You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
368 lines
12 KiB
368 lines
12 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
//**************************************************************** |
|
// Function that will calculate the desired direction to fly and distance |
|
//**************************************************************** |
|
static void navigate() |
|
{ |
|
// do not navigate with corrupt data |
|
// --------------------------------- |
|
if (g_gps->fix == 0){ |
|
g_gps->new_data = false; |
|
return; |
|
} |
|
|
|
if(next_WP.lat == 0){ |
|
return; |
|
} |
|
|
|
// waypoint distance from plane |
|
// ---------------------------- |
|
wp_distance = get_distance(¤t_loc, &next_WP); |
|
|
|
if (wp_distance < 0){ |
|
//gcs.send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0")); |
|
//Serial.println(wp_distance,DEC); |
|
//print_current_waypoints(); |
|
return; |
|
} |
|
|
|
// target_bearing is where we should be heading |
|
// -------------------------------------------- |
|
target_bearing = get_bearing(¤t_loc, &next_WP); |
|
|
|
// nav_bearing will includes xtrac correction |
|
// ------------------------------------------ |
|
nav_bearing = target_bearing; |
|
} |
|
|
|
static bool check_missed_wp() |
|
{ |
|
long temp = target_bearing - saved_target_bearing; |
|
temp = wrap_180(temp); |
|
return (abs(temp) > 10000); //we pased the waypoint by 10 ° |
|
} |
|
|
|
static int |
|
get_nav_throttle(long error) |
|
{ |
|
int throttle; |
|
|
|
// limit error to prevent I term run up |
|
error = constrain(error, -600,600); |
|
|
|
throttle = g.pid_throttle.get_pid(error, delta_ms_medium_loop, 1.0); |
|
throttle = g.throttle_cruise + constrain(throttle, -80, 80); |
|
|
|
// failed experiment |
|
//int tem = alt_hold_velocity(); |
|
//throttle -= tem; |
|
|
|
return throttle; |
|
} |
|
|
|
// ------------------------------ |
|
|
|
// long_error, lat_error |
|
static void calc_loiter_nav2() |
|
{ |
|
/* |
|
Becuase we are using lat and lon to do our distance errors here's a quick chart: |
|
100 = 1m |
|
1000 = 11m = 36 feet |
|
1800 = 19.80m = 60 feet |
|
3000 = 33m |
|
10000 = 111m |
|
pitch_max = 22° (2200) |
|
*/ |
|
|
|
// X ROLL |
|
long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST |
|
|
|
// Y PITCH |
|
lat_error = current_loc.lat - next_WP.lat; // 0 - 500 = -500 pitch NORTH |
|
|
|
// constrain input, not output to let I term ramp up and do it's job again wind |
|
long_error = constrain(long_error, -loiter_error_max, loiter_error_max); // +- 20m max error |
|
lat_error = constrain(lat_error, -loiter_error_max, loiter_error_max); // +- 20m max error |
|
} |
|
|
|
// sets nav_lon, nav_lat |
|
static void calc_rate_nav2(int target_x_speed, int target_y_speed) |
|
{ |
|
// find the rates: |
|
// calc the cos of the error to tell how fast we are moving towards the target in cm |
|
int y_speed = (float)g_gps->ground_speed * cos(radians((float)g_gps->ground_course/100.0)); |
|
int y_error = constrain(target_y_speed - y_speed, -1000, 1000); |
|
|
|
// calc the sin of the error to tell how fast we are moving laterally to the target in cm |
|
int x_speed = (float)g_gps->ground_speed * sin(radians((float)g_gps->ground_course/100.0)); |
|
int x_error = constrain(target_x_speed - x_speed, -1000, 1000); |
|
|
|
// how fast should we be going? |
|
nav_lat += g.pid_nav_lat.get_pid(y_error, dTnav, 1.0); |
|
nav_lat >>= 1; // divide by two for smooting |
|
|
|
nav_lon += g.pid_nav_lon.get_pid(x_error, dTnav, 1.0); |
|
nav_lon >>= 1; // divide by two for smooting |
|
|
|
//Serial.printf("dTnav: %ld, gs: %d, err: %d, int: %d, pitch: %ld", dTnav, targetspeed, error, (int)g.pid_nav_wp.get_integrator(), (long)nav_lat); |
|
|
|
// limit our output |
|
nav_lat = constrain(nav_lat, -3500, 3500); // +- max error |
|
nav_lon = constrain(nav_lon, -3500, 3500); // +- max error |
|
} |
|
|
|
|
|
// ------------------------------ |
|
|
|
//nav_lon, nav_lat |
|
static void calc_loiter_nav() |
|
{ |
|
/* |
|
Becuase we are using lat and lon to do our distance errors here's a quick chart: |
|
100 = 1m |
|
1000 = 11m = 36 feet |
|
1800 = 19.80m = 60 feet |
|
3000 = 33m |
|
10000 = 111m |
|
pitch_max = 22° (2200) |
|
*/ |
|
|
|
// X ROLL |
|
long_error = (float)(next_WP.lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST |
|
|
|
// Y PITCH |
|
lat_error = current_loc.lat - next_WP.lat; // 0 - 500 = -500 pitch NORTH |
|
|
|
// constrain input, not output to let I term ramp up and do it's job again wind |
|
long_error = constrain(long_error, -loiter_error_max, loiter_error_max); // +- 20m max error |
|
lat_error = constrain(lat_error, -loiter_error_max, loiter_error_max); // +- 20m max error |
|
|
|
nav_lon = g.pid_nav_lon.get_pid(long_error, dTnav, 1.0); // X 700 * 2.5 = 1750, |
|
nav_lat = g.pid_nav_lat.get_pid(lat_error, dTnav, 1.0); // Y invert lat (for pitch) |
|
} |
|
|
|
//nav_lat |
|
static void calc_simple_nav() |
|
{ |
|
// no dampening here in SIMPLE mode |
|
nav_lat = constrain((wp_distance * 100), -4500, 4500); // +- 20m max error |
|
// Scale response by kP |
|
//nav_lat *= g.pid_nav_lat.kP(); // 1800 * 2 = 3600 or 36° |
|
} |
|
|
|
// sets nav_lon, nav_lat |
|
static void calc_rate_nav(int speed) |
|
{ |
|
// which direction are we moving? |
|
long heading_error = nav_bearing - g_gps->ground_course; |
|
heading_error = wrap_180(heading_error); |
|
|
|
// calc the cos of the error to tell how fast we are moving towards the target in cm |
|
int targetspeed = (float)g_gps->ground_speed * cos(radians((float)heading_error/100)); |
|
|
|
// calc the sin of the error to tell how fast we are moving laterally to the target in cm |
|
int lateralspeed = (float)g_gps->ground_speed * sin(radians((float)heading_error/100)); |
|
//targetspeed = max(targetspeed, 0); |
|
|
|
// Reduce speed on RTL |
|
if(control_mode == RTL){ |
|
int tmp = min(wp_distance, 80) * 50; |
|
waypoint_speed = min(tmp, speed); |
|
//waypoint_speed = max(waypoint_speed, 50); |
|
}else{ |
|
int tmp = min(wp_distance, 200) * 90; |
|
waypoint_speed = min(tmp, speed); |
|
waypoint_speed = max(waypoint_speed, 50); |
|
//waypoint_speed = g.waypoint_speed_max.get(); |
|
} |
|
|
|
int error = constrain(waypoint_speed - targetspeed, -1000, 1000); |
|
|
|
nav_lat += g.pid_nav_wp.get_pid(error, dTnav, 1.0); |
|
nav_lat >>= 1; // divide by two for smooting |
|
|
|
nav_lon += lateralspeed * 2; // 2 is our fake PID gain |
|
nav_lon >>= 1; // divide by two for smooting |
|
|
|
//Serial.printf("dTnav: %ld, gs: %d, err: %d, int: %d, pitch: %ld", dTnav, targetspeed, error, (int)g.pid_nav_wp.get_integrator(), (long)nav_lat); |
|
|
|
// limit our output |
|
nav_lat = constrain(nav_lat, -3500, 3500); // +- max error |
|
} |
|
|
|
|
|
// output pitch and roll |
|
// ------------------------------ |
|
|
|
// nav_roll, nav_pitch |
|
static void calc_loiter_output() |
|
{ |
|
// rotate the vector |
|
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * -cos_yaw_x; |
|
// BAD |
|
//NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left |
|
//WEST -1000 * 0 - 1000 * -1 = 1000 // roll right - Backwards |
|
//EAST -1000 * 0 - 1000 * 1 = -1000 // roll left - Backwards |
|
//SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right |
|
|
|
// GOOD |
|
//NORTH -1000 * 1 - 1000 * 0 = -1000 // roll left |
|
//WEST -1000 * 0 - 1000 * 1 = -1000 // roll right |
|
//EAST -1000 * 0 - 1000 * -1 = 1000 // roll left |
|
//SOUTH -1000 * -1 - 1000 * 0 = 1000 // roll right |
|
|
|
nav_pitch = ((float)nav_lon * -cos_yaw_x + (float)nav_lat * sin_yaw_y); |
|
// BAD |
|
//NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back |
|
//WEST -1000 * -1 + 1000 * 0 = 1000 // pitch back - Backwards |
|
//EAST -1000 * 1 + 1000 * 0 = -1000 // pitch forward - Backwards |
|
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward |
|
|
|
// GOOD |
|
//NORTH -1000 * 0 + 1000 * 1 = 1000 // pitch back |
|
//WEST -1000 * 1 + 1000 * 0 = -1000 // pitch forward |
|
//EAST -1000 * -1 + 1000 * 0 = 1000 // pitch back |
|
//SOUTH -1000 * 0 + 1000 * -1 = -1000 // pitch forward |
|
} |
|
|
|
// nav_roll, nav_pitch |
|
static void calc_nav_output() |
|
{ |
|
// get the sin and cos of the bearing error - rotated 90° |
|
float sin_nav_y = sin(radians((float)(9000 - bearing_error) / 100)); |
|
float cos_nav_x = cos(radians((float)(bearing_error - 9000) / 100)); |
|
|
|
// rotate the vector |
|
//nav_roll = (float)nav_lat * cos_nav_x; |
|
//nav_pitch = -(float)nav_lat * sin_nav_y; |
|
nav_roll = (float)nav_lon * sin_nav_y - (float)nav_lat * -cos_nav_x; |
|
nav_pitch = (float)nav_lon * cos_nav_x - (float)nav_lat * sin_nav_y; |
|
} |
|
|
|
// ------------------------------ |
|
static void calc_bearing_error() |
|
{ |
|
// 83 99 Yaw = -16 |
|
bearing_error = nav_bearing - dcm.yaw_sensor; |
|
bearing_error = wrap_180(bearing_error); |
|
} |
|
|
|
static void calc_altitude_error() |
|
{ |
|
altitude_error = next_WP.alt - current_loc.alt; |
|
} |
|
|
|
static void calc_altitude_smoothing_error() |
|
{ |
|
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius |
|
target_altitude = next_WP.alt - ((float)(wp_distance * (next_WP.alt - prev_WP.alt)) / (float)(wp_totalDistance - g.waypoint_radius)); |
|
|
|
// stay within a certain range |
|
if(prev_WP.alt > next_WP.alt){ |
|
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt); |
|
}else{ |
|
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt); |
|
} |
|
|
|
altitude_error = target_altitude - current_loc.alt; |
|
} |
|
|
|
static void update_loiter() |
|
{ |
|
float power; |
|
|
|
if(wp_distance <= g.loiter_radius){ |
|
power = float(wp_distance) / float(g.loiter_radius); |
|
power = constrain(power, 0.5, 1); |
|
nav_bearing += (int)(9000.0 * (2.0 + power)); |
|
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){ |
|
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE); |
|
power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1); |
|
nav_bearing -= power * 9000; |
|
|
|
}else{ |
|
update_crosstrack(); |
|
loiter_time = millis(); // keep start time for loiter updating till we get within LOITER_RANGE of orbit |
|
|
|
} |
|
nav_bearing = wrap_360(nav_bearing); |
|
} |
|
|
|
|
|
static long wrap_360(long error) |
|
{ |
|
if (error > 36000) error -= 36000; |
|
if (error < 0) error += 36000; |
|
return error; |
|
} |
|
|
|
static long wrap_180(long error) |
|
{ |
|
if (error > 18000) error -= 36000; |
|
if (error < -18000) error += 36000; |
|
return error; |
|
} |
|
|
|
static void update_crosstrack(void) |
|
{ |
|
// Crosstrack Error |
|
// ---------------- |
|
if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following |
|
// Meters we are off track line |
|
crosstrack_error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance; |
|
|
|
// take meters * 100 to get adjustment to nav_bearing |
|
long xtrack = g.pid_crosstrack.get_pid(crosstrack_error, dTnav, 1.0) * 100; |
|
nav_bearing += constrain(xtrack, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); |
|
nav_bearing = wrap_360(nav_bearing); |
|
} |
|
} |
|
|
|
static long cross_track_test() |
|
{ |
|
long temp = target_bearing - crosstrack_bearing; |
|
temp = wrap_180(temp); |
|
return abs(temp); |
|
} |
|
|
|
static void reset_crosstrack() |
|
{ |
|
crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following |
|
} |
|
|
|
static long get_altitude_above_home(void) |
|
{ |
|
// This is the altitude above the home location |
|
// The GPS gives us altitude at Sea Level |
|
// if you slope soar, you should see a negative number sometimes |
|
// ------------------------------------------------------------- |
|
return current_loc.alt - home.alt; |
|
} |
|
|
|
// distance is returned in meters |
|
static long get_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
//if(loc1->lat == 0 || loc1->lng == 0) |
|
// return -1; |
|
//if(loc2->lat == 0 || loc2->lng == 0) |
|
// return -1; |
|
float dlat = (float)(loc2->lat - loc1->lat); |
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; |
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195; |
|
} |
|
|
|
static long get_alt_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
return abs(loc1->alt - loc2->alt); |
|
} |
|
|
|
static long get_bearing(struct Location *loc1, struct Location *loc2) |
|
{ |
|
long off_x = loc2->lng - loc1->lng; |
|
long off_y = (loc2->lat - loc1->lat) * scaleLongUp; |
|
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; |
|
if (bearing < 0) bearing += 36000; |
|
return bearing; |
|
}
|
|
|