_F 3.141592653589793f |
|
#endif |
|
#ifndef M_2PI_F |
|
#define M_2PI_F (2*M_PI_F) |
|
#endif |
|
#ifndef PI |
|
# define PI M_PI_F |
|
#endif |
|
#ifndef M_PI_2 |
|
# define M_PI_2 1.570796326794897f |
|
#endif |
|
//Single precision conversions |
|
#define DEG_TO_RAD 0.017453292519943295769236907684886f |
|
#define RAD_TO_DEG 57.295779513082320876798154814105f |
|
|
|
//GPS Specific double precision conversions |
|
//The precision here does matter when using the wsg* functions for converting |
|
//between LLH and ECEF coordinates. Test code in examlpes/location/location.pde |
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 |
|
#define DEG_TO_RAD_DOUBLE 0.0174532925199432954743716805978692718781530857086181640625 // equals to (M_PI / 180.0) |
|
#define RAD_TO_DEG_DOUBLE 57.29577951308232286464772187173366546630859375 // equals to (180.0 / M_PI) |
|
#endif |
|
|
|
#define RadiansToCentiDegrees(x) ((x) * 5729.5779513082320876798154814105f) |
|
|
|
// acceleration due to gravity in m/s/s |
|
#define GRAVITY_MSS 9.80665f |
|
|
|
// radius of earth in meters |
|
#define RADIUS_OF_EARTH 6378100 |
|
|
|
#define ROTATION_COMBINATION_SUPPORT 0 |
|
|
|
// convert a longitude or latitude point to meters or centimeteres. |
|
// Note: this does not include the longitude scaling which is dependent upon location |
|
#define LATLON_TO_M 0.01113195f |
|
#define LATLON_TO_CM 1.113195f |
|
|
|
// Semi-major axis of the Earth, in meters. |
|
#define WGS84_A 6378137.0 |
|
//Inverse flattening of the Earth |
|
#define WGS84_IF 298.257223563 |
|
// The flattening of the Earth |
|
#define WGS84_F (1/WGS84_IF) |
|
// Semi-minor axis of the Earth in meters |
|
#define WGS84_B (WGS84_A*(1-WGS84_F)) |
|
// Eccentricity of the Earth |
|
#define WGS84_E (sqrt(2*WGS84_F - WGS84_F*WGS84_F)) |
|
|
|
// define AP_Param types AP_Vector3f and Ap_Matrix3f |
|
AP_PARAMDEFV(Matrix3f, Matrix3f, AP_PARAM_MATRIX3F); |
|
AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F); |
|
|
|
// are two floats equal |
|
static inline bool is_equal(const float fVal1, const float fVal2) { return fabsf(fVal1 - fVal2) < FLT_EPSILON ? true : false; } |
|
|
|
// is a float is zero |
|
static inline bool is_zero(const float fVal1) { return fabsf(fVal1) < FLT_EPSILON ? true : false; } |
|
|
|
// a varient of asin() that always gives a valid answer. |
|
float safe_asin(float v); |
|
|
|
// a varient of sqrt() that always gives a valid answer. |
|
float safe_sqrt(float v); |
|
|
|
#if ROTATION_COMBINATION_SUPPORT |
|
// find a rotation that is the combination of two other |
|
// rotations. This is used to allow us to add an overall board |
|
// rotation to an existing rotation of a sensor such as the compass |
|
enum Rotation rotation_combination(enum Rotation r1, enum Rotation r2, bool *found = NULL); |
|
#endif |
|
|
|
// longitude_scale - returns the scaler to compensate for shrinking longitude as you move north or south from the equator |
|
// Note: this does not include the scaling to convert longitude/latitude points to meters or centimeters |
|
float longitude_scale(const struct Location &loc); |
|
|
|
// return distance in meters between two locations |
|
float get_distance(const struct Location &loc1, const struct Location &loc2); |
|
|
|
// return distance in centimeters between two locations |
|
uint32_t get_distance_cm(const struct Location &loc1, const struct Location &loc2); |
|
|
|
// return bearing in centi-degrees between two locations |
|
int32_t get_bearing_cd(const struct Location &loc1, const struct Location &loc2); |
|
|
|
// see if location is past a line perpendicular to |
|
// the line between point1 and point2. If point1 is |
|
// our previous waypoint and point2 is our target waypoint |
|
// then this function returns true if we have flown past |
|
// the target waypoint |
|
bool location_passed_point(const struct Location & location, |
|
const struct Location & point1, |
|
const struct Location & point2); |
|
|
|
/* |
|
return the proportion we are along the path from point1 to |
|
point2. This will be less than >1 if we have passed point2 |
|
*/ |
|
float location_path_proportion(const struct Location &location, |
|
const struct Location &point1, |
|
const struct Location &point2); |
|
|
|
// extrapolate latitude/longitude given bearing and distance |
|
void location_update(struct Location &loc, float bearing, float distance); |
|
|
|
// extrapolate latitude/longitude given distances north and east |
|
void location_offset(struct Location &loc, float ofs_north, float ofs_east); |
|
|
|
/* |
|
return the distance in meters in North/East plane as a N/E vector |
|
from loc1 to loc2 |
|
*/ |
|
Vector2f location_diff(const struct Location &loc1, const struct Location &loc2); |
|
|
|
/* |
|
wrap an angle in centi-degrees |
|
*/ |
|
int32_t wrap_360_cd(int32_t error); |
|
int32_t wrap_180_cd(int32_t error); |
|
float wrap_360_cd_float(float angle); |
|
float wrap_180_cd_float(float angle); |
|
|
|
/* |
|
wrap an angle defined in radians to -PI ~ PI (equivalent to +- 180 degrees) |
|
*/ |
|
float wrap_PI(float angle_in_radians); |
|
|
|
/* |
|
* check if lat and lng match. Ignore altitude and options |
|
*/ |
|
bool locations_are_same(const struct Location &loc1, const struct Location &loc2); |
|
|
|
/* |
|
print a int32_t lat/long in decimal degrees |
|
*/ |
|
void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon); |
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75 |
|
// Converts from WGS84 geodetic coordinates (lat, lon, height) |
|
// into WGS84 Earth Centered, Earth Fixed (ECEF) coordinates |
|
// (X, Y, Z) |
|
void wgsllh2ecef(const Vector3d &llh, Vector3d &ecef); |
|
|
|
// Converts from WGS84 Earth Centered, Earth Fixed (ECEF) |
|
// coordinates (X, Y, Z), into WHS84 geodetic |
|
// coordinates (lat, lon, height) |
|
void wgsecef2llh(const Vector3d &ecef, Vector3d &llh); |
|
#endif |
|
|
|
// constrain a value |
|
// constrain a value |
|
static inline float constrain_float(float amt, float low, float high) |
|
{ |
|
// the check for NaN as a float prevents propogation of |
|
// floating point errors through any function that uses |
|
// constrain_float(). The normal float semantics already handle -Inf |
|
// and +Inf |
|
if (isnan(amt)) { |
|
return (low+high)*0.5f; |
|
} |
|
return ((amt)<(low)?(low):((amt)>(high)?(high):(amt))); |
|
} |
|
// constrain a int16_t value |
|
static inline int16_t constrain_int16(int16_t amt, int16_t low, int16_t high) { |
|
return ((amt)<(low)?(low):((amt)>(high)?(high):(amt))); |
|
} |
|
|
|
// constrain a int32_t value |
|
static inline int32_t constrain_int32(int32_t amt, int32_t low, int32_t high) { |
|
return ((amt)<(low)?(low):((amt)>(high)?(high):(amt))); |
|
} |
|
|
|
//matrix algebra |
|
bool inverse(float x[], float y[], uint16_t dim); |
|
|
|
// degrees -> radians |
|
static inline float radians(float deg) { |
|
return deg * DEG_TO_RAD; |
|
} |
|
|
|
// radians -> degrees |
|
static inline float degrees(float rad) { |
|
return rad * RAD_TO_DEG; |
|
} |
|
|
|
// square |
|
static inline float sq(float v) { |
|
return v*v; |
|
} |
|
|
|
// 2D vector length |
|
static inline float pythagorous2(float a, float b) { |
|
return sqrtf(sq(a)+sq(b)); |
|
} |
|
|
|
// 3D vector length |
|
static inline float pythagorous3(float a, float b, float c) { |
|
return sqrtf(sq(a)+sq(b)+sq(c)); |
|
} |
|
|
|
#ifdef radians |
|
#error "Build is including Arduino base headers" |
|
#endif |
|
|
|
/* The following three functions used to be arduino core macros */ |
|
#define max(a,b) ((a)>(b)?(a):(b)) |
|
#define min(a,b) ((a)<(b)?(a):(b)) |
|
|
|
static inline float maxf(float a, float b) |
|
{ |
|
return (a>b?a:b); |
|
} |
|
|
|
static inline float minf(float a, float b) |
|
{ |
|
return (a<b?a:b); |
|
} |
|
|
|
#undef INLINE |
|
#endif // AP_MATH_H |
|
|
|
|