You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
844 lines
29 KiB
844 lines
29 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
// update_navigation - checks for new GPS updates and invokes navigation routines |
|
// called at 50hz |
|
static void update_navigation() |
|
{ |
|
static uint32_t nav_last_update = 0; // the system time of the last time nav was run update |
|
bool pos_updated = false; |
|
bool log_output = false; |
|
|
|
#if INERTIAL_NAV_XY == ENABLED |
|
static uint8_t nav_counter = 0; // used to slow down the navigation to 10hz |
|
|
|
// check for inertial nav updates |
|
if( inertial_nav.position_ok() ) { |
|
nav_counter++; |
|
if( nav_counter >= 5) { |
|
nav_counter = 0; |
|
|
|
// calculate time since nav controllers last ran |
|
dTnav = (float)(millis() - nav_last_update)/ 1000.0f; |
|
nav_last_update = millis(); |
|
|
|
// prevent runnup in dTnav value |
|
dTnav = min(dTnav, 1.0f); |
|
|
|
// signal to run nav controllers |
|
pos_updated = true; |
|
|
|
// signal to create log entry |
|
log_output = true; |
|
} |
|
} |
|
#else |
|
|
|
static uint32_t nav_last_gps_time = 0; // the time according to the gps |
|
|
|
// check for new gps data |
|
if( g_gps->fix && g_gps->time != nav_last_gps_time ) { |
|
|
|
// used to calculate speed in X and Y, iterms |
|
// ------------------------------------------ |
|
dTnav = (float)(millis() - nav_last_update)/ 1000.0f; |
|
nav_last_update = millis(); |
|
|
|
// prevent runup from bad GPS |
|
dTnav = min(dTnav, 1.0f); |
|
|
|
// save GPS time |
|
nav_last_gps_time = g_gps->time; |
|
|
|
// signal to run nav controllers |
|
pos_updated = true; |
|
|
|
// signal to create log entry |
|
log_output = true; |
|
} |
|
#endif |
|
|
|
// setup to calculate new navigation values and run controllers if |
|
// we've received a position update |
|
if( pos_updated ) { |
|
|
|
nav_updates.need_velpos = 1; |
|
nav_updates.need_dist_bearing = 1; |
|
nav_updates.need_nav_controllers = 1; |
|
nav_updates.need_nav_pitch_roll = 1; |
|
|
|
// update log |
|
if (log_output && (g.log_bitmask & MASK_LOG_NTUN) && motors.armed()) { |
|
Log_Write_Nav_Tuning(); |
|
} |
|
} |
|
|
|
// reduce nav outputs to zero if we have not seen a position update in 2 seconds |
|
if( millis() - nav_last_update > 2000 ) { |
|
// after 12 reads we guess we may have lost GPS signal, stop navigating |
|
// we have lost GPS signal for a moment. Reduce our error to avoid flyaways |
|
auto_roll >>= 1; |
|
auto_pitch >>= 1; |
|
} |
|
} |
|
|
|
/* |
|
run navigation updates from nav_updates. Only run one at a time to |
|
prevent too much cpu usage hurting the main loop |
|
*/ |
|
static void run_nav_updates(void) |
|
{ |
|
if (nav_updates.need_velpos) { |
|
calc_velocity_and_position(); |
|
nav_updates.need_velpos = 0; |
|
} else if (nav_updates.need_dist_bearing) { |
|
calc_distance_and_bearing(); |
|
nav_updates.need_dist_bearing = 0; |
|
} else if (nav_updates.need_nav_controllers) { |
|
run_autopilot(); |
|
update_nav_mode(); |
|
nav_updates.need_nav_controllers = 0; |
|
} else if (nav_updates.need_nav_pitch_roll) { |
|
calc_nav_pitch_roll(); |
|
nav_updates.need_nav_pitch_roll = 0; |
|
} |
|
} |
|
|
|
|
|
//******************************************************************************************************* |
|
// calc_velocity_and_filtered_position - velocity in lon and lat directions calculated from GPS position |
|
// and accelerometer data |
|
// lon_speed expressed in cm/s. positive numbers mean moving east |
|
// lat_speed expressed in cm/s. positive numbers when moving north |
|
// Note: we use gps locations directly to calculate velocity instead of asking gps for velocity because |
|
// this is more accurate below 1.5m/s |
|
// Note: even though the positions are projected using a lead filter, the velocities are calculated |
|
// from the unaltered gps locations. We do not want noise from our lead filter affecting velocity |
|
//******************************************************************************************************* |
|
static void calc_velocity_and_position(){ |
|
#if INERTIAL_NAV_XY == ENABLED |
|
if( inertial_nav.position_ok() ) { |
|
// pull velocity from interial nav library |
|
lon_speed = inertial_nav.get_longitude_velocity(); |
|
lat_speed = inertial_nav.get_latitude_velocity(); |
|
|
|
// pull position from interial nav library |
|
current_loc.lng = inertial_nav.get_longitude(); |
|
current_loc.lat = inertial_nav.get_latitude(); |
|
} |
|
#else |
|
static int32_t last_gps_longitude = 0; |
|
static int32_t last_gps_latitude = 0; |
|
|
|
// initialise last_longitude and last_latitude |
|
if( last_gps_longitude == 0 && last_gps_latitude == 0 ) { |
|
last_gps_longitude = g_gps->longitude; |
|
last_gps_latitude = g_gps->latitude; |
|
} |
|
|
|
// this speed is ~ in cm because we are using 10^7 numbers from GPS |
|
float tmp = 1.0f/dTnav; |
|
|
|
// calculate velocity |
|
lon_speed = (float)(g_gps->longitude - last_gps_longitude) * scaleLongDown * tmp; |
|
lat_speed = (float)(g_gps->latitude - last_gps_latitude) * tmp; |
|
|
|
// calculate position from gps + expected travel during gps_lag |
|
current_loc.lng = xLeadFilter.get_position(g_gps->longitude, lon_speed, g_gps->get_lag()); |
|
current_loc.lat = yLeadFilter.get_position(g_gps->latitude, lat_speed, g_gps->get_lag()); |
|
|
|
// store gps lat and lon values for next iteration |
|
last_gps_longitude = g_gps->longitude; |
|
last_gps_latitude = g_gps->latitude; |
|
#endif |
|
} |
|
|
|
//**************************************************************** |
|
// Function that will calculate the desired direction to fly and distance |
|
//**************************************************************** |
|
static void calc_distance_and_bearing() |
|
{ |
|
// waypoint distance from plane in cm |
|
// --------------------------------------- |
|
wp_distance = get_distance_cm(¤t_loc, &next_WP); |
|
home_distance = get_distance_cm(¤t_loc, &home); |
|
|
|
// wp_bearing is bearing to next waypoint |
|
// -------------------------------------------- |
|
wp_bearing = get_bearing_cd(¤t_loc, &next_WP); |
|
home_bearing = get_bearing_cd(¤t_loc, &home); |
|
|
|
// update super simple bearing (if required) because it relies on home_bearing |
|
update_super_simple_beading(); |
|
|
|
// bearing to target (used when yaw_mode = YAW_LOOK_AT_LOCATION) |
|
yaw_look_at_WP_bearing = get_bearing_cd(¤t_loc, &yaw_look_at_WP); |
|
} |
|
|
|
static void calc_location_error(struct Location *next_loc) |
|
{ |
|
/* |
|
* Becuase we are using lat and lon to do our distance errors here's a quick chart: |
|
* 100 = 1m |
|
* 1000 = 11m = 36 feet |
|
* 1800 = 19.80m = 60 feet |
|
* 3000 = 33m |
|
* 10000 = 111m |
|
*/ |
|
|
|
// X Error |
|
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 Go East |
|
|
|
// Y Error |
|
lat_error = next_loc->lat - current_loc.lat; // 500 - 0 = 500 Go North |
|
} |
|
|
|
// run_autopilot - highest level call to process mission commands |
|
static void run_autopilot() |
|
{ |
|
switch( control_mode ) { |
|
case AUTO: |
|
// majority of command logic is in commands_logic.pde |
|
verify_commands(); |
|
break; |
|
case GUIDED: |
|
// switch to loiter once we've reached the target location and altitude |
|
if(verify_nav_wp()) { |
|
set_nav_mode(NAV_LOITER); |
|
} |
|
case RTL: |
|
verify_RTL(); |
|
break; |
|
} |
|
} |
|
|
|
// set_nav_mode - update nav mode and initialise any variables as required |
|
static bool set_nav_mode(uint8_t new_nav_mode) |
|
{ |
|
// boolean to ensure proper initialisation of nav modes |
|
bool nav_initialised = false; |
|
|
|
// return immediately if no change |
|
if( new_nav_mode == nav_mode ) { |
|
return true; |
|
} |
|
|
|
switch( new_nav_mode ) { |
|
|
|
case NAV_NONE: |
|
nav_initialised = true; |
|
break; |
|
|
|
case NAV_CIRCLE: |
|
// start circling around current location |
|
set_next_WP(¤t_loc); |
|
circle_WP = next_WP; |
|
circle_angle = 0; |
|
nav_initialised = true; |
|
break; |
|
|
|
case NAV_LOITER: |
|
// set target to current position |
|
next_WP.lat = current_loc.lat; |
|
next_WP.lng = current_loc.lng; |
|
nav_initialised = true; |
|
break; |
|
|
|
case NAV_WP: |
|
nav_initialised = true; |
|
break; |
|
|
|
case NAV_LOITER_INAV: |
|
loiter_set_target(inertial_nav.get_latitude_diff(), inertial_nav.get_longitude_diff()); |
|
nav_initialised = true; |
|
break; |
|
} |
|
|
|
// if initialisation has been successful update the yaw mode |
|
if( nav_initialised ) { |
|
nav_mode = new_nav_mode; |
|
} |
|
|
|
// return success or failure |
|
return nav_initialised; |
|
} |
|
|
|
// update_nav_mode - run navigation controller based on nav_mode |
|
static void update_nav_mode() |
|
{ |
|
int16_t loiter_delta; |
|
int16_t speed; |
|
|
|
switch( nav_mode ) { |
|
|
|
case NAV_NONE: |
|
// do nothing |
|
break; |
|
|
|
case NAV_CIRCLE: |
|
// check if we have missed the WP |
|
loiter_delta = (wp_bearing - old_wp_bearing)/100; |
|
|
|
// reset the old value |
|
old_wp_bearing = wp_bearing; |
|
|
|
// wrap values |
|
if (loiter_delta > 180) loiter_delta -= 360; |
|
if (loiter_delta < -180) loiter_delta += 360; |
|
|
|
// sum the angle around the WP |
|
loiter_sum += loiter_delta; |
|
|
|
circle_angle += (circle_rate * dTnav); |
|
|
|
//1 degree = 0.0174532925 radians |
|
|
|
// wrap |
|
if (circle_angle > 6.28318531f) |
|
circle_angle -= 6.28318531f; |
|
|
|
next_WP.lng = circle_WP.lng + (g.circle_radius * 100 * cosf(1.57f - circle_angle) * scaleLongUp); |
|
next_WP.lat = circle_WP.lat + (g.circle_radius * 100 * sinf(1.57f - circle_angle)); |
|
|
|
// use error as the desired rate towards the target |
|
// nav_lon, nav_lat is calculated |
|
|
|
// if the target location is >4m use waypoint controller |
|
if(wp_distance > 400) { |
|
calc_nav_rate(get_desired_speed(g.waypoint_speed_max)); |
|
}else{ |
|
// calc the lat and long error to the target |
|
calc_location_error(&next_WP); |
|
// call loiter controller |
|
calc_loiter(long_error, lat_error); |
|
} |
|
break; |
|
|
|
case NAV_LOITER: |
|
// check if user is overriding the loiter controller |
|
if((abs(g.rc_2.control_in) + abs(g.rc_1.control_in)) > 500) { |
|
if(wp_distance > 500){ |
|
ap.loiter_override = true; |
|
} |
|
} |
|
|
|
// check if user has release sticks |
|
if(ap.loiter_override) { |
|
if(g.rc_2.control_in == 0 && g.rc_1.control_in == 0) { |
|
ap.loiter_override = false; |
|
// reset LOITER to current position |
|
next_WP.lat = current_loc.lat; |
|
next_WP.lng = current_loc.lng; |
|
} |
|
// We bring copy over our Iterms for wind control, but we don't navigate |
|
nav_lon = g.pid_loiter_rate_lon.get_integrator(); |
|
nav_lat = g.pid_loiter_rate_lon.get_integrator(); |
|
nav_lon = constrain(nav_lon, -2000, 2000); |
|
nav_lat = constrain(nav_lat, -2000, 2000); |
|
}else{ |
|
// calc error to target |
|
calc_location_error(&next_WP); |
|
// use error as the desired rate towards the target |
|
calc_loiter(long_error, lat_error); |
|
} |
|
break; |
|
|
|
case NAV_WP: |
|
// calc position error to target |
|
calc_location_error(&next_WP); |
|
// calc speed to target |
|
speed = get_desired_speed(g.waypoint_speed_max); |
|
// use error as the desired rate towards the target |
|
calc_nav_rate(speed); |
|
break; |
|
|
|
case NAV_LOITER_INAV: |
|
get_loiter_pos_lat_lon(loiter_lat_from_home_cm, loiter_lon_from_home_cm, 0.1f); |
|
break; |
|
} |
|
|
|
/* |
|
// To-Do: check that we haven't broken toy mode |
|
case TOY_A: |
|
case TOY_M: |
|
set_nav_mode(NAV_NONE); |
|
update_nav_wp(); |
|
break; |
|
} |
|
*/ |
|
} |
|
|
|
static bool check_missed_wp() |
|
{ |
|
int32_t temp; |
|
temp = wp_bearing - original_wp_bearing; |
|
temp = wrap_180(temp); |
|
return (labs(temp) > 9000); // we passed the waypoint by 100 degrees |
|
} |
|
|
|
//////////////////////////////////////////////////////////////// |
|
// Loiter controller (based on GPS position) |
|
//////////////////////////////////////////////////////////////// |
|
#define NAV_ERR_MAX 600 |
|
#define NAV_RATE_ERR_MAX 250 |
|
static void calc_loiter(int16_t x_error, int16_t y_error) |
|
{ |
|
int32_t p,i,d; // used to capture pid values for logging |
|
int32_t output; |
|
int32_t x_target_speed, y_target_speed; |
|
|
|
// East / West |
|
x_target_speed = g.pi_loiter_lon.get_p(x_error); // calculate desired speed from lon error |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
// log output if PID logging is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) { |
|
Log_Write_PID(CH6_LOITER_KP, x_error, x_target_speed, 0, 0, x_target_speed, tuning_value); |
|
} |
|
#endif |
|
|
|
// calculate rate error |
|
x_rate_error = x_target_speed - lon_speed; // calc the speed error |
|
|
|
p = g.pid_loiter_rate_lon.get_p(x_rate_error); |
|
i = g.pid_loiter_rate_lon.get_i(x_rate_error + x_error, dTnav); |
|
d = g.pid_loiter_rate_lon.get_d(x_error, dTnav); |
|
d = constrain(d, -2000, 2000); |
|
|
|
// get rid of noise |
|
if(abs(lon_speed) < 50) { |
|
d = 0; |
|
} |
|
|
|
output = p + i + d; |
|
nav_lon = constrain(output, -4500, 4500); // constrain max angle to 45 degrees |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
// log output if PID logging is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) { |
|
Log_Write_PID(CH6_LOITER_RATE_KP, x_rate_error, p, i, d, nav_lon, tuning_value); |
|
} |
|
#endif |
|
|
|
// North / South |
|
y_target_speed = g.pi_loiter_lat.get_p(y_error); // calculate desired speed from lat error |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
// log output if PID logging is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_KP || g.radio_tuning == CH6_LOITER_KI) ) { |
|
Log_Write_PID(CH6_LOITER_KP+100, y_error, y_target_speed, 0, 0, y_target_speed, tuning_value); |
|
} |
|
#endif |
|
|
|
// calculate rate error |
|
y_rate_error = y_target_speed - lat_speed; // calc the speed error |
|
|
|
p = g.pid_loiter_rate_lat.get_p(y_rate_error); |
|
i = g.pid_loiter_rate_lat.get_i(y_rate_error + y_error, dTnav); |
|
d = g.pid_loiter_rate_lat.get_d(y_error, dTnav); |
|
d = constrain(d, -2000, 2000); |
|
|
|
// get rid of noise |
|
if(abs(lat_speed) < 50) { |
|
d = 0; |
|
} |
|
|
|
output = p + i + d; |
|
nav_lat = constrain(output, -4500, 4500); // constrain max angle to 45 degrees |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
// log output if PID logging is on and we are tuning the yaw |
|
if( g.log_bitmask & MASK_LOG_PID && (g.radio_tuning == CH6_LOITER_RATE_KP || g.radio_tuning == CH6_LOITER_RATE_KI || g.radio_tuning == CH6_LOITER_RATE_KD) ) { |
|
Log_Write_PID(CH6_LOITER_RATE_KP+100, y_rate_error, p, i, d, nav_lat, tuning_value); |
|
} |
|
#endif |
|
|
|
// copy over I term to Nav_Rate |
|
g.pid_nav_lon.set_integrator(g.pid_loiter_rate_lon.get_integrator()); |
|
g.pid_nav_lat.set_integrator(g.pid_loiter_rate_lat.get_integrator()); |
|
} |
|
|
|
/////////////////////////////////////////////////////////// |
|
// Waypoint controller (based on GPS position) |
|
/////////////////////////////////////////////////////////// |
|
static void calc_nav_rate(int16_t max_speed) |
|
{ |
|
float temp, temp_x, temp_y; |
|
|
|
// push us towards the original track |
|
update_crosstrack(); |
|
|
|
int16_t cross_speed = crosstrack_error * -g.crosstrack_gain; // scale down crosstrack_error in cm |
|
cross_speed = constrain(cross_speed, -150, 150); |
|
|
|
// rotate by 90 to deal with trig functions |
|
temp = (9000l - wp_bearing) * RADX100; |
|
temp_x = cosf(temp); |
|
temp_y = sinf(temp); |
|
|
|
// rotate desired spped vector: |
|
int32_t x_target_speed = max_speed * temp_x - cross_speed * temp_y; |
|
int32_t y_target_speed = cross_speed * temp_x + max_speed * temp_y; |
|
|
|
// East / West |
|
// calculate rate error |
|
x_rate_error = x_target_speed - lon_speed; |
|
|
|
x_rate_error = constrain(x_rate_error, -500, 500); |
|
nav_lon = g.pid_nav_lon.get_pid(x_rate_error, dTnav); |
|
int32_t tilt = (x_target_speed * x_target_speed * (int32_t)g.tilt_comp) / 10000; |
|
|
|
if(x_target_speed < 0) tilt = -tilt; |
|
nav_lon += tilt; |
|
|
|
|
|
// North / South |
|
// calculate rate error |
|
y_rate_error = y_target_speed - lat_speed; |
|
|
|
y_rate_error = constrain(y_rate_error, -500, 500); // added a rate error limit to keep pitching down to a minimum |
|
nav_lat = g.pid_nav_lat.get_pid(y_rate_error, dTnav); |
|
tilt = (y_target_speed * y_target_speed * (int32_t)g.tilt_comp) / 10000; |
|
|
|
if(y_target_speed < 0) tilt = -tilt; |
|
nav_lat += tilt; |
|
|
|
// copy over I term to Loiter_Rate |
|
g.pid_loiter_rate_lon.set_integrator(g.pid_nav_lon.get_integrator()); |
|
g.pid_loiter_rate_lat.set_integrator(g.pid_nav_lat.get_integrator()); |
|
} |
|
|
|
|
|
// this calculation rotates our World frame of reference to the copter's frame of reference |
|
// We use the DCM's matrix to precalculate these trig values at 50hz |
|
static void calc_nav_pitch_roll() |
|
{ |
|
// To-Do: remove this hack dependent upon nav_mode |
|
if( nav_mode != NAV_LOITER_INAV ) { |
|
// rotate the vector |
|
auto_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x; |
|
auto_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y; |
|
|
|
// flip pitch because forward is negative |
|
auto_pitch = -auto_pitch; |
|
|
|
// constrain maximum roll and pitch angles to 45 degrees |
|
auto_roll = constrain(auto_roll, -4500, 4500); |
|
auto_pitch = constrain(auto_pitch, -4500, 4500); |
|
} |
|
} |
|
|
|
static int16_t get_desired_speed(int16_t max_speed) |
|
{ |
|
/* |
|
Based on Equation by Bill Premerlani & Robert Lefebvre |
|
(sq(V2)-sq(V1))/2 = A(X2-X1) |
|
derives to: |
|
V1 = sqrt(sq(V2) - 2*A*(X2-X1)) |
|
*/ |
|
|
|
if(ap.fast_corner) { |
|
// don't slow down |
|
}else{ |
|
if(wp_distance < 20000){ // limit the size of numbers we're dealing with to avoid overflow |
|
// go slower |
|
int32_t temp = 2 * 100 * (int32_t)(wp_distance - g.waypoint_radius * 100); |
|
int32_t s_min = WAYPOINT_SPEED_MIN; |
|
temp += s_min * s_min; |
|
if( temp < 0 ) temp = 0; // check to ensure we don't try to take the sqrt of a negative number |
|
max_speed = sqrtf((float)temp); |
|
max_speed = min(max_speed, g.waypoint_speed_max); |
|
} |
|
} |
|
|
|
max_speed = min(max_speed, max_speed_old + (100 * dTnav));// limit going faster |
|
max_speed = max(max_speed, WAYPOINT_SPEED_MIN); // don't go too slow |
|
max_speed_old = max_speed; |
|
return max_speed; |
|
} |
|
|
|
static void reset_desired_speed() |
|
{ |
|
max_speed_old = 0; |
|
} |
|
|
|
static void update_crosstrack(void) |
|
{ |
|
// Crosstrack Error |
|
// ---------------- |
|
if (wp_distance >= (unsigned long)max((g.crosstrack_min_distance * 100),0) && |
|
abs(wrap_180(wp_bearing - original_wp_bearing)) < 4500) { |
|
|
|
float temp = (wp_bearing - original_wp_bearing) * RADX100; |
|
crosstrack_error = sinf(temp) * wp_distance; // Meters we are off track line |
|
}else{ |
|
// fade out crosstrack |
|
crosstrack_error >>= 1; |
|
} |
|
} |
|
|
|
static void force_new_altitude(int32_t new_alt) |
|
{ |
|
next_WP.alt = new_alt; |
|
set_alt_change(REACHED_ALT); |
|
} |
|
|
|
static void set_new_altitude(int32_t new_alt) |
|
{ |
|
// if no change exit immediately |
|
if(new_alt == next_WP.alt) { |
|
return; |
|
} |
|
|
|
// update new target altitude |
|
next_WP.alt = new_alt; |
|
|
|
if(next_WP.alt > (current_loc.alt + 80)) { |
|
// we are below, going up |
|
set_alt_change(ASCENDING); |
|
|
|
}else if(next_WP.alt < (current_loc.alt - 80)) { |
|
// we are above, going down |
|
set_alt_change(DESCENDING); |
|
|
|
}else{ |
|
// No Change |
|
set_alt_change(REACHED_ALT); |
|
} |
|
} |
|
|
|
static void verify_altitude() |
|
{ |
|
if(alt_change_flag == ASCENDING) { |
|
// we are below, going up |
|
if(current_loc.alt > next_WP.alt - 50) { |
|
set_alt_change(REACHED_ALT); |
|
} |
|
}else if (alt_change_flag == DESCENDING) { |
|
// we are above, going down |
|
if(current_loc.alt <= next_WP.alt + 50){ |
|
set_alt_change(REACHED_ALT); |
|
} |
|
} |
|
} |
|
|
|
// Keeps old data out of our calculation / logs |
|
static void reset_nav_params(void) |
|
{ |
|
// always start Circle mode at same angle |
|
circle_angle = 0; |
|
|
|
// We must be heading to a new WP, so XTrack must be 0 |
|
crosstrack_error = 0; |
|
|
|
// Will be set by new command |
|
wp_bearing = 0; |
|
|
|
// Will be set by new command |
|
wp_distance = 0; |
|
|
|
// Will be set by new command, used by loiter |
|
long_error = 0; |
|
lat_error = 0; |
|
nav_lon = 0; |
|
nav_lat = 0; |
|
nav_roll = 0; |
|
nav_pitch = 0; |
|
auto_roll = 0; |
|
auto_pitch = 0; |
|
} |
|
|
|
static int32_t wrap_360(int32_t error) |
|
{ |
|
if (error > 36000) error -= 36000; |
|
if (error < 0) error += 36000; |
|
return error; |
|
} |
|
|
|
static int32_t wrap_180(int32_t error) |
|
{ |
|
if (error > 18000) error -= 36000; |
|
if (error < -18000) error += 36000; |
|
return error; |
|
} |
|
|
|
// get_yaw_slew - reduces rate of change of yaw to a maximum |
|
// assumes it is called at 100hz so centi-degrees and update rate cancel each other out |
|
static int32_t get_yaw_slew(int32_t current_yaw, int32_t desired_yaw, int16_t deg_per_sec) |
|
{ |
|
return wrap_360(current_yaw + constrain(wrap_180(desired_yaw - current_yaw), -deg_per_sec, deg_per_sec)); |
|
} |
|
|
|
//////////////////////////////////////////////////// |
|
// Loiter controller using inertial nav |
|
//////////////////////////////////////////////////// |
|
|
|
// get_loiter_accel - loiter acceration controllers with desired accelerations provided in forward/right directions in cm/s/s |
|
static void |
|
get_loiter_accel(int16_t accel_req_forward, int16_t accel_req_right) |
|
{ |
|
static float z_accel_meas = 0; // The acceleration error in cm. |
|
static float accel_forward = 0; // The acceleration error in cm. |
|
static float accel_right = 0; // The acceleration error in cm. |
|
|
|
z_accel_meas = -AP_INTERTIALNAV_GRAVITY * 100; |
|
|
|
// calculate accel and filter with fc = 2 Hz |
|
// 100hz sample rate, 2hz filter, alpha = 0.11164f |
|
// 20hz sample rate, 2hz filter, alpha = 0.38587f |
|
// 10hz sample rate, 2hz filter, alpha = 0.55686f |
|
accel_forward = accel_forward + 0.55686f * (accel_req_forward - accel_forward); |
|
accel_right = accel_right + 0.55686f * (accel_req_right - accel_right); |
|
|
|
// update angle targets that will be passed to stabilize controller |
|
auto_roll = constrain((accel_right/(-z_accel_meas))*(18000/M_PI), -4500, 4500); |
|
auto_pitch = constrain((-accel_forward/(-z_accel_meas*cos_roll_x))*(18000/M_PI), -4500, 4500); |
|
} |
|
|
|
|
|
// get_loiter_accel_lat_lon - loiter acceration controller with desired accelerations provided in lat/lon directions in cm/s/s |
|
static void |
|
get_loiter_accel_lat_lon(int16_t accel_lat, int16_t accel_lon) |
|
{ |
|
float accel_forward; |
|
float accel_right; |
|
|
|
accel_forward = accel_lat*cos_yaw + accel_lon*sin_yaw; |
|
accel_right = -accel_lat*sin_yaw + accel_lon*cos_yaw; |
|
|
|
get_loiter_accel(accel_forward, accel_right); |
|
} |
|
|
|
|
|
// get_loiter_vel_lat_lon - loiter velocity controller with desired velocity provided in lat/lon directions in cm/s |
|
#define MAX_LOITER_VEL_ACCEL 400 // should be 1.5 times larger than MAX_LOITER_POS_ACCEL |
|
static void |
|
get_loiter_vel_lat_lon(int16_t vel_lat, int16_t vel_lon, float dt) |
|
{ |
|
static float speed_error_lat = 0; // The velocity in cm/s. |
|
static float speed_error_lon = 0; // The velocity in cm/s. |
|
|
|
float speed_lat = inertial_nav.get_latitude_velocity(); |
|
float speed_lon = inertial_nav.get_longitude_velocity(); |
|
|
|
int32_t accel_lat; |
|
int32_t accel_lon; |
|
int32_t accel_total; |
|
|
|
int16_t lat_p,lat_i,lat_d; |
|
int16_t lon_p,lon_i,lon_d; |
|
|
|
// calculate vel error and Filter with fc = 2 Hz |
|
// 100hz sample rate, 2hz filter, alpha = 0.11164f |
|
// 20hz sample rate, 2hz filter, alpha = 0.38587f |
|
// 10hz sample rate, 2hz filter, alpha = 0.55686f |
|
speed_error_lat = speed_error_lat + 0.55686f * ((vel_lat - speed_lat) - speed_error_lat); |
|
speed_error_lon = speed_error_lon + 0.55686f * ((vel_lon - speed_lon) - speed_error_lon); |
|
|
|
lat_p = g.pid_loiter_rate_lat.get_p(speed_error_lat); |
|
lat_i = g.pid_loiter_rate_lat.get_i(speed_error_lat, dt); |
|
lat_d = g.pid_loiter_rate_lat.get_d(speed_error_lat, dt); |
|
|
|
lon_p = g.pid_loiter_rate_lon.get_p(speed_error_lon); |
|
lon_i = g.pid_loiter_rate_lon.get_i(speed_error_lon, dt); |
|
lon_d = g.pid_loiter_rate_lon.get_d(speed_error_lon, dt); |
|
|
|
accel_lat = (lat_p+lat_i+lat_d); |
|
accel_lon = (lon_p+lon_i+lon_d); |
|
|
|
accel_total = safe_sqrt(accel_lat*accel_lat + accel_lon*accel_lon); |
|
|
|
if( accel_total > MAX_LOITER_VEL_ACCEL ) { |
|
accel_lat = MAX_LOITER_VEL_ACCEL * accel_lat/accel_total; |
|
accel_lon = MAX_LOITER_VEL_ACCEL * accel_lon/accel_total; |
|
} |
|
|
|
get_loiter_accel_lat_lon(accel_lat, accel_lon); |
|
} |
|
|
|
// get_loiter_pos_lat_lon - loiter position controller with desired position provided as distance from home in lat/lon directions in cm |
|
#define MAX_LOITER_POS_VELOCITY 750 // should be 1.5 ~ 2.0 times the pilot input's max velocity |
|
#define MAX_LOITER_POS_ACCEL 250 |
|
static void |
|
get_loiter_pos_lat_lon(int32_t target_lat, int32_t target_lon, float dt) |
|
{ |
|
static float dist_error_lat; |
|
int32_t desired_vel_lat; |
|
|
|
static float dist_error_lon; |
|
int32_t desired_vel_lon; |
|
|
|
int32_t dist_error_total; |
|
|
|
int16_t vel_sqrt; |
|
int32_t vel_total; |
|
|
|
int16_t linear_distance; // the distace we swap between linear and sqrt. |
|
|
|
// calculate distance error and Filter with fc = 2 Hz |
|
// 100hz sample rate, 2hz filter, alpha = 0.11164f |
|
// 20hz sample rate, 2hz filter, alpha = 0.38587f |
|
// 10hz sample rate, 2hz filter, alpha = 0.55686f |
|
dist_error_lat = dist_error_lat + 0.55686f * ((target_lat - inertial_nav.get_latitude_diff()) - dist_error_lat); |
|
dist_error_lon = dist_error_lon + 0.55686f * ((target_lon - inertial_nav.get_longitude_diff()) - dist_error_lon); |
|
|
|
linear_distance = MAX_LOITER_POS_ACCEL/(2*g.pi_loiter_lat.kP()*g.pi_loiter_lat.kP()); |
|
|
|
dist_error_total = safe_sqrt(dist_error_lat*dist_error_lat + dist_error_lon*dist_error_lon); |
|
if( dist_error_total > 2*linear_distance ) { |
|
vel_sqrt = constrain(safe_sqrt(2*MAX_LOITER_POS_ACCEL*(dist_error_total-linear_distance)),0,1000); |
|
desired_vel_lat = vel_sqrt * dist_error_lat/dist_error_total; |
|
desired_vel_lon = vel_sqrt * dist_error_lon/dist_error_total; |
|
}else{ |
|
desired_vel_lat = g.pi_loiter_lat.get_p(dist_error_lat); |
|
desired_vel_lon = g.pi_loiter_lon.get_p(dist_error_lon); |
|
} |
|
|
|
vel_total = safe_sqrt(desired_vel_lat*desired_vel_lat + desired_vel_lon*desired_vel_lon); |
|
if( vel_total > MAX_LOITER_POS_VELOCITY ) { |
|
desired_vel_lat = MAX_LOITER_POS_VELOCITY * desired_vel_lat/vel_total; |
|
desired_vel_lon = MAX_LOITER_POS_VELOCITY * desired_vel_lon/vel_total; |
|
} |
|
|
|
get_loiter_vel_lat_lon(desired_vel_lat, desired_vel_lon, dt); |
|
} |
|
|
|
|
|
#define MAX_LOITER_POS_VEL_VELOCITY 1000 |
|
// loiter_set_pos_from_velocity - loiter velocity controller with desired velocity provided in front/right directions in cm/s |
|
static void |
|
loiter_set_pos_from_velocity(int16_t vel_forward_cms, int16_t vel_right_cms, float dt) |
|
{ |
|
int32_t vel_lat; |
|
int32_t vel_lon; |
|
int32_t vel_total; |
|
|
|
vel_lat = vel_forward_cms*cos_yaw - vel_right_cms*sin_yaw; |
|
vel_lon = vel_forward_cms*sin_yaw + vel_right_cms*cos_yaw; |
|
|
|
// constrain the velocity vector and scale if necessary |
|
vel_total = safe_sqrt(vel_lat*vel_lat + vel_lon*vel_lon); |
|
if( vel_total > MAX_LOITER_POS_VEL_VELOCITY ) { |
|
vel_lat = MAX_LOITER_POS_VEL_VELOCITY * vel_lat/vel_total; |
|
vel_lon = MAX_LOITER_POS_VEL_VELOCITY * vel_lon/vel_total; |
|
} |
|
|
|
// update loiter target position |
|
loiter_lat_from_home_cm += vel_lat * dt; |
|
loiter_lon_from_home_cm += vel_lon * dt; |
|
|
|
// update next_WP location for reporting purposes |
|
next_WP.lat = home.lat + loiter_lat_from_home_cm; |
|
next_WP.lng = home.lng + loiter_lat_from_home_cm * scaleLongUp; |
|
} |
|
|
|
// loiter_set_target - set loiter's target position from home in cm |
|
static void |
|
loiter_set_target(float lat_from_home_cm, float lon_from_home_cm) |
|
{ |
|
loiter_lat_from_home_cm = lat_from_home_cm; |
|
loiter_lon_from_home_cm = lon_from_home_cm; |
|
|
|
// update next_WP location for reporting purposes |
|
next_WP.lat = home.lat + loiter_lat_from_home_cm; |
|
next_WP.lng = home.lng + loiter_lat_from_home_cm * scaleLongUp; |
|
}
|
|
|