You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1221 lines
42 KiB
1221 lines
42 KiB
#include "Plane.h" |
|
|
|
/********************************************************************************/ |
|
// Command Event Handlers |
|
/********************************************************************************/ |
|
bool Plane::start_command(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
// default to non-VTOL loiter |
|
auto_state.vtol_loiter = false; |
|
|
|
// log when new commands start |
|
if (should_log(MASK_LOG_CMD)) { |
|
logger.Write_Mission_Cmd(mission, cmd); |
|
} |
|
|
|
// special handling for nav vs non-nav commands |
|
if (AP_Mission::is_nav_cmd(cmd)) { |
|
// set takeoff_complete to true so we don't add extra elevator |
|
// except in a takeoff |
|
auto_state.takeoff_complete = true; |
|
|
|
// start non-idle |
|
auto_state.idle_mode = false; |
|
|
|
nav_controller->set_data_is_stale(); |
|
|
|
// reset loiter start time. New command is a new loiter |
|
loiter.start_time_ms = 0; |
|
|
|
AP_Mission::Mission_Command next_nav_cmd; |
|
const uint16_t next_index = mission.get_current_nav_index() + 1; |
|
const bool have_next_cmd = mission.get_next_nav_cmd(next_index, next_nav_cmd); |
|
auto_state.wp_is_land_approach = have_next_cmd && (next_nav_cmd.id == MAV_CMD_NAV_LAND); |
|
#if HAL_QUADPLANE_ENABLED |
|
if (have_next_cmd && quadplane.is_vtol_land(next_nav_cmd.id)) { |
|
auto_state.wp_is_land_approach = false; |
|
} |
|
#endif |
|
} |
|
|
|
switch(cmd.id) { |
|
|
|
case MAV_CMD_NAV_TAKEOFF: |
|
crash_state.is_crashed = false; |
|
#if HAL_QUADPLANE_ENABLED |
|
if (quadplane.is_vtol_takeoff(cmd.id)) { |
|
return quadplane.do_vtol_takeoff(cmd); |
|
} |
|
#endif |
|
do_takeoff(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint |
|
do_nav_wp(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LAND: // LAND to Waypoint |
|
#if HAL_QUADPLANE_ENABLED |
|
if (quadplane.is_vtol_land(cmd.id)) { |
|
crash_state.is_crashed = false; |
|
return quadplane.do_vtol_land(cmd); |
|
} |
|
#endif |
|
do_land(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely |
|
do_loiter_unlimited(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times |
|
do_loiter_turns(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LOITER_TIME: |
|
do_loiter_time(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_LOITER_TO_ALT: |
|
do_loiter_to_alt(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_RETURN_TO_LAUNCH: |
|
set_mode(mode_rtl, ModeReason::MISSION_CMD); |
|
break; |
|
|
|
case MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT: |
|
do_continue_and_change_alt(cmd); |
|
break; |
|
|
|
case MAV_CMD_NAV_ALTITUDE_WAIT: |
|
do_altitude_wait(cmd); |
|
break; |
|
|
|
#if HAL_QUADPLANE_ENABLED |
|
case MAV_CMD_NAV_VTOL_TAKEOFF: |
|
crash_state.is_crashed = false; |
|
return quadplane.do_vtol_takeoff(cmd); |
|
|
|
case MAV_CMD_NAV_VTOL_LAND: |
|
if (quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH) { |
|
// the user wants to approach the landing in a fixed wing flight mode |
|
// the waypoint will be used as a loiter_to_alt |
|
// after which point the plane will compute the optimal into the wind direction |
|
// and fly in on that direction towards the landing waypoint |
|
// it will then transition to VTOL and do a normal quadplane landing |
|
do_landing_vtol_approach(cmd); |
|
break; |
|
} else { |
|
return quadplane.do_vtol_land(cmd); |
|
} |
|
#endif |
|
|
|
// Conditional commands |
|
|
|
case MAV_CMD_CONDITION_DELAY: |
|
do_wait_delay(cmd); |
|
break; |
|
|
|
case MAV_CMD_CONDITION_DISTANCE: |
|
do_within_distance(cmd); |
|
break; |
|
|
|
// Do commands |
|
|
|
case MAV_CMD_DO_CHANGE_SPEED: |
|
do_change_speed(cmd); |
|
break; |
|
|
|
case MAV_CMD_DO_SET_HOME: |
|
do_set_home(cmd); |
|
break; |
|
|
|
case MAV_CMD_DO_INVERTED_FLIGHT: |
|
if (cmd.p1 == 0 || cmd.p1 == 1) { |
|
auto_state.inverted_flight = (bool)cmd.p1; |
|
gcs().send_text(MAV_SEVERITY_INFO, "Set inverted %u", cmd.p1); |
|
} |
|
break; |
|
|
|
case MAV_CMD_DO_LAND_START: |
|
break; |
|
|
|
case MAV_CMD_DO_FENCE_ENABLE: |
|
#if AC_FENCE == ENABLED |
|
if (cmd.p1 == 0) { // disable fence |
|
plane.fence.enable(false); |
|
gcs().send_text(MAV_SEVERITY_INFO, "Fence disabled"); |
|
} else if (cmd.p1 == 1) { // enable fence |
|
plane.fence.enable(true); |
|
gcs().send_text(MAV_SEVERITY_INFO, "Fence enabled"); |
|
} else if (cmd.p1 == 2) { // disable fence floor only |
|
plane.fence.disable_floor(); |
|
gcs().send_text(MAV_SEVERITY_INFO, "Fence floor disabled"); |
|
} |
|
#endif |
|
break; |
|
|
|
case MAV_CMD_DO_AUTOTUNE_ENABLE: |
|
autotune_enable(cmd.p1); |
|
break; |
|
|
|
#if HAL_MOUNT_ENABLED |
|
// Sets the region of interest (ROI) for a sensor set or the |
|
// vehicle itself. This can then be used by the vehicles control |
|
// system to control the vehicle attitude and the attitude of various |
|
// devices such as cameras. |
|
// |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z| |
|
case MAV_CMD_DO_SET_ROI: |
|
if (cmd.content.location.alt == 0 && cmd.content.location.lat == 0 && cmd.content.location.lng == 0) { |
|
// switch off the camera tracking if enabled |
|
if (camera_mount.get_mode() == MAV_MOUNT_MODE_GPS_POINT) { |
|
camera_mount.set_mode_to_default(); |
|
} |
|
} else { |
|
// set mount's target location |
|
camera_mount.set_roi_target(cmd.content.location); |
|
} |
|
break; |
|
|
|
case MAV_CMD_DO_MOUNT_CONTROL: // 205 |
|
// point the camera to a specified angle |
|
camera_mount.set_angle_targets(cmd.content.mount_control.roll, |
|
cmd.content.mount_control.pitch, |
|
cmd.content.mount_control.yaw); |
|
break; |
|
#endif |
|
|
|
#if HAL_QUADPLANE_ENABLED |
|
case MAV_CMD_DO_VTOL_TRANSITION: |
|
plane.quadplane.handle_do_vtol_transition((enum MAV_VTOL_STATE)cmd.content.do_vtol_transition.target_state); |
|
break; |
|
#endif |
|
|
|
case MAV_CMD_DO_ENGINE_CONTROL: |
|
plane.g2.ice_control.engine_control(cmd.content.do_engine_control.start_control, |
|
cmd.content.do_engine_control.cold_start, |
|
cmd.content.do_engine_control.height_delay_cm*0.01f); |
|
break; |
|
|
|
#if AP_SCRIPTING_ENABLED |
|
case MAV_CMD_NAV_SCRIPT_TIME: |
|
do_nav_script_time(cmd); |
|
break; |
|
#endif |
|
|
|
default: |
|
// unable to use the command, allow the vehicle to try the next command |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/******************************************************************************* |
|
Verify command Handlers |
|
|
|
Each type of mission element has a "verify" operation. The verify |
|
operation returns true when the mission element has completed and we |
|
should move onto the next mission element. |
|
Return true if we do not recognize the command so that we move on to the next command |
|
*******************************************************************************/ |
|
|
|
bool Plane::verify_command(const AP_Mission::Mission_Command& cmd) // Returns true if command complete |
|
{ |
|
switch(cmd.id) { |
|
|
|
case MAV_CMD_NAV_TAKEOFF: |
|
#if HAL_QUADPLANE_ENABLED |
|
if (quadplane.is_vtol_takeoff(cmd.id)) { |
|
return quadplane.verify_vtol_takeoff(cmd); |
|
} |
|
#endif |
|
return verify_takeoff(); |
|
|
|
case MAV_CMD_NAV_WAYPOINT: |
|
return verify_nav_wp(cmd); |
|
|
|
case MAV_CMD_NAV_LAND: |
|
#if HAL_QUADPLANE_ENABLED |
|
if (quadplane.is_vtol_land(cmd.id)) { |
|
return quadplane.verify_vtol_land(); |
|
} |
|
#endif |
|
if (flight_stage == AP_Vehicle::FixedWing::FlightStage::FLIGHT_ABORT_LAND) { |
|
return landing.verify_abort_landing(prev_WP_loc, next_WP_loc, current_loc, auto_state.takeoff_altitude_rel_cm, throttle_suppressed); |
|
|
|
} else { |
|
// use rangefinder to correct if possible |
|
float height = height_above_target() - rangefinder_correction(); |
|
// for flare calculations we don't want to use the terrain |
|
// correction as otherwise we will flare early on rising |
|
// ground |
|
height -= auto_state.terrain_correction; |
|
return landing.verify_land(prev_WP_loc, next_WP_loc, current_loc, |
|
height, auto_state.sink_rate, auto_state.wp_proportion, auto_state.last_flying_ms, arming.is_armed(), is_flying(), |
|
g.rangefinder_landing && rangefinder_state.in_range); |
|
} |
|
|
|
case MAV_CMD_NAV_LOITER_UNLIM: |
|
return verify_loiter_unlim(cmd); |
|
|
|
case MAV_CMD_NAV_LOITER_TURNS: |
|
return verify_loiter_turns(cmd); |
|
|
|
case MAV_CMD_NAV_LOITER_TIME: |
|
return verify_loiter_time(); |
|
|
|
case MAV_CMD_NAV_LOITER_TO_ALT: |
|
return verify_loiter_to_alt(cmd); |
|
|
|
case MAV_CMD_NAV_RETURN_TO_LAUNCH: |
|
return verify_RTL(); |
|
|
|
case MAV_CMD_NAV_CONTINUE_AND_CHANGE_ALT: |
|
return verify_continue_and_change_alt(); |
|
|
|
case MAV_CMD_NAV_ALTITUDE_WAIT: |
|
return verify_altitude_wait(cmd); |
|
|
|
#if HAL_QUADPLANE_ENABLED |
|
case MAV_CMD_NAV_VTOL_TAKEOFF: |
|
return quadplane.verify_vtol_takeoff(cmd); |
|
case MAV_CMD_NAV_VTOL_LAND: |
|
if ((quadplane.options & QuadPlane::OPTION_MISSION_LAND_FW_APPROACH) && !verify_landing_vtol_approach(cmd)) { |
|
// verify_landing_vtol_approach will return true once we have completed the approach, |
|
// in which case we fall over to normal vtol landing code |
|
return false; |
|
} else { |
|
return quadplane.verify_vtol_land(); |
|
} |
|
#endif // HAL_QUADPLANE_ENABLED |
|
|
|
// Conditional commands |
|
|
|
case MAV_CMD_CONDITION_DELAY: |
|
return verify_wait_delay(); |
|
|
|
case MAV_CMD_CONDITION_DISTANCE: |
|
return verify_within_distance(); |
|
|
|
#if AP_SCRIPTING_ENABLED |
|
case MAV_CMD_NAV_SCRIPT_TIME: |
|
return verify_nav_script_time(cmd); |
|
#endif |
|
|
|
// do commands (always return true) |
|
case MAV_CMD_DO_CHANGE_SPEED: |
|
case MAV_CMD_DO_SET_HOME: |
|
case MAV_CMD_DO_INVERTED_FLIGHT: |
|
case MAV_CMD_DO_LAND_START: |
|
case MAV_CMD_DO_FENCE_ENABLE: |
|
case MAV_CMD_DO_AUTOTUNE_ENABLE: |
|
case MAV_CMD_DO_CONTROL_VIDEO: |
|
case MAV_CMD_DO_SET_CAM_TRIGG_DIST: |
|
case MAV_CMD_DO_SET_ROI: |
|
case MAV_CMD_DO_MOUNT_CONTROL: |
|
case MAV_CMD_DO_VTOL_TRANSITION: |
|
case MAV_CMD_DO_ENGINE_CONTROL: |
|
return true; |
|
|
|
default: |
|
// error message |
|
gcs().send_text(MAV_SEVERITY_WARNING,"Skipping invalid cmd #%i",cmd.id); |
|
// return true if we do not recognize the command so that we move on to the next command |
|
return true; |
|
} |
|
} |
|
|
|
/********************************************************************************/ |
|
// Nav (Must) commands |
|
/********************************************************************************/ |
|
|
|
void Plane::do_RTL(int32_t rtl_altitude_AMSL_cm) |
|
{ |
|
auto_state.next_wp_crosstrack = false; |
|
auto_state.crosstrack = false; |
|
prev_WP_loc = current_loc; |
|
next_WP_loc = rally.calc_best_rally_or_home_location(current_loc, rtl_altitude_AMSL_cm); |
|
setup_terrain_target_alt(next_WP_loc); |
|
set_target_altitude_location(next_WP_loc); |
|
|
|
if (aparm.loiter_radius < 0) { |
|
loiter.direction = -1; |
|
} else { |
|
loiter.direction = 1; |
|
} |
|
|
|
setup_glide_slope(); |
|
setup_turn_angle(); |
|
|
|
logger.Write_Mode(control_mode->mode_number(), control_mode_reason); |
|
} |
|
|
|
/* |
|
start a NAV_TAKEOFF command |
|
*/ |
|
void Plane::do_takeoff(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
prev_WP_loc = current_loc; |
|
set_next_WP(cmd.content.location); |
|
// pitch in deg, airspeed m/s, throttle %, track WP 1 or 0 |
|
auto_state.takeoff_pitch_cd = (int16_t)cmd.p1 * 100; |
|
if (auto_state.takeoff_pitch_cd <= 0) { |
|
// if the mission doesn't specify a pitch use 4 degrees |
|
auto_state.takeoff_pitch_cd = 400; |
|
} |
|
auto_state.takeoff_altitude_rel_cm = next_WP_loc.alt - home.alt; |
|
next_WP_loc.lat = home.lat + 10; |
|
next_WP_loc.lng = home.lng + 10; |
|
auto_state.takeoff_speed_time_ms = 0; |
|
auto_state.takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction |
|
auto_state.height_below_takeoff_to_level_off_cm = 0; |
|
// Flag also used to override "on the ground" throttle disable |
|
|
|
// zero locked course |
|
steer_state.locked_course_err = 0; |
|
steer_state.hold_course_cd = -1; |
|
auto_state.baro_takeoff_alt = barometer.get_altitude(); |
|
} |
|
|
|
void Plane::do_nav_wp(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
set_next_WP(cmd.content.location); |
|
} |
|
|
|
void Plane::do_land(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
set_next_WP(cmd.content.location); |
|
|
|
// configure abort altitude and pitch |
|
// if NAV_LAND has an abort altitude then use it, else use last takeoff, else use 50m |
|
if (cmd.p1 > 0) { |
|
auto_state.takeoff_altitude_rel_cm = (int16_t)cmd.p1 * 100; |
|
} else if (auto_state.takeoff_altitude_rel_cm <= 0) { |
|
auto_state.takeoff_altitude_rel_cm = 3000; |
|
} |
|
|
|
if (auto_state.takeoff_pitch_cd <= 0) { |
|
// If no takeoff command has ever been used, default to a conservative 10deg |
|
auto_state.takeoff_pitch_cd = 1000; |
|
} |
|
|
|
// zero rangefinder state, start to accumulate good samples now |
|
memset(&rangefinder_state, 0, sizeof(rangefinder_state)); |
|
|
|
landing.do_land(cmd, relative_altitude); |
|
|
|
if (flight_stage == AP_Vehicle::FixedWing::FLIGHT_ABORT_LAND) { |
|
// if we were in an abort we need to explicitly move out of the abort state, as it's sticky |
|
set_flight_stage(AP_Vehicle::FixedWing::FLIGHT_LAND); |
|
} |
|
|
|
#if AC_FENCE == ENABLED |
|
plane.fence.auto_disable_fence_for_landing(); |
|
#endif |
|
} |
|
|
|
#if HAL_QUADPLANE_ENABLED |
|
void Plane::do_landing_vtol_approach(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
//set target alt |
|
Location loc = cmd.content.location; |
|
loc.sanitize(current_loc); |
|
set_next_WP(loc); |
|
|
|
// only set the direction if the quadplane landing radius override is not 0 |
|
// if it's 0 update_loiter will manage the direction for us when we hand it |
|
// 0 later in the controller |
|
if (is_negative(quadplane.fw_land_approach_radius)) { |
|
loiter.direction = -1; |
|
} else if (is_positive(quadplane.fw_land_approach_radius)) { |
|
loiter.direction = 1; |
|
} |
|
|
|
vtol_approach_s.approach_stage = LOITER_TO_ALT; |
|
} |
|
#endif |
|
|
|
void Plane::loiter_set_direction_wp(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
if (cmd.content.location.loiter_ccw) { |
|
loiter.direction = -1; |
|
} else { |
|
loiter.direction = 1; |
|
} |
|
} |
|
|
|
void Plane::do_loiter_unlimited(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
Location cmdloc = cmd.content.location; |
|
cmdloc.sanitize(current_loc); |
|
set_next_WP(cmdloc); |
|
loiter_set_direction_wp(cmd); |
|
} |
|
|
|
void Plane::do_loiter_turns(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
Location cmdloc = cmd.content.location; |
|
cmdloc.sanitize(current_loc); |
|
set_next_WP(cmdloc); |
|
loiter_set_direction_wp(cmd); |
|
|
|
loiter.total_cd = (uint32_t)(LOWBYTE(cmd.p1)) * 36000UL; |
|
condition_value = 1; // used to signify primary turns goal not yet met |
|
} |
|
|
|
void Plane::do_loiter_time(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
Location cmdloc = cmd.content.location; |
|
cmdloc.sanitize(current_loc); |
|
set_next_WP(cmdloc); |
|
loiter_set_direction_wp(cmd); |
|
|
|
// we set start_time_ms when we reach the waypoint |
|
loiter.time_max_ms = cmd.p1 * (uint32_t)1000; // convert sec to ms |
|
condition_value = 1; // used to signify primary time goal not yet met |
|
} |
|
|
|
void Plane::do_continue_and_change_alt(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
// select heading method. Either mission, gps bearing projection or yaw based |
|
// If prev_WP_loc and next_WP_loc are different then an accurate wp based bearing can |
|
// be computed. However, if we had just changed modes before this, such as an aborted landing |
|
// via mode change, the prev and next wps are the same. |
|
float bearing; |
|
if (!prev_WP_loc.same_latlon_as(next_WP_loc)) { |
|
// use waypoint based bearing, this is the usual case |
|
steer_state.hold_course_cd = -1; |
|
} else if (AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D) { |
|
// use gps ground course based bearing hold |
|
steer_state.hold_course_cd = -1; |
|
bearing = AP::gps().ground_course(); |
|
next_WP_loc.offset_bearing(bearing, 1000); // push it out 1km |
|
} else { |
|
// use yaw based bearing hold |
|
steer_state.hold_course_cd = wrap_360_cd(ahrs.yaw_sensor); |
|
bearing = ahrs.yaw_sensor * 0.01f; |
|
next_WP_loc.offset_bearing(bearing, 1000); // push it out 1km |
|
} |
|
|
|
next_WP_loc.alt = cmd.content.location.alt + home.alt; |
|
condition_value = cmd.p1; |
|
reset_offset_altitude(); |
|
} |
|
|
|
void Plane::do_altitude_wait(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
// set all servos to trim until we reach altitude or descent speed |
|
auto_state.idle_mode = true; |
|
} |
|
|
|
void Plane::do_loiter_to_alt(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
//set target alt |
|
Location loc = cmd.content.location; |
|
loc.sanitize(current_loc); |
|
set_next_WP(loc); |
|
loiter_set_direction_wp(cmd); |
|
|
|
// init to 0, set to 1 when altitude is reached |
|
condition_value = 0; |
|
} |
|
|
|
/********************************************************************************/ |
|
// Verify Nav (Must) commands |
|
/********************************************************************************/ |
|
bool Plane::verify_takeoff() |
|
{ |
|
if (ahrs.dcm_yaw_initialised() && steer_state.hold_course_cd == -1) { |
|
const float min_gps_speed = 5; |
|
if (auto_state.takeoff_speed_time_ms == 0 && |
|
gps.status() >= AP_GPS::GPS_OK_FIX_3D && |
|
gps.ground_speed() > min_gps_speed && |
|
hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED) { |
|
auto_state.takeoff_speed_time_ms = millis(); |
|
} |
|
if (auto_state.takeoff_speed_time_ms != 0 && |
|
millis() - auto_state.takeoff_speed_time_ms >= 2000) { |
|
// once we reach sufficient speed for good GPS course |
|
// estimation we save our current GPS ground course |
|
// corrected for summed yaw to set the take off |
|
// course. This keeps wings level until we are ready to |
|
// rotate, and also allows us to cope with arbitrary |
|
// compass errors for auto takeoff |
|
float takeoff_course = wrap_PI(radians(gps.ground_course())) - steer_state.locked_course_err; |
|
takeoff_course = wrap_PI(takeoff_course); |
|
steer_state.hold_course_cd = wrap_360_cd(degrees(takeoff_course)*100); |
|
gcs().send_text(MAV_SEVERITY_INFO, "Holding course %d at %.1fm/s (%.1f)", |
|
(int)steer_state.hold_course_cd, |
|
(double)gps.ground_speed(), |
|
(double)degrees(steer_state.locked_course_err)); |
|
} |
|
} |
|
|
|
if (steer_state.hold_course_cd != -1) { |
|
// call navigation controller for heading hold |
|
nav_controller->update_heading_hold(steer_state.hold_course_cd); |
|
} else { |
|
nav_controller->update_level_flight(); |
|
} |
|
|
|
// check for optional takeoff timeout |
|
if (takeoff_state.start_time_ms != 0 && g2.takeoff_timeout > 0) { |
|
const float ground_speed = gps.ground_speed(); |
|
const float takeoff_min_ground_speed = 4; |
|
if (!hal.util->get_soft_armed()) { |
|
return false; |
|
} |
|
if (ground_speed >= takeoff_min_ground_speed) { |
|
takeoff_state.start_time_ms = 0; |
|
} else { |
|
uint32_t now = AP_HAL::millis(); |
|
if (now - takeoff_state.start_time_ms > (uint32_t)(1000U * g2.takeoff_timeout)) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Takeoff timeout at %.1f m/s", ground_speed); |
|
plane.arming.disarm(AP_Arming::Method::TAKEOFFTIMEOUT); |
|
mission.reset(); |
|
} |
|
} |
|
} |
|
|
|
// see if we have reached takeoff altitude |
|
int32_t relative_alt_cm = adjusted_relative_altitude_cm(); |
|
if (relative_alt_cm > auto_state.takeoff_altitude_rel_cm) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Takeoff complete at %.2fm", |
|
(double)(relative_alt_cm*0.01f)); |
|
steer_state.hold_course_cd = -1; |
|
auto_state.takeoff_complete = true; |
|
next_WP_loc = prev_WP_loc = current_loc; |
|
|
|
#if AC_FENCE == ENABLED |
|
plane.fence.auto_enable_fence_after_takeoff(); |
|
#endif |
|
|
|
// don't cross-track on completion of takeoff, as otherwise we |
|
// can end up doing too sharp a turn |
|
auto_state.next_wp_crosstrack = false; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
/* |
|
update navigation for normal mission waypoints. Return true when the |
|
waypoint is complete |
|
*/ |
|
bool Plane::verify_nav_wp(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
steer_state.hold_course_cd = -1; |
|
|
|
// depending on the pass by flag either go to waypoint in regular manner or |
|
// fly past it for set distance along the line of waypoints |
|
Location flex_next_WP_loc = next_WP_loc; |
|
|
|
uint8_t cmd_passby = HIGHBYTE(cmd.p1); // distance in meters to pass beyond the wp |
|
uint8_t cmd_acceptance_distance = LOWBYTE(cmd.p1); // radius in meters to accept reaching the wp |
|
|
|
if (cmd_passby > 0) { |
|
float dist = prev_WP_loc.get_distance(flex_next_WP_loc); |
|
|
|
if (!is_zero(dist)) { |
|
float factor = (dist + cmd_passby) / dist; |
|
|
|
flex_next_WP_loc.lat = flex_next_WP_loc.lat + (flex_next_WP_loc.lat - prev_WP_loc.lat) * (factor - 1.0f); |
|
flex_next_WP_loc.lng = flex_next_WP_loc.lng + Location::diff_longitude(flex_next_WP_loc.lng,prev_WP_loc.lng) * (factor - 1.0f); |
|
} |
|
} |
|
|
|
if (auto_state.crosstrack) { |
|
nav_controller->update_waypoint(prev_WP_loc, flex_next_WP_loc); |
|
} else { |
|
nav_controller->update_waypoint(current_loc, flex_next_WP_loc); |
|
} |
|
|
|
// see if the user has specified a maximum distance to waypoint |
|
// If override with p3 - then this is not used as it will overfly badly |
|
if (g.waypoint_max_radius > 0 && |
|
auto_state.wp_distance > (uint16_t)g.waypoint_max_radius) { |
|
if (current_loc.past_interval_finish_line(prev_WP_loc, flex_next_WP_loc)) { |
|
// this is needed to ensure completion of the waypoint |
|
if (cmd_passby == 0) { |
|
prev_WP_loc = current_loc; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
float acceptance_distance_m = 0; // default to: if overflown - let it fly up to the point |
|
if (cmd_acceptance_distance > 0) { |
|
// allow user to override acceptance radius |
|
acceptance_distance_m = cmd_acceptance_distance; |
|
} else if (cmd_passby == 0) { |
|
acceptance_distance_m = nav_controller->turn_distance(get_wp_radius(), auto_state.next_turn_angle); |
|
} |
|
|
|
if (auto_state.wp_distance <= acceptance_distance_m) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Reached waypoint #%i dist %um", |
|
(unsigned)mission.get_current_nav_cmd().index, |
|
(unsigned)current_loc.get_distance(flex_next_WP_loc)); |
|
return true; |
|
} |
|
|
|
// have we flown past the waypoint? |
|
if (current_loc.past_interval_finish_line(prev_WP_loc, flex_next_WP_loc)) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Passed waypoint #%i dist %um", |
|
(unsigned)mission.get_current_nav_cmd().index, |
|
(unsigned)current_loc.get_distance(flex_next_WP_loc)); |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
bool Plane::verify_loiter_unlim(const AP_Mission::Mission_Command &cmd) |
|
{ |
|
// else use mission radius |
|
update_loiter(cmd.p1); |
|
return false; |
|
} |
|
|
|
bool Plane::verify_loiter_time() |
|
{ |
|
bool result = false; |
|
// mission radius is always aparm.loiter_radius |
|
update_loiter(0); |
|
|
|
if (loiter.start_time_ms == 0) { |
|
if (reached_loiter_target() && loiter.sum_cd > 1) { |
|
// we've reached the target, start the timer |
|
loiter.start_time_ms = millis(); |
|
} |
|
} else if (condition_value != 0) { |
|
// primary goal, loiter time |
|
if ((millis() - loiter.start_time_ms) > loiter.time_max_ms) { |
|
// primary goal completed, initialize secondary heading goal |
|
condition_value = 0; |
|
result = verify_loiter_heading(true); |
|
} |
|
} else { |
|
// secondary goal, loiter to heading |
|
result = verify_loiter_heading(false); |
|
} |
|
|
|
if (result) { |
|
gcs().send_text(MAV_SEVERITY_INFO,"Loiter time complete"); |
|
auto_state.vtol_loiter = false; |
|
} |
|
return result; |
|
} |
|
|
|
bool Plane::verify_loiter_turns(const AP_Mission::Mission_Command &cmd) |
|
{ |
|
bool result = false; |
|
uint16_t radius = HIGHBYTE(cmd.p1); |
|
if (cmd.type_specific_bits & (1U<<0)) { |
|
// special storage handling allows for larger radii |
|
radius *= 10; |
|
} |
|
update_loiter(radius); |
|
|
|
// LOITER_TURNS makes no sense as VTOL |
|
auto_state.vtol_loiter = false; |
|
|
|
if (condition_value != 0) { |
|
// primary goal, loiter time |
|
if (loiter.sum_cd > loiter.total_cd && loiter.sum_cd > 1) { |
|
// primary goal completed, initialize secondary heading goal |
|
condition_value = 0; |
|
result = verify_loiter_heading(true); |
|
} |
|
} else { |
|
// secondary goal, loiter to heading |
|
result = verify_loiter_heading(false); |
|
} |
|
|
|
if (result) { |
|
gcs().send_text(MAV_SEVERITY_INFO,"Loiter orbits complete"); |
|
} |
|
return result; |
|
} |
|
|
|
/* |
|
verify a LOITER_TO_ALT command. This involves checking we have |
|
reached both the desired altitude and desired heading. The desired |
|
altitude only needs to be reached once. |
|
*/ |
|
bool Plane::verify_loiter_to_alt(const AP_Mission::Mission_Command &cmd) |
|
{ |
|
bool result = false; |
|
|
|
update_loiter(cmd.p1); |
|
|
|
// condition_value == 0 means alt has never been reached |
|
if (condition_value == 0) { |
|
// primary goal, loiter to alt |
|
if (labs(loiter.sum_cd) > 1 && (loiter.reached_target_alt || loiter.unable_to_acheive_target_alt)) { |
|
// primary goal completed, initialize secondary heading goal |
|
if (loiter.unable_to_acheive_target_alt) { |
|
gcs().send_text(MAV_SEVERITY_INFO,"Loiter to alt was stuck at %d", int(current_loc.alt/100)); |
|
} |
|
|
|
condition_value = 1; |
|
result = verify_loiter_heading(true); |
|
} |
|
} else { |
|
// secondary goal, loiter to heading |
|
result = verify_loiter_heading(false); |
|
} |
|
|
|
if (result) { |
|
gcs().send_text(MAV_SEVERITY_INFO,"Loiter to alt complete"); |
|
} |
|
return result; |
|
} |
|
|
|
bool Plane::verify_RTL() |
|
{ |
|
if (g.rtl_radius < 0) { |
|
loiter.direction = -1; |
|
} else { |
|
loiter.direction = 1; |
|
} |
|
update_loiter(abs(g.rtl_radius)); |
|
if (auto_state.wp_distance <= (uint32_t)MAX(get_wp_radius(),0) || |
|
reached_loiter_target()) { |
|
gcs().send_text(MAV_SEVERITY_INFO,"Reached RTL location"); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
bool Plane::verify_continue_and_change_alt() |
|
{ |
|
// is waypoint info not available and heading hold is? |
|
if (prev_WP_loc.same_latlon_as(next_WP_loc) && |
|
steer_state.hold_course_cd != -1) { |
|
//keep flying the same course with fixed steering heading computed at start if cmd |
|
nav_controller->update_heading_hold(steer_state.hold_course_cd); |
|
} |
|
else { |
|
// Is the next_WP less than 200 m away? |
|
if (current_loc.get_distance(next_WP_loc) < 200.0f) { |
|
//push another 300 m down the line |
|
int32_t next_wp_bearing_cd = prev_WP_loc.get_bearing_to(next_WP_loc); |
|
next_WP_loc.offset_bearing(next_wp_bearing_cd * 0.01f, 300.0f); |
|
} |
|
|
|
//keep flying the same course |
|
nav_controller->update_waypoint(prev_WP_loc, next_WP_loc); |
|
} |
|
|
|
//climbing? |
|
if (condition_value == 1 && adjusted_altitude_cm() >= next_WP_loc.alt) { |
|
return true; |
|
} |
|
//descending? |
|
else if (condition_value == 2 && |
|
adjusted_altitude_cm() <= next_WP_loc.alt) { |
|
return true; |
|
} |
|
//don't care if we're climbing or descending |
|
else if (labs(adjusted_altitude_cm() - next_WP_loc.alt) <= 500) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
/* |
|
see if we have reached altitude or descent speed |
|
*/ |
|
bool Plane::verify_altitude_wait(const AP_Mission::Mission_Command &cmd) |
|
{ |
|
if (current_loc.alt > cmd.content.altitude_wait.altitude*100.0f) { |
|
gcs().send_text(MAV_SEVERITY_INFO,"Reached altitude"); |
|
return true; |
|
} |
|
if (auto_state.sink_rate > cmd.content.altitude_wait.descent_rate) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Reached descent rate %.1f m/s", (double)auto_state.sink_rate); |
|
return true; |
|
} |
|
|
|
// if requested, wiggle servos |
|
if (cmd.content.altitude_wait.wiggle_time != 0) { |
|
static uint32_t last_wiggle_ms; |
|
if (auto_state.idle_wiggle_stage == 0 && |
|
AP_HAL::millis() - last_wiggle_ms > cmd.content.altitude_wait.wiggle_time*1000) { |
|
auto_state.idle_wiggle_stage = 1; |
|
last_wiggle_ms = AP_HAL::millis(); |
|
} |
|
// idle_wiggle_stage is updated in set_servos_idle() |
|
} |
|
|
|
return false; |
|
} |
|
|
|
/********************************************************************************/ |
|
// Condition (May) commands |
|
/********************************************************************************/ |
|
|
|
void Plane::do_wait_delay(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
condition_start = millis(); |
|
condition_value = cmd.content.delay.seconds * 1000; // convert seconds to milliseconds |
|
} |
|
|
|
void Plane::do_within_distance(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
condition_value = cmd.content.distance.meters; |
|
} |
|
|
|
/********************************************************************************/ |
|
// Verify Condition (May) commands |
|
/********************************************************************************/ |
|
|
|
bool Plane::verify_wait_delay() |
|
{ |
|
if ((unsigned)(millis() - condition_start) > (unsigned)condition_value) { |
|
condition_value = 0; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
bool Plane::verify_within_distance() |
|
{ |
|
if (auto_state.wp_distance < MAX(condition_value,0)) { |
|
condition_value = 0; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/********************************************************************************/ |
|
// Do (Now) commands |
|
/********************************************************************************/ |
|
|
|
void Plane::do_loiter_at_location() |
|
{ |
|
if (aparm.loiter_radius < 0) { |
|
loiter.direction = -1; |
|
} else { |
|
loiter.direction = 1; |
|
} |
|
next_WP_loc = current_loc; |
|
} |
|
|
|
bool Plane::do_change_speed(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
switch (cmd.content.speed.speed_type) |
|
{ |
|
case 0: // Airspeed |
|
if ((cmd.content.speed.target_ms >= aparm.airspeed_min.get()) && (cmd.content.speed.target_ms <= aparm.airspeed_max.get())) { |
|
new_airspeed_cm = cmd.content.speed.target_ms * 100; //new airspeed target for AUTO or GUIDED modes |
|
gcs().send_text(MAV_SEVERITY_INFO, "Set airspeed %u m/s", (unsigned)cmd.content.speed.target_ms); |
|
return true; |
|
} |
|
break; |
|
case 1: // Ground speed |
|
gcs().send_text(MAV_SEVERITY_INFO, "Set groundspeed %u", (unsigned)cmd.content.speed.target_ms); |
|
aparm.min_gndspeed_cm.set(cmd.content.speed.target_ms * 100); |
|
return true; |
|
} |
|
|
|
if (cmd.content.speed.throttle_pct > 0 && cmd.content.speed.throttle_pct <= 100) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Set throttle %u", (unsigned)cmd.content.speed.throttle_pct); |
|
aparm.throttle_cruise.set(cmd.content.speed.throttle_pct); |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
void Plane::do_set_home(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
if (cmd.p1 == 1 && gps.status() >= AP_GPS::GPS_OK_FIX_3D) { |
|
if (!set_home_persistently(gps.location())) { |
|
// silently ignore error |
|
} |
|
} else { |
|
if (!AP::ahrs().set_home(cmd.content.location)) { |
|
// silently ignore failure |
|
} |
|
} |
|
} |
|
|
|
// start_command_callback - callback function called from ap-mission when it begins a new mission command |
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode |
|
bool Plane::start_command_callback(const AP_Mission::Mission_Command &cmd) |
|
{ |
|
if (control_mode == &mode_auto) { |
|
return start_command(cmd); |
|
} |
|
return true; |
|
} |
|
|
|
// verify_command_callback - callback function called from ap-mission at 10hz or higher when a command is being run |
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode |
|
bool Plane::verify_command_callback(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
if (control_mode == &mode_auto) { |
|
bool cmd_complete = verify_command(cmd); |
|
|
|
// send message to GCS |
|
if (cmd_complete) { |
|
gcs().send_mission_item_reached_message(cmd.index); |
|
} |
|
|
|
return cmd_complete; |
|
} |
|
return false; |
|
} |
|
|
|
// exit_mission_callback - callback function called from ap-mission when the mission has completed |
|
// we double check that the flight mode is AUTO to avoid the possibility of ap-mission triggering actions while we're not in AUTO mode |
|
void Plane::exit_mission_callback() |
|
{ |
|
if (control_mode == &mode_auto) { |
|
set_mode(mode_rtl, ModeReason::MISSION_END); |
|
gcs().send_text(MAV_SEVERITY_INFO, "Mission complete, changing mode to RTL"); |
|
} |
|
} |
|
|
|
#if HAL_QUADPLANE_ENABLED |
|
bool Plane::verify_landing_vtol_approach(const AP_Mission::Mission_Command &cmd) |
|
{ |
|
switch (vtol_approach_s.approach_stage) { |
|
case RTL: |
|
{ |
|
// fly home and loiter at RTL alt |
|
update_loiter(fabsf(quadplane.fw_land_approach_radius)); |
|
if (plane.reached_loiter_target()) { |
|
// decend to Q RTL alt |
|
plane.do_RTL(plane.home.alt + plane.quadplane.qrtl_alt*100UL); |
|
plane.loiter_angle_reset(); |
|
vtol_approach_s.approach_stage = LOITER_TO_ALT; |
|
} |
|
break; |
|
} |
|
case LOITER_TO_ALT: |
|
{ |
|
update_loiter(fabsf(quadplane.fw_land_approach_radius)); |
|
|
|
if (labs(loiter.sum_cd) > 1 && (loiter.reached_target_alt || loiter.unable_to_acheive_target_alt)) { |
|
Vector3f wind = ahrs.wind_estimate(); |
|
vtol_approach_s.approach_direction_deg = degrees(atan2f(-wind.y, -wind.x)); |
|
gcs().send_text(MAV_SEVERITY_INFO, "Selected an approach path of %.1f", (double)vtol_approach_s.approach_direction_deg); |
|
vtol_approach_s.approach_stage = ENSURE_RADIUS; |
|
} |
|
break; |
|
} |
|
case ENSURE_RADIUS: |
|
{ |
|
float radius; |
|
if (is_zero(quadplane.fw_land_approach_radius)) { |
|
radius = aparm.loiter_radius; |
|
} else { |
|
radius = quadplane.fw_land_approach_radius; |
|
} |
|
const int8_t direction = is_negative(radius) ? -1 : 1; |
|
radius = fabsf(radius); |
|
|
|
// validate that the vehicle is at least the expected distance away from the loiter point |
|
// require an angle total of at least 2 centidegrees, due to special casing of 1 centidegree |
|
if (((fabsf(cmd.content.location.get_distance(current_loc) - radius) > 5.0f) && |
|
(cmd.content.location.get_distance(current_loc) < radius)) || |
|
(loiter.sum_cd < 2)) { |
|
nav_controller->update_loiter(cmd.content.location, radius, direction); |
|
break; |
|
} |
|
vtol_approach_s.approach_stage = WAIT_FOR_BREAKOUT; |
|
FALLTHROUGH; |
|
} |
|
case WAIT_FOR_BREAKOUT: |
|
{ |
|
float radius = quadplane.fw_land_approach_radius; |
|
if (is_zero(radius)) { |
|
radius = aparm.loiter_radius; |
|
} |
|
const int8_t direction = is_negative(radius) ? -1 : 1; |
|
|
|
nav_controller->update_loiter(cmd.content.location, radius, direction); |
|
|
|
const float breakout_direction_rad = radians(wrap_180(vtol_approach_s.approach_direction_deg + (direction > 0 ? 270 : 90))); |
|
|
|
// breakout when within 5 degrees of the opposite direction |
|
if (fabsf(ahrs.yaw - breakout_direction_rad) < radians(5.0f)) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "Starting VTOL land approach path"); |
|
vtol_approach_s.approach_stage = APPROACH_LINE; |
|
set_next_WP(cmd.content.location); |
|
// fallthrough |
|
} else { |
|
break; |
|
} |
|
FALLTHROUGH; |
|
} |
|
case APPROACH_LINE: |
|
{ |
|
// project an apporach path |
|
Location start = cmd.content.location; |
|
Location end = cmd.content.location; |
|
|
|
// project a 1km waypoint to either side of the landing location |
|
start.offset_bearing(vtol_approach_s.approach_direction_deg + 180, 1000); |
|
end.offset_bearing(vtol_approach_s.approach_direction_deg, 1000); |
|
|
|
nav_controller->update_waypoint(start, end); |
|
|
|
// check if we should move on to the next waypoint |
|
Location breakout_loc = cmd.content.location; |
|
breakout_loc.offset_bearing(vtol_approach_s.approach_direction_deg + 180, quadplane.stopping_distance()); |
|
if(current_loc.past_interval_finish_line(start, breakout_loc)) { |
|
vtol_approach_s.approach_stage = VTOL_LANDING; |
|
quadplane.do_vtol_land(cmd); |
|
// fallthrough |
|
} else { |
|
break; |
|
} |
|
FALLTHROUGH; |
|
} |
|
case VTOL_LANDING: |
|
// nothing to do here, we should be into the quadplane landing code |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
#endif // HAL_QUADPLANE_ENABLED |
|
|
|
bool Plane::verify_loiter_heading(bool init) |
|
{ |
|
#if HAL_QUADPLANE_ENABLED |
|
if (quadplane.in_vtol_auto()) { |
|
// skip heading verify if in VTOL auto |
|
return true; |
|
} |
|
#endif |
|
|
|
//Get the lat/lon of next Nav waypoint after this one: |
|
AP_Mission::Mission_Command next_nav_cmd; |
|
if (! mission.get_next_nav_cmd(mission.get_current_nav_index() + 1, |
|
next_nav_cmd)) { |
|
//no next waypoint to shoot for -- go ahead and break out of loiter |
|
return true; |
|
} |
|
|
|
if (init) { |
|
loiter.sum_cd = 0; |
|
} |
|
|
|
return plane.mode_loiter.isHeadingLinedUp(next_WP_loc, next_nav_cmd.content.location); |
|
} |
|
|
|
float Plane::get_wp_radius() const |
|
{ |
|
#if HAL_QUADPLANE_ENABLED |
|
if (plane.quadplane.in_vtol_mode()) { |
|
return plane.quadplane.wp_nav->get_wp_radius_cm() * 0.01; |
|
} |
|
#endif |
|
return g.waypoint_radius; |
|
} |
|
|
|
#if AP_SCRIPTING_ENABLED |
|
/* |
|
support for scripted navigation, with verify operation for completion |
|
*/ |
|
void Plane::do_nav_script_time(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
nav_scripting.done = false; |
|
nav_scripting.id++; |
|
nav_scripting.start_ms = AP_HAL::millis(); |
|
|
|
// start with current roll rate, pitch rate and throttle |
|
nav_scripting.roll_rate_dps = plane.rollController.get_pid_info().target; |
|
nav_scripting.pitch_rate_dps = plane.pitchController.get_pid_info().target; |
|
nav_scripting.throttle_pct = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); |
|
} |
|
|
|
/* |
|
wait for scripting to say that the mission item is complete |
|
*/ |
|
bool Plane::verify_nav_script_time(const AP_Mission::Mission_Command& cmd) |
|
{ |
|
if (cmd.content.nav_script_time.timeout_s > 0) { |
|
const uint32_t now = AP_HAL::millis(); |
|
if (now - nav_scripting.start_ms > cmd.content.nav_script_time.timeout_s*1000U) { |
|
gcs().send_text(MAV_SEVERITY_INFO, "NavScriptTime timed out"); |
|
nav_scripting.done = true; |
|
} |
|
} |
|
return nav_scripting.done; |
|
} |
|
|
|
// check if we are in a NAV_SCRIPT_* command |
|
bool Plane::nav_scripting_active(void) const |
|
{ |
|
return !nav_scripting.done && |
|
control_mode == &mode_auto && |
|
mission.get_current_nav_cmd().id == MAV_CMD_NAV_SCRIPT_TIME; |
|
} |
|
|
|
// support for NAV_SCRIPTING mission command |
|
bool Plane::nav_script_time(uint16_t &id, uint8_t &cmd, float &arg1, float &arg2) |
|
{ |
|
if (!nav_scripting_active()) { |
|
// not in NAV_SCRIPT_TIME |
|
return false; |
|
} |
|
const auto &c = mission.get_current_nav_cmd().content.nav_script_time; |
|
id = nav_scripting.id; |
|
cmd = c.command; |
|
arg1 = c.arg1; |
|
arg2 = c.arg2; |
|
return true; |
|
} |
|
|
|
// called when script has completed the command |
|
void Plane::nav_script_time_done(uint16_t id) |
|
{ |
|
if (id == nav_scripting.id) { |
|
nav_scripting.done = true; |
|
} |
|
} |
|
|
|
// support for NAV_SCRIPTING mission command and aerobatics in other allowed modes |
|
void Plane::set_target_throttle_rate_rpy(float throttle_pct, float roll_rate_dps, float pitch_rate_dps, float yaw_rate_dps) |
|
{ |
|
nav_scripting.roll_rate_dps = constrain_float(roll_rate_dps, -g.acro_roll_rate, g.acro_roll_rate); |
|
nav_scripting.pitch_rate_dps = constrain_float(pitch_rate_dps, -g.acro_pitch_rate, g.acro_pitch_rate); |
|
nav_scripting.yaw_rate_dps = constrain_float(yaw_rate_dps, -g.acro_yaw_rate, g.acro_yaw_rate); |
|
nav_scripting.throttle_pct = throttle_pct; |
|
nav_scripting.current_ms = AP_HAL::millis(); |
|
} |
|
|
|
// enable NAV_SCRIPTING takeover in modes other than AUTO using script time mission commands |
|
bool Plane::nav_scripting_enable(uint8_t mode) |
|
{ |
|
uint8_t current_control_mode = control_mode->mode_number(); |
|
if (current_control_mode == mode) { |
|
switch (current_control_mode) { |
|
case Mode::Number::CIRCLE: |
|
case Mode::Number::STABILIZE: |
|
case Mode::Number::ACRO: |
|
case Mode::Number::FLY_BY_WIRE_A: |
|
case Mode::Number::FLY_BY_WIRE_B: |
|
case Mode::Number::CRUISE: |
|
case Mode::Number::LOITER: |
|
nav_scripting.enabled = true; |
|
break; |
|
default: |
|
nav_scripting.enabled = false; |
|
} |
|
} else { |
|
nav_scripting.enabled = false; |
|
} |
|
return nav_scripting.enabled; |
|
} |
|
#endif // AP_SCRIPTING_ENABLED
|
|
|