You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
543 lines
13 KiB
543 lines
13 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/***************************************************************************** |
|
The init_ardupilot function processes everything we need for an in - air restart |
|
We will determine later if we are actually on the ground and process a |
|
ground start in that case. |
|
|
|
*****************************************************************************/ |
|
|
|
#include "Rover.h" |
|
#include "version.h" |
|
|
|
#if CLI_ENABLED == ENABLED |
|
|
|
// This is the help function |
|
int8_t Rover::main_menu_help(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
cliSerial->printf("Commands:\n" |
|
" logs log readback/setup mode\n" |
|
" setup setup mode\n" |
|
" test test mode\n" |
|
"\n" |
|
"Move the slide switch and reset to FLY.\n" |
|
"\n"); |
|
return(0); |
|
} |
|
|
|
// Command/function table for the top-level menu. |
|
|
|
static const struct Menu::command main_menu_commands[] = { |
|
// command function called |
|
// ======= =============== |
|
{"logs", MENU_FUNC(process_logs)}, |
|
{"setup", MENU_FUNC(setup_mode)}, |
|
{"test", MENU_FUNC(test_mode)}, |
|
{"reboot", MENU_FUNC(reboot_board)}, |
|
{"help", MENU_FUNC(main_menu_help)} |
|
}; |
|
|
|
// Create the top-level menu object. |
|
MENU(main_menu, THISFIRMWARE, main_menu_commands); |
|
|
|
int8_t Rover::reboot_board(uint8_t argc, const Menu::arg *argv) |
|
{ |
|
hal.scheduler->reboot(false); |
|
return 0; |
|
} |
|
|
|
// the user wants the CLI. It never exits |
|
void Rover::run_cli(AP_HAL::UARTDriver *port) |
|
{ |
|
// disable the failsafe code in the CLI |
|
hal.scheduler->register_timer_failsafe(NULL,1); |
|
|
|
// disable the mavlink delay callback |
|
hal.scheduler->register_delay_callback(NULL, 5); |
|
|
|
cliSerial = port; |
|
Menu::set_port(port); |
|
port->set_blocking_writes(true); |
|
|
|
while (1) { |
|
main_menu.run(); |
|
} |
|
} |
|
|
|
#endif // CLI_ENABLED |
|
|
|
static void mavlink_delay_cb_static() |
|
{ |
|
rover.mavlink_delay_cb(); |
|
} |
|
|
|
static void failsafe_check_static() |
|
{ |
|
rover.failsafe_check(); |
|
} |
|
|
|
void Rover::init_ardupilot() |
|
{ |
|
// initialise console serial port |
|
serial_manager.init_console(); |
|
|
|
cliSerial->printf("\n\nInit " FIRMWARE_STRING |
|
"\n\nFree RAM: %u\n", |
|
hal.util->available_memory()); |
|
|
|
// |
|
// Check the EEPROM format version before loading any parameters from EEPROM. |
|
// |
|
|
|
load_parameters(); |
|
|
|
GCS_MAVLINK::set_dataflash(&DataFlash); |
|
|
|
// initialise serial ports |
|
serial_manager.init(); |
|
|
|
// setup first port early to allow BoardConfig to report errors |
|
gcs[0].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); |
|
|
|
// Register mavlink_delay_cb, which will run anytime you have |
|
// more than 5ms remaining in your call to hal.scheduler->delay |
|
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); |
|
|
|
BoardConfig.init(); |
|
|
|
ServoRelayEvents.set_channel_mask(0xFFF0); |
|
|
|
set_control_channels(); |
|
|
|
battery.init(); |
|
|
|
// keep a record of how many resets have happened. This can be |
|
// used to detect in-flight resets |
|
g.num_resets.set_and_save(g.num_resets+1); |
|
|
|
// init baro before we start the GCS, so that the CLI baro test works |
|
barometer.init(); |
|
|
|
// we start by assuming USB connected, as we initialed the serial |
|
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. |
|
usb_connected = true; |
|
check_usb_mux(); |
|
|
|
// setup telem slots with serial ports |
|
for (uint8_t i = 1; i < MAVLINK_COMM_NUM_BUFFERS; i++) { |
|
gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i); |
|
} |
|
|
|
// setup frsky telemetry |
|
#if FRSKY_TELEM_ENABLED == ENABLED |
|
frsky_telemetry.init(serial_manager); |
|
#endif |
|
|
|
mavlink_system.sysid = g.sysid_this_mav; |
|
|
|
#if LOGGING_ENABLED == ENABLED |
|
log_init(); |
|
#endif |
|
|
|
if (g.compass_enabled==true) { |
|
if (!compass.init()|| !compass.read()) { |
|
cliSerial->println("Compass initialisation failed!"); |
|
g.compass_enabled = false; |
|
} else { |
|
ahrs.set_compass(&compass); |
|
//compass.get_offsets(); // load offsets to account for airframe magnetic interference |
|
} |
|
} |
|
|
|
// initialise sonar |
|
init_sonar(); |
|
|
|
// and baro for EKF |
|
init_barometer(true); |
|
|
|
// Do GPS init |
|
gps.init(&DataFlash, serial_manager); |
|
|
|
rc_override_active = hal.rcin->set_overrides(rc_override, 8); |
|
|
|
init_rc_in(); // sets up rc channels from radio |
|
init_rc_out(); // sets up the timer libs |
|
|
|
relay.init(); |
|
|
|
#if MOUNT == ENABLED |
|
// initialise camera mount |
|
camera_mount.init(&DataFlash, serial_manager); |
|
#endif |
|
|
|
/* |
|
setup the 'main loop is dead' check. Note that this relies on |
|
the RC library being initialised. |
|
*/ |
|
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); |
|
|
|
|
|
#if CLI_ENABLED == ENABLED |
|
// If the switch is in 'menu' mode, run the main menu. |
|
// |
|
// Since we can't be sure that the setup or test mode won't leave |
|
// the system in an odd state, we don't let the user exit the top |
|
// menu; they must reset in order to fly. |
|
// |
|
if (g.cli_enabled == 1) { |
|
const char *msg = "\nPress ENTER 3 times to start interactive setup\n"; |
|
cliSerial->println(msg); |
|
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) { |
|
gcs[1].get_uart()->println(msg); |
|
} |
|
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) { |
|
gcs[2].get_uart()->println(msg); |
|
} |
|
} |
|
#endif |
|
|
|
init_capabilities(); |
|
|
|
startup_ground(); |
|
|
|
set_mode((enum mode)g.initial_mode.get()); |
|
|
|
// set the correct flight mode |
|
// --------------------------- |
|
reset_control_switch(); |
|
} |
|
|
|
//******************************************************************************** |
|
//This function does all the calibrations, etc. that we need during a ground start |
|
//******************************************************************************** |
|
void Rover::startup_ground(void) |
|
{ |
|
set_mode(INITIALISING); |
|
|
|
gcs_send_text(MAV_SEVERITY_INFO,"<startup_ground> Ground start"); |
|
|
|
#if(GROUND_START_DELAY > 0) |
|
gcs_send_text(MAV_SEVERITY_NOTICE,"<startup_ground> With delay"); |
|
delay(GROUND_START_DELAY * 1000); |
|
#endif |
|
|
|
//IMU ground start |
|
//------------------------ |
|
// |
|
|
|
startup_INS_ground(); |
|
|
|
// read the radio to set trims |
|
// --------------------------- |
|
trim_radio(); |
|
|
|
// initialise mission library |
|
mission.init(); |
|
|
|
// we don't want writes to the serial port to cause us to pause |
|
// so set serial ports non-blocking once we are ready to drive |
|
serial_manager.set_blocking_writes_all(false); |
|
|
|
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW)); |
|
ins.set_dataflash(&DataFlash); |
|
|
|
gcs_send_text(MAV_SEVERITY_INFO,"Ready to drive"); |
|
} |
|
|
|
/* |
|
set the in_reverse flag |
|
reset the throttle integrator if this changes in_reverse |
|
*/ |
|
void Rover::set_reverse(bool reverse) |
|
{ |
|
if (in_reverse == reverse) { |
|
return; |
|
} |
|
g.pidSpeedThrottle.reset_I(); |
|
steerController.reset_I(); |
|
nav_controller->set_reverse(reverse); |
|
steerController.set_reverse(reverse); |
|
in_reverse = reverse; |
|
} |
|
|
|
void Rover::set_mode(enum mode mode) |
|
{ |
|
|
|
if (control_mode == mode){ |
|
// don't switch modes if we are already in the correct mode. |
|
return; |
|
} |
|
|
|
// If we are changing out of AUTO mode reset the loiter timer |
|
if (control_mode == AUTO) { |
|
loiter_time = 0; |
|
} |
|
|
|
control_mode = mode; |
|
throttle_last = 0; |
|
throttle = 500; |
|
g.pidSpeedThrottle.reset_I(); |
|
|
|
#if FRSKY_TELEM_ENABLED == ENABLED |
|
frsky_telemetry.update_control_mode(control_mode); |
|
#endif |
|
|
|
if (control_mode != AUTO) { |
|
auto_triggered = false; |
|
} |
|
|
|
switch(control_mode) { |
|
case MANUAL: |
|
case HOLD: |
|
case LEARNING: |
|
case STEERING: |
|
auto_throttle_mode = false; |
|
break; |
|
|
|
case AUTO: |
|
auto_throttle_mode = true; |
|
rtl_complete = false; |
|
restart_nav(); |
|
break; |
|
|
|
case RTL: |
|
auto_throttle_mode = true; |
|
do_RTL(); |
|
break; |
|
|
|
case GUIDED: |
|
auto_throttle_mode = true; |
|
rtl_complete = false; |
|
/* |
|
when entering guided mode we set the target as the current |
|
location. This matches the behaviour of the copter code. |
|
*/ |
|
guided_WP = current_loc; |
|
set_guided_WP(); |
|
break; |
|
|
|
default: |
|
auto_throttle_mode = true; |
|
do_RTL(); |
|
break; |
|
} |
|
|
|
if (should_log(MASK_LOG_MODE)) { |
|
DataFlash.Log_Write_Mode(control_mode); |
|
} |
|
} |
|
|
|
/* |
|
set_mode() wrapper for MAVLink SET_MODE |
|
*/ |
|
bool Rover::mavlink_set_mode(uint8_t mode) |
|
{ |
|
switch (mode) { |
|
case MANUAL: |
|
case HOLD: |
|
case LEARNING: |
|
case STEERING: |
|
case GUIDED: |
|
case AUTO: |
|
case RTL: |
|
set_mode((enum mode)mode); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
called to set/unset a failsafe event. |
|
*/ |
|
void Rover::failsafe_trigger(uint8_t failsafe_type, bool on) |
|
{ |
|
uint8_t old_bits = failsafe.bits; |
|
if (on) { |
|
failsafe.bits |= failsafe_type; |
|
} else { |
|
failsafe.bits &= ~failsafe_type; |
|
} |
|
if (old_bits == 0 && failsafe.bits != 0) { |
|
// a failsafe event has started |
|
failsafe.start_time = millis(); |
|
} |
|
if (failsafe.triggered != 0 && failsafe.bits == 0) { |
|
// a failsafe event has ended |
|
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Failsafe ended"); |
|
} |
|
|
|
failsafe.triggered &= failsafe.bits; |
|
|
|
if (failsafe.triggered == 0 && |
|
failsafe.bits != 0 && |
|
millis() - failsafe.start_time > g.fs_timeout*1000 && |
|
control_mode != RTL && |
|
control_mode != HOLD) { |
|
failsafe.triggered = failsafe.bits; |
|
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Failsafe trigger 0x%x", (unsigned)failsafe.triggered); |
|
switch (g.fs_action) { |
|
case 0: |
|
break; |
|
case 1: |
|
set_mode(RTL); |
|
break; |
|
case 2: |
|
set_mode(HOLD); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
void Rover::startup_INS_ground(void) |
|
{ |
|
gcs_send_text(MAV_SEVERITY_INFO, "Warming up ADC"); |
|
mavlink_delay(500); |
|
|
|
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!! |
|
// ----------------------- |
|
gcs_send_text(MAV_SEVERITY_INFO, "Beginning INS calibration. Do not move vehicle"); |
|
mavlink_delay(1000); |
|
|
|
ahrs.init(); |
|
ahrs.set_fly_forward(true); |
|
ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND); |
|
|
|
ins.init(scheduler.get_loop_rate_hz()); |
|
ahrs.reset(); |
|
} |
|
|
|
// updates the notify state |
|
// should be called at 50hz |
|
void Rover::update_notify() |
|
{ |
|
notify.update(); |
|
} |
|
|
|
void Rover::resetPerfData(void) { |
|
mainLoop_count = 0; |
|
G_Dt_max = 0; |
|
perf_mon_timer = millis(); |
|
} |
|
|
|
|
|
void Rover::check_usb_mux(void) |
|
{ |
|
bool usb_check = hal.gpio->usb_connected(); |
|
if (usb_check == usb_connected) { |
|
return; |
|
} |
|
|
|
// the user has switched to/from the telemetry port |
|
usb_connected = usb_check; |
|
} |
|
|
|
|
|
void Rover::print_mode(AP_HAL::BetterStream *port, uint8_t mode) |
|
{ |
|
switch (mode) { |
|
case MANUAL: |
|
port->print("Manual"); |
|
break; |
|
case HOLD: |
|
port->print("HOLD"); |
|
break; |
|
case LEARNING: |
|
port->print("Learning"); |
|
break; |
|
case STEERING: |
|
port->print("Steering"); |
|
break; |
|
case AUTO: |
|
port->print("AUTO"); |
|
break; |
|
case RTL: |
|
port->print("RTL"); |
|
break; |
|
default: |
|
port->printf("Mode(%u)", (unsigned)mode); |
|
break; |
|
} |
|
} |
|
|
|
/* |
|
check a digitial pin for high,low (1/0) |
|
*/ |
|
uint8_t Rover::check_digital_pin(uint8_t pin) |
|
{ |
|
int8_t dpin = hal.gpio->analogPinToDigitalPin(pin); |
|
if (dpin == -1) { |
|
return 0; |
|
} |
|
// ensure we are in input mode |
|
hal.gpio->pinMode(dpin, HAL_GPIO_INPUT); |
|
|
|
// enable pullup |
|
hal.gpio->write(dpin, 1); |
|
|
|
return hal.gpio->read(dpin); |
|
} |
|
|
|
/* |
|
should we log a message type now? |
|
*/ |
|
bool Rover::should_log(uint32_t mask) |
|
{ |
|
if (!(mask & g.log_bitmask) || in_mavlink_delay) { |
|
return false; |
|
} |
|
bool ret = hal.util->get_soft_armed() || DataFlash.log_while_disarmed(); |
|
if (ret && !DataFlash.logging_started() && !in_log_download) { |
|
start_logging(); |
|
} |
|
return ret; |
|
} |
|
|
|
/* |
|
update AHRS soft arm state and log as needed |
|
*/ |
|
void Rover::change_arm_state(void) |
|
{ |
|
Log_Arm_Disarm(); |
|
hal.util->set_soft_armed(arming.is_armed() && |
|
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED); |
|
} |
|
|
|
/* |
|
arm motors |
|
*/ |
|
bool Rover::arm_motors(AP_Arming::ArmingMethod method) |
|
{ |
|
if (!arming.arm(method)) { |
|
return false; |
|
} |
|
|
|
// only log if arming was successful |
|
channel_throttle->enable_out(); |
|
|
|
change_arm_state(); |
|
return true; |
|
} |
|
|
|
/* |
|
disarm motors |
|
*/ |
|
bool Rover::disarm_motors(void) |
|
{ |
|
if (!arming.disarm()) { |
|
return false; |
|
} |
|
if (arming.arming_required() == AP_Arming::YES_ZERO_PWM) { |
|
channel_throttle->disable_out(); |
|
if (g.skid_steer_out) { |
|
channel_steer->disable_out(); |
|
} |
|
} |
|
if (control_mode != AUTO) { |
|
// reset the mission on disarm if we are not in auto |
|
mission.reset(); |
|
} |
|
|
|
//only log if disarming was successful |
|
change_arm_state(); |
|
|
|
return true; |
|
}
|
|
|