You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
4.4 KiB
184 lines
4.4 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#if FRAME_CONFIG == QUAD_FRAME |
|
|
|
static void output_motors_armed() |
|
{ |
|
int roll_out, pitch_out; |
|
int out_min = g.rc_3.radio_min; |
|
int out_max = g.rc_3.radio_max; |
|
|
|
// Throttle is 0 to 1000 only |
|
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, 1000); |
|
|
|
if(g.rc_3.servo_out > 0) |
|
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE; |
|
|
|
g.rc_1.calc_pwm(); |
|
g.rc_2.calc_pwm(); |
|
g.rc_3.calc_pwm(); |
|
g.rc_4.calc_pwm(); |
|
|
|
if(g.frame_orientation == X_FRAME){ |
|
roll_out = g.rc_1.pwm_out * .707; |
|
pitch_out = g.rc_2.pwm_out * .707; |
|
|
|
// left |
|
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // FRONT |
|
motor_out[CH_2] = g.rc_3.radio_out + roll_out - pitch_out; // BACK |
|
|
|
// right |
|
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; // FRONT |
|
motor_out[CH_4] = g.rc_3.radio_out - roll_out - pitch_out; // BACK |
|
|
|
}else{ |
|
|
|
roll_out = g.rc_1.pwm_out; |
|
pitch_out = g.rc_2.pwm_out; |
|
|
|
// left |
|
motor_out[CH_1] = g.rc_3.radio_out - roll_out; |
|
// right |
|
motor_out[CH_2] = g.rc_3.radio_out + roll_out; |
|
// front |
|
motor_out[CH_3] = g.rc_3.radio_out + pitch_out; |
|
// back |
|
motor_out[CH_4] = g.rc_3.radio_out - pitch_out; |
|
} |
|
|
|
// Yaw input |
|
motor_out[CH_1] += g.rc_4.pwm_out; // CCW |
|
motor_out[CH_2] += g.rc_4.pwm_out; // CCW |
|
motor_out[CH_3] -= g.rc_4.pwm_out; // CW |
|
motor_out[CH_4] -= g.rc_4.pwm_out; // CW |
|
|
|
/* We need to clip motor output at out_max. When cipping a motors |
|
* output we also need to compensate for the instability by |
|
* lowering the opposite motor by the same proportion. This |
|
* ensures that we retain control when one or more of the motors |
|
* is at its maximum output |
|
*/ |
|
for (int i=CH_1; i<=CH_4; i++) { |
|
if (motor_out[i] > out_max) { |
|
// note that i^1 is the opposite motor |
|
motor_out[i^1] -= motor_out[i] - out_max; |
|
motor_out[i] = out_max; |
|
} |
|
} |
|
|
|
// limit output so motors don't stop |
|
motor_out[CH_1] = max(motor_out[CH_1], out_min); |
|
motor_out[CH_2] = max(motor_out[CH_2], out_min); |
|
motor_out[CH_3] = max(motor_out[CH_3], out_min); |
|
motor_out[CH_4] = max(motor_out[CH_4], out_min); |
|
|
|
#if CUT_MOTORS == ENABLED |
|
// if we are not sending a throttle output, we cut the motors |
|
if(g.rc_3.servo_out == 0){ |
|
motor_out[CH_1] = g.rc_3.radio_min; |
|
motor_out[CH_2] = g.rc_3.radio_min; |
|
motor_out[CH_3] = g.rc_3.radio_min; |
|
motor_out[CH_4] = g.rc_3.radio_min; |
|
} |
|
#endif |
|
|
|
APM_RC.OutputCh(CH_1, motor_out[CH_1]); |
|
APM_RC.OutputCh(CH_2, motor_out[CH_2]); |
|
APM_RC.OutputCh(CH_3, motor_out[CH_3]); |
|
APM_RC.OutputCh(CH_4, motor_out[CH_4]); |
|
|
|
// InstantPWM |
|
APM_RC.Force_Out0_Out1(); |
|
APM_RC.Force_Out2_Out3(); |
|
} |
|
|
|
static void output_motors_disarmed() |
|
{ |
|
if(g.rc_3.control_in > 0){ |
|
// we have pushed up the throttle |
|
// remove safety |
|
motor_auto_armed = true; |
|
} |
|
|
|
// fill the motor_out[] array for HIL use |
|
for (unsigned char i = 0; i < 8; i++) { |
|
motor_out[i] = g.rc_3.radio_min; |
|
} |
|
|
|
// Send commands to motors |
|
APM_RC.OutputCh(CH_1, g.rc_3.radio_min); |
|
APM_RC.OutputCh(CH_2, g.rc_3.radio_min); |
|
APM_RC.OutputCh(CH_3, g.rc_3.radio_min); |
|
APM_RC.OutputCh(CH_4, g.rc_3.radio_min); |
|
|
|
// InstantPWM |
|
APM_RC.Force_Out0_Out1(); |
|
APM_RC.Force_Out2_Out3(); |
|
} |
|
|
|
/* |
|
static void debug_motors() |
|
{ |
|
Serial.printf("1:%d\t2:%d\t3:%d\t4:%d\n", |
|
motor_out[CH_1], |
|
motor_out[CH_2], |
|
motor_out[CH_3], |
|
motor_out[CH_4]); |
|
} |
|
*/ |
|
|
|
static void output_motor_test() |
|
{ |
|
motor_out[CH_1] = g.rc_3.radio_min; |
|
motor_out[CH_2] = g.rc_3.radio_min; |
|
motor_out[CH_3] = g.rc_3.radio_min; |
|
motor_out[CH_4] = g.rc_3.radio_min; |
|
|
|
|
|
if(g.frame_orientation == X_FRAME){ |
|
// 31 |
|
// 24 |
|
if(g.rc_1.control_in > 3000){ |
|
motor_out[CH_1] += 100; |
|
motor_out[CH_4] += 100; |
|
} |
|
|
|
if(g.rc_1.control_in < -3000){ |
|
motor_out[CH_2] += 100; |
|
motor_out[CH_3] += 100; |
|
} |
|
|
|
if(g.rc_2.control_in > 3000){ |
|
motor_out[CH_2] += 100; |
|
motor_out[CH_4] += 100; |
|
} |
|
|
|
if(g.rc_2.control_in < -3000){ |
|
motor_out[CH_1] += 100; |
|
motor_out[CH_3] += 100; |
|
} |
|
|
|
}else{ |
|
// 3 |
|
// 2 1 |
|
// 4 |
|
if(g.rc_1.control_in > 3000) |
|
motor_out[CH_1] += 100; |
|
|
|
if(g.rc_1.control_in < -3000) |
|
motor_out[CH_2] += 100; |
|
|
|
if(g.rc_2.control_in > 3000) |
|
motor_out[CH_4] += 100; |
|
|
|
if(g.rc_2.control_in < -3000) |
|
motor_out[CH_3] += 100; |
|
} |
|
|
|
APM_RC.OutputCh(CH_1, motor_out[CH_1]); |
|
APM_RC.OutputCh(CH_2, motor_out[CH_2]); |
|
APM_RC.OutputCh(CH_3, motor_out[CH_3]); |
|
APM_RC.OutputCh(CH_4, motor_out[CH_4]); |
|
} |
|
|
|
#endif
|
|
|