You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
641 lines
30 KiB
641 lines
30 KiB
#include "Copter.h" |
|
|
|
#if MODE_POSHOLD_ENABLED == ENABLED |
|
|
|
/* |
|
* Init and run calls for PosHold flight mode |
|
* PosHold tries to improve upon regular loiter by mixing the pilot input with the loiter controller |
|
*/ |
|
|
|
#define POSHOLD_SPEED_0 10 // speed below which it is always safe to switch to loiter |
|
|
|
// 400hz loop update rate |
|
#define POSHOLD_BRAKE_TIME_ESTIMATE_MAX (600*4) // max number of cycles the brake will be applied before we switch to loiter |
|
#define POSHOLD_BRAKE_TO_LOITER_TIMER (150*4) // Number of cycles to transition from brake mode to loiter mode. Must be lower than POSHOLD_LOITER_STAB_TIMER |
|
#define POSHOLD_WIND_COMP_START_TIMER (150*4) // Number of cycles to start wind compensation update after loiter is engaged |
|
#define POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER (50*4) // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition. |
|
#define POSHOLD_SMOOTH_RATE_FACTOR 0.0125f // filter applied to pilot's roll/pitch input as it returns to center. A lower number will cause the roll/pitch to return to zero more slowly if the brake_rate is also low. |
|
#define POSHOLD_WIND_COMP_TIMER_10HZ 40 // counter value used to reduce wind compensation to 10hz |
|
#define LOOP_RATE_FACTOR 4 // used to adapt PosHold params to loop_rate |
|
#define TC_WIND_COMP 0.0025f // Time constant for poshold_update_wind_comp_estimate() |
|
|
|
// definitions that are independent of main loop rate |
|
#define POSHOLD_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied |
|
#define POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX 10 // wind compensation estimates will only run when velocity is at or below this speed in cm/s |
|
#define POSHOLD_WIND_COMP_LEAN_PCT_MAX 0.6666f // wind compensation no more than 2/3rds of angle max to ensure pilot can always override |
|
|
|
// poshold_init - initialise PosHold controller |
|
bool ModePosHold::init(bool ignore_checks) |
|
{ |
|
// set vertical speed and acceleration limits |
|
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); |
|
pos_control->set_correction_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); |
|
|
|
// initialise the vertical position controller |
|
if (!pos_control->is_active_z()) { |
|
pos_control->init_z_controller(); |
|
} |
|
|
|
// initialise lean angles to current attitude |
|
pilot_roll = 0.0f; |
|
pilot_pitch = 0.0f; |
|
|
|
// compute brake_gain |
|
brake.gain = (15.0f * (float)g.poshold_brake_rate + 95.0f) / 100.0f; |
|
|
|
if (copter.ap.land_complete) { |
|
// if landed begin in loiter mode |
|
roll_mode = RPMode::LOITER; |
|
pitch_mode = RPMode::LOITER; |
|
} else { |
|
// if not landed start in pilot override to avoid hard twitch |
|
roll_mode = RPMode::PILOT_OVERRIDE; |
|
pitch_mode = RPMode::PILOT_OVERRIDE; |
|
} |
|
|
|
// initialise loiter |
|
loiter_nav->clear_pilot_desired_acceleration(); |
|
loiter_nav->init_target(); |
|
|
|
// initialise wind_comp each time PosHold is switched on |
|
init_wind_comp_estimate(); |
|
|
|
return true; |
|
} |
|
|
|
// poshold_run - runs the PosHold controller |
|
// should be called at 100hz or more |
|
void ModePosHold::run() |
|
{ |
|
float controller_to_pilot_roll_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls |
|
float controller_to_pilot_pitch_mix; // mix of controller and pilot controls. 0 = fully last controller controls, 1 = fully pilot controls |
|
const Vector3f& vel = inertial_nav.get_velocity(); |
|
|
|
// set vertical speed and acceleration limits |
|
pos_control->set_max_speed_accel_z(-get_pilot_speed_dn(), g.pilot_speed_up, g.pilot_accel_z); |
|
loiter_nav->clear_pilot_desired_acceleration(); |
|
|
|
// apply SIMPLE mode transform to pilot inputs |
|
update_simple_mode(); |
|
|
|
// convert pilot input to lean angles |
|
float target_roll, target_pitch; |
|
get_pilot_desired_lean_angles(target_roll, target_pitch, copter.aparm.angle_max, attitude_control->get_althold_lean_angle_max_cd()); |
|
|
|
// get pilot's desired yaw rate |
|
float target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); |
|
|
|
// get pilot desired climb rate (for alt-hold mode and take-off) |
|
float target_climb_rate = get_pilot_desired_climb_rate(channel_throttle->get_control_in()); |
|
target_climb_rate = constrain_float(target_climb_rate, -get_pilot_speed_dn(), g.pilot_speed_up); |
|
|
|
// relax loiter target if we might be landed |
|
if (copter.ap.land_complete_maybe) { |
|
loiter_nav->soften_for_landing(); |
|
} |
|
|
|
// Pos Hold State Machine Determination |
|
AltHoldModeState poshold_state = get_alt_hold_state(target_climb_rate); |
|
|
|
// state machine |
|
switch (poshold_state) { |
|
|
|
case AltHold_MotorStopped: |
|
attitude_control->reset_rate_controller_I_terms(); |
|
attitude_control->reset_yaw_target_and_rate(false); |
|
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero |
|
loiter_nav->clear_pilot_desired_acceleration(); |
|
loiter_nav->init_target(); |
|
loiter_nav->update(false); |
|
|
|
// set poshold state to pilot override |
|
roll_mode = RPMode::PILOT_OVERRIDE; |
|
pitch_mode = RPMode::PILOT_OVERRIDE; |
|
|
|
// initialise wind compensation estimate |
|
init_wind_comp_estimate(); |
|
break; |
|
|
|
case AltHold_Takeoff: |
|
// initiate take-off |
|
if (!takeoff.running()) { |
|
takeoff.start(constrain_float(g.pilot_takeoff_alt,0.0f,1000.0f)); |
|
} |
|
|
|
// get avoidance adjusted climb rate |
|
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate); |
|
|
|
// set position controller targets adjusted for pilot input |
|
takeoff.do_pilot_takeoff(target_climb_rate); |
|
|
|
// init and update loiter although pilot is controlling lean angles |
|
loiter_nav->clear_pilot_desired_acceleration(); |
|
loiter_nav->init_target(); |
|
loiter_nav->update(false); |
|
|
|
// set poshold state to pilot override |
|
roll_mode = RPMode::PILOT_OVERRIDE; |
|
pitch_mode = RPMode::PILOT_OVERRIDE; |
|
break; |
|
|
|
case AltHold_Landed_Ground_Idle: |
|
loiter_nav->clear_pilot_desired_acceleration(); |
|
loiter_nav->init_target(); |
|
loiter_nav->update(false); |
|
attitude_control->reset_yaw_target_and_rate(); |
|
init_wind_comp_estimate(); |
|
FALLTHROUGH; |
|
|
|
case AltHold_Landed_Pre_Takeoff: |
|
attitude_control->reset_rate_controller_I_terms_smoothly(); |
|
pos_control->relax_z_controller(0.0f); // forces throttle output to decay to zero |
|
|
|
// set poshold state to pilot override |
|
roll_mode = RPMode::PILOT_OVERRIDE; |
|
pitch_mode = RPMode::PILOT_OVERRIDE; |
|
break; |
|
|
|
case AltHold_Flying: |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); |
|
|
|
// get avoidance adjusted climb rate |
|
target_climb_rate = get_avoidance_adjusted_climbrate(target_climb_rate); |
|
|
|
// update the vertical offset based on the surface measurement |
|
copter.surface_tracking.update_surface_offset(); |
|
|
|
// Send the commanded climb rate to the position controller |
|
pos_control->set_pos_target_z_from_climb_rate_cm(target_climb_rate); |
|
break; |
|
} |
|
|
|
// poshold specific behaviour to calculate desired roll, pitch angles |
|
// convert inertial nav earth-frame velocities to body-frame |
|
// To-Do: move this to AP_Math (or perhaps we already have a function to do this) |
|
float vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw(); |
|
float vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw(); |
|
|
|
// If not in LOITER, retrieve latest wind compensation lean angles related to current yaw |
|
if (roll_mode != RPMode::LOITER || pitch_mode != RPMode::LOITER) { |
|
get_wind_comp_lean_angles(wind_comp_roll, wind_comp_pitch); |
|
} |
|
|
|
// Roll state machine |
|
// Each state (aka mode) is responsible for: |
|
// 1. dealing with pilot input |
|
// 2. calculating the final roll output to the attitude controller |
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state |
|
switch (roll_mode) { |
|
|
|
case RPMode::PILOT_OVERRIDE: |
|
// update pilot desired roll angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
update_pilot_lean_angle(pilot_roll, target_roll); |
|
|
|
// switch to BRAKE mode for next iteration if no pilot input |
|
if (is_zero(target_roll) && (fabsf(pilot_roll) < 2 * g.poshold_brake_rate)) { |
|
// initialise BRAKE mode |
|
roll_mode = RPMode::BRAKE; // Set brake roll mode |
|
brake.roll = 0.0f; // initialise braking angle to zero |
|
brake.angle_max_roll = 0.0f; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking |
|
brake.timeout_roll = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode. |
|
brake.time_updated_roll = false; // flag the braking time can be re-estimated |
|
} |
|
|
|
// final lean angle should be pilot input plus wind compensation |
|
roll = pilot_roll + wind_comp_roll; |
|
break; |
|
|
|
case RPMode::BRAKE: |
|
case RPMode::BRAKE_READY_TO_LOITER: |
|
// calculate brake.roll angle to counter-act velocity |
|
update_brake_angle_from_velocity(brake.roll, vel_right); |
|
|
|
// update braking time estimate |
|
if (!brake.time_updated_roll) { |
|
// check if brake angle is increasing |
|
if (fabsf(brake.roll) >= brake.angle_max_roll) { |
|
brake.angle_max_roll = fabsf(brake.roll); |
|
} else { |
|
// braking angle has started decreasing so re-estimate braking time |
|
brake.timeout_roll = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(fabsf(brake.roll))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. |
|
brake.time_updated_roll = true; |
|
} |
|
} |
|
|
|
// if velocity is very low reduce braking time to 0.5seconds |
|
if ((fabsf(vel_right) <= POSHOLD_SPEED_0) && (brake.timeout_roll > 50*LOOP_RATE_FACTOR)) { |
|
brake.timeout_roll = 50*LOOP_RATE_FACTOR; |
|
} |
|
|
|
// reduce braking timer |
|
if (brake.timeout_roll > 0) { |
|
brake.timeout_roll--; |
|
} else { |
|
// indicate that we are ready to move to Loiter. |
|
// Loiter will only actually be engaged once both roll_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER |
|
// logic for engaging loiter is handled below the roll and pitch mode switch statements |
|
roll_mode = RPMode::BRAKE_READY_TO_LOITER; |
|
} |
|
|
|
// final lean angle is braking angle + wind compensation angle |
|
roll = brake.roll + wind_comp_roll; |
|
|
|
// check for pilot input |
|
if (!is_zero(target_roll)) { |
|
// init transition to pilot override |
|
roll_controller_to_pilot_override(); |
|
} |
|
break; |
|
|
|
case RPMode::BRAKE_TO_LOITER: |
|
case RPMode::LOITER: |
|
// these modes are combined roll-pitch modes and are handled below |
|
break; |
|
|
|
case RPMode::CONTROLLER_TO_PILOT_OVERRIDE: |
|
// update pilot desired roll angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
update_pilot_lean_angle(pilot_roll, target_roll); |
|
|
|
// count-down loiter to pilot timer |
|
if (controller_to_pilot_timer_roll > 0) { |
|
controller_to_pilot_timer_roll--; |
|
} else { |
|
// when timer runs out switch to full pilot override for next iteration |
|
roll_mode = RPMode::PILOT_OVERRIDE; |
|
} |
|
|
|
// calculate controller_to_pilot mix ratio |
|
controller_to_pilot_roll_mix = (float)controller_to_pilot_timer_roll / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER; |
|
|
|
// mix final loiter lean angle and pilot desired lean angles |
|
roll = mix_controls(controller_to_pilot_roll_mix, controller_final_roll, pilot_roll + wind_comp_roll); |
|
break; |
|
} |
|
|
|
// Pitch state machine |
|
// Each state (aka mode) is responsible for: |
|
// 1. dealing with pilot input |
|
// 2. calculating the final pitch output to the attitude contpitcher |
|
// 3. checking if the state (aka mode) should be changed and if 'yes' perform any required initialisation for the new state |
|
switch (pitch_mode) { |
|
|
|
case RPMode::PILOT_OVERRIDE: |
|
// update pilot desired pitch angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
update_pilot_lean_angle(pilot_pitch, target_pitch); |
|
|
|
// switch to BRAKE mode for next iteration if no pilot input |
|
if (is_zero(target_pitch) && (fabsf(pilot_pitch) < 2 * g.poshold_brake_rate)) { |
|
// initialise BRAKE mode |
|
pitch_mode = RPMode::BRAKE; // set brake pitch mode |
|
brake.pitch = 0.0f; // initialise braking angle to zero |
|
brake.angle_max_pitch = 0.0f; // reset brake_angle_max so we can detect when vehicle begins to flatten out during braking |
|
brake.timeout_pitch = POSHOLD_BRAKE_TIME_ESTIMATE_MAX; // number of cycles the brake will be applied, updated during braking mode. |
|
brake.time_updated_pitch = false; // flag the braking time can be re-estimated |
|
} |
|
|
|
// final lean angle should be pilot input plus wind compensation |
|
pitch = pilot_pitch + wind_comp_pitch; |
|
break; |
|
|
|
case RPMode::BRAKE: |
|
case RPMode::BRAKE_READY_TO_LOITER: |
|
// calculate brake_pitch angle to counter-act velocity |
|
update_brake_angle_from_velocity(brake.pitch, -vel_fw); |
|
|
|
// update braking time estimate |
|
if (!brake.time_updated_pitch) { |
|
// check if brake angle is increasing |
|
if (fabsf(brake.pitch) >= brake.angle_max_pitch) { |
|
brake.angle_max_pitch = fabsf(brake.pitch); |
|
} else { |
|
// braking angle has started decreasing so re-estimate braking time |
|
brake.timeout_pitch = 1+(uint16_t)(LOOP_RATE_FACTOR*15L*(int32_t)(fabsf(brake.pitch))/(10L*(int32_t)g.poshold_brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time. |
|
brake.time_updated_pitch = true; |
|
} |
|
} |
|
|
|
// if velocity is very low reduce braking time to 0.5seconds |
|
if ((fabsf(vel_fw) <= POSHOLD_SPEED_0) && (brake.timeout_pitch > 50*LOOP_RATE_FACTOR)) { |
|
brake.timeout_pitch = 50*LOOP_RATE_FACTOR; |
|
} |
|
|
|
// reduce braking timer |
|
if (brake.timeout_pitch > 0) { |
|
brake.timeout_pitch--; |
|
} else { |
|
// indicate that we are ready to move to Loiter. |
|
// Loiter will only actually be engaged once both pitch_mode and pitch_mode are changed to RPMode::BRAKE_READY_TO_LOITER |
|
// logic for engaging loiter is handled below the pitch and pitch mode switch statements |
|
pitch_mode = RPMode::BRAKE_READY_TO_LOITER; |
|
} |
|
|
|
// final lean angle is braking angle + wind compensation angle |
|
pitch = brake.pitch + wind_comp_pitch; |
|
|
|
// check for pilot input |
|
if (!is_zero(target_pitch)) { |
|
// init transition to pilot override |
|
pitch_controller_to_pilot_override(); |
|
} |
|
break; |
|
|
|
case RPMode::BRAKE_TO_LOITER: |
|
case RPMode::LOITER: |
|
// these modes are combined pitch-pitch modes and are handled below |
|
break; |
|
|
|
case RPMode::CONTROLLER_TO_PILOT_OVERRIDE: |
|
// update pilot desired pitch angle using latest radio input |
|
// this filters the input so that it returns to zero no faster than the brake-rate |
|
update_pilot_lean_angle(pilot_pitch, target_pitch); |
|
|
|
// count-down loiter to pilot timer |
|
if (controller_to_pilot_timer_pitch > 0) { |
|
controller_to_pilot_timer_pitch--; |
|
} else { |
|
// when timer runs out switch to full pilot override for next iteration |
|
pitch_mode = RPMode::PILOT_OVERRIDE; |
|
} |
|
|
|
// calculate controller_to_pilot mix ratio |
|
controller_to_pilot_pitch_mix = (float)controller_to_pilot_timer_pitch / (float)POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER; |
|
|
|
// mix final loiter lean angle and pilot desired lean angles |
|
pitch = mix_controls(controller_to_pilot_pitch_mix, controller_final_pitch, pilot_pitch + wind_comp_pitch); |
|
break; |
|
} |
|
|
|
// |
|
// Shared roll & pitch states (RPMode::BRAKE_TO_LOITER and RPMode::LOITER) |
|
// |
|
|
|
// switch into LOITER mode when both roll and pitch are ready |
|
if (roll_mode == RPMode::BRAKE_READY_TO_LOITER && pitch_mode == RPMode::BRAKE_READY_TO_LOITER) { |
|
roll_mode = RPMode::BRAKE_TO_LOITER; |
|
pitch_mode = RPMode::BRAKE_TO_LOITER; |
|
brake.to_loiter_timer = POSHOLD_BRAKE_TO_LOITER_TIMER; |
|
// init loiter controller |
|
loiter_nav->init_target(inertial_nav.get_position().xy()); |
|
// set delay to start of wind compensation estimate updates |
|
wind_comp_start_timer = POSHOLD_WIND_COMP_START_TIMER; |
|
} |
|
|
|
// roll-mode is used as the combined roll+pitch mode when in BRAKE_TO_LOITER or LOITER modes |
|
if (roll_mode == RPMode::BRAKE_TO_LOITER || roll_mode == RPMode::LOITER) { |
|
|
|
// force pitch mode to be same as roll_mode just to keep it consistent (it's not actually used in these states) |
|
pitch_mode = roll_mode; |
|
|
|
// handle combined roll+pitch mode |
|
switch (roll_mode) { |
|
case RPMode::BRAKE_TO_LOITER: { |
|
// reduce brake_to_loiter timer |
|
if (brake.to_loiter_timer > 0) { |
|
brake.to_loiter_timer--; |
|
} else { |
|
// progress to full loiter on next iteration |
|
roll_mode = RPMode::LOITER; |
|
pitch_mode = RPMode::LOITER; |
|
} |
|
|
|
// mix of brake and loiter controls. 0 = fully brake |
|
// controls, 1 = fully loiter controls |
|
const float brake_to_loiter_mix = (float)brake.to_loiter_timer / (float)POSHOLD_BRAKE_TO_LOITER_TIMER; |
|
|
|
// calculate brake.roll and pitch angles to counter-act velocity |
|
update_brake_angle_from_velocity(brake.roll, vel_right); |
|
update_brake_angle_from_velocity(brake.pitch, -vel_fw); |
|
|
|
// run loiter controller |
|
loiter_nav->update(false); |
|
|
|
// calculate final roll and pitch output by mixing loiter and brake controls |
|
roll = mix_controls(brake_to_loiter_mix, brake.roll + wind_comp_roll, loiter_nav->get_roll()); |
|
pitch = mix_controls(brake_to_loiter_mix, brake.pitch + wind_comp_pitch, loiter_nav->get_pitch()); |
|
|
|
// check for pilot input |
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) { |
|
// if roll input switch to pilot override for roll |
|
if (!is_zero(target_roll)) { |
|
// init transition to pilot override |
|
roll_controller_to_pilot_override(); |
|
// switch pitch-mode to brake (but ready to go back to loiter anytime) |
|
// no need to reset brake.pitch here as wind comp has not been updated since last brake.pitch computation |
|
pitch_mode = RPMode::BRAKE_READY_TO_LOITER; |
|
} |
|
// if pitch input switch to pilot override for pitch |
|
if (!is_zero(target_pitch)) { |
|
// init transition to pilot override |
|
pitch_controller_to_pilot_override(); |
|
if (is_zero(target_roll)) { |
|
// switch roll-mode to brake (but ready to go back to loiter anytime) |
|
// no need to reset brake.roll here as wind comp has not been updated since last brake.roll computation |
|
roll_mode = RPMode::BRAKE_READY_TO_LOITER; |
|
} |
|
} |
|
} |
|
break; |
|
} |
|
case RPMode::LOITER: |
|
// run loiter controller |
|
loiter_nav->update(false); |
|
|
|
// set roll angle based on loiter controller outputs |
|
roll = loiter_nav->get_roll(); |
|
pitch = loiter_nav->get_pitch(); |
|
|
|
// update wind compensation estimate |
|
update_wind_comp_estimate(); |
|
|
|
// check for pilot input |
|
if (!is_zero(target_roll) || !is_zero(target_pitch)) { |
|
// if roll input switch to pilot override for roll |
|
if (!is_zero(target_roll)) { |
|
// init transition to pilot override |
|
roll_controller_to_pilot_override(); |
|
// switch pitch-mode to brake (but ready to go back to loiter anytime) |
|
pitch_mode = RPMode::BRAKE_READY_TO_LOITER; |
|
// reset brake.pitch because wind_comp is now different and should give the compensation of the whole previous loiter angle |
|
brake.pitch = 0.0f; |
|
} |
|
// if pitch input switch to pilot override for pitch |
|
if (!is_zero(target_pitch)) { |
|
// init transition to pilot override |
|
pitch_controller_to_pilot_override(); |
|
// if roll not overriden switch roll-mode to brake (but be ready to go back to loiter any time) |
|
if (is_zero(target_roll)) { |
|
roll_mode = RPMode::BRAKE_READY_TO_LOITER; |
|
brake.roll = 0.0f; |
|
} |
|
// if roll not overridden switch roll-mode to brake (but be ready to go back to loiter any time) |
|
} |
|
} |
|
break; |
|
|
|
default: |
|
// do nothing for uncombined roll and pitch modes |
|
break; |
|
} |
|
} |
|
|
|
// constrain target pitch/roll angles |
|
float angle_max = copter.aparm.angle_max; |
|
roll = constrain_float(roll, -angle_max, angle_max); |
|
pitch = constrain_float(pitch, -angle_max, angle_max); |
|
|
|
// call attitude controller |
|
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(roll, pitch, target_yaw_rate); |
|
|
|
// run the vertical position controller and set output throttle |
|
pos_control->update_z_controller(); |
|
} |
|
|
|
// poshold_update_pilot_lean_angle - update the pilot's filtered lean angle with the latest raw input received |
|
void ModePosHold::update_pilot_lean_angle(float &lean_angle_filtered, float &lean_angle_raw) |
|
{ |
|
// if raw input is large or reversing the vehicle's lean angle immediately set the fitlered angle to the new raw angle |
|
if ((lean_angle_filtered > 0 && lean_angle_raw < 0) || (lean_angle_filtered < 0 && lean_angle_raw > 0) || (fabsf(lean_angle_raw) > POSHOLD_STICK_RELEASE_SMOOTH_ANGLE)) { |
|
lean_angle_filtered = lean_angle_raw; |
|
} else { |
|
// lean_angle_raw must be pulling lean_angle_filtered towards zero, smooth the decrease |
|
if (lean_angle_filtered > 0) { |
|
// reduce the filtered lean angle at 5% or the brake rate (whichever is faster). |
|
lean_angle_filtered -= MAX((float)lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1, g.poshold_brake_rate/LOOP_RATE_FACTOR)); |
|
// do not let the filtered angle fall below the pilot's input lean angle. |
|
// the above line pulls the filtered angle down and the below line acts as a catch |
|
lean_angle_filtered = MAX(lean_angle_filtered, lean_angle_raw); |
|
}else{ |
|
lean_angle_filtered += MAX(-(float)lean_angle_filtered * POSHOLD_SMOOTH_RATE_FACTOR, MAX(1, g.poshold_brake_rate/LOOP_RATE_FACTOR)); |
|
lean_angle_filtered = MIN(lean_angle_filtered, lean_angle_raw); |
|
} |
|
} |
|
} |
|
|
|
// mix_controls - mixes two controls based on the mix_ratio |
|
// mix_ratio of 1 = use first_control completely, 0 = use second_control completely, 0.5 = mix evenly |
|
float ModePosHold::mix_controls(float mix_ratio, float first_control, float second_control) |
|
{ |
|
mix_ratio = constrain_float(mix_ratio, 0.0f, 1.0f); |
|
return mix_ratio * first_control + (1.0f - mix_ratio) * second_control; |
|
} |
|
|
|
// update_brake_angle_from_velocity - updates the brake_angle based on the vehicle's velocity and brake_gain |
|
// brake_angle is slewed with the wpnav.poshold_brake_rate and constrained by the wpnav.poshold_braking_angle_max |
|
// velocity is assumed to be in the same direction as lean angle so for pitch you should provide the velocity backwards (i.e. -ve forward velocity) |
|
void ModePosHold::update_brake_angle_from_velocity(float &brake_angle, float velocity) |
|
{ |
|
float lean_angle; |
|
float brake_rate = g.poshold_brake_rate; |
|
|
|
brake_rate /= 4.0f; |
|
if (brake_rate <= 1.0f) { |
|
brake_rate = 1.0f; |
|
} |
|
|
|
// calculate velocity-only based lean angle |
|
if (velocity >= 0) { |
|
lean_angle = -brake.gain * velocity * (1.0f + 500.0f / (velocity + 60.0f)); |
|
} else { |
|
lean_angle = -brake.gain * velocity * (1.0f + 500.0f / (-velocity + 60.0f)); |
|
} |
|
|
|
// do not let lean_angle be too far from brake_angle |
|
brake_angle = constrain_float(lean_angle, brake_angle - brake_rate, brake_angle + brake_rate); |
|
|
|
// constrain final brake_angle |
|
brake_angle = constrain_float(brake_angle, -(float)g.poshold_brake_angle_max, (float)g.poshold_brake_angle_max); |
|
} |
|
|
|
// initialise wind compensation estimate back to zero |
|
void ModePosHold::init_wind_comp_estimate() |
|
{ |
|
wind_comp_ef.zero(); |
|
wind_comp_timer = 0; |
|
wind_comp_roll = 0.0f; |
|
wind_comp_pitch = 0.0f; |
|
} |
|
|
|
// update_wind_comp_estimate - updates wind compensation estimate |
|
// should be called at the maximum loop rate when loiter is engaged |
|
void ModePosHold::update_wind_comp_estimate() |
|
{ |
|
// check wind estimate start has not been delayed |
|
if (wind_comp_start_timer > 0) { |
|
wind_comp_start_timer--; |
|
return; |
|
} |
|
|
|
// check horizontal velocity is low |
|
if (inertial_nav.get_speed_xy() > POSHOLD_WIND_COMP_ESTIMATE_SPEED_MAX) { |
|
return; |
|
} |
|
|
|
// get position controller accel target |
|
const Vector3f& accel_target = pos_control->get_accel_target_cmss(); |
|
|
|
// update wind compensation in earth-frame lean angles |
|
if (is_zero(wind_comp_ef.x)) { |
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction |
|
wind_comp_ef.x = accel_target.x; |
|
} else { |
|
// low pass filter the position controller's lean angle output |
|
wind_comp_ef.x = (1.0f-TC_WIND_COMP)*wind_comp_ef.x + TC_WIND_COMP*accel_target.x; |
|
} |
|
if (is_zero(wind_comp_ef.y)) { |
|
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction |
|
wind_comp_ef.y = accel_target.y; |
|
} else { |
|
// low pass filter the position controller's lean angle output |
|
wind_comp_ef.y = (1.0f-TC_WIND_COMP)*wind_comp_ef.y + TC_WIND_COMP*accel_target.y; |
|
} |
|
|
|
// limit acceleration |
|
const float accel_lim_cmss = tanf(radians(POSHOLD_WIND_COMP_LEAN_PCT_MAX * copter.aparm.angle_max * 0.01f)) * 981.0f; |
|
const float wind_comp_ef_len = wind_comp_ef.length(); |
|
if (!is_zero(accel_lim_cmss) && (wind_comp_ef_len > accel_lim_cmss)) { |
|
wind_comp_ef *= accel_lim_cmss / wind_comp_ef_len; |
|
} |
|
} |
|
|
|
// get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles |
|
// should be called at the maximum loop rate |
|
void ModePosHold::get_wind_comp_lean_angles(float &roll_angle, float &pitch_angle) |
|
{ |
|
// reduce rate to 10hz |
|
wind_comp_timer++; |
|
if (wind_comp_timer < POSHOLD_WIND_COMP_TIMER_10HZ) { |
|
return; |
|
} |
|
wind_comp_timer = 0; |
|
|
|
// convert earth frame desired accelerations to body frame roll and pitch lean angles |
|
roll_angle = atanf((-wind_comp_ef.x*ahrs.sin_yaw() + wind_comp_ef.y*ahrs.cos_yaw())/(GRAVITY_MSS*100))*(18000.0f/M_PI); |
|
pitch_angle = atanf(-(wind_comp_ef.x*ahrs.cos_yaw() + wind_comp_ef.y*ahrs.sin_yaw())/(GRAVITY_MSS*100))*(18000.0f/M_PI); |
|
} |
|
|
|
// roll_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis |
|
void ModePosHold::roll_controller_to_pilot_override() |
|
{ |
|
roll_mode = RPMode::CONTROLLER_TO_PILOT_OVERRIDE; |
|
controller_to_pilot_timer_roll = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER; |
|
// initialise pilot_roll to 0, wind_comp will be updated to compensate and poshold_update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value |
|
pilot_roll = 0.0f; |
|
// store final controller output for mixing with pilot input |
|
controller_final_roll = roll; |
|
} |
|
|
|
// pitch_controller_to_pilot_override - initialises transition from a controller submode (brake or loiter) to a pilot override on roll axis |
|
void ModePosHold::pitch_controller_to_pilot_override() |
|
{ |
|
pitch_mode = RPMode::CONTROLLER_TO_PILOT_OVERRIDE; |
|
controller_to_pilot_timer_pitch = POSHOLD_CONTROLLER_TO_PILOT_MIX_TIMER; |
|
// initialise pilot_pitch to 0, wind_comp will be updated to compensate and update_pilot_lean_angle function shall not smooth this transition at next iteration. so 0 is the right value |
|
pilot_pitch = 0.0f; |
|
// store final loiter outputs for mixing with pilot input |
|
controller_final_pitch = pitch; |
|
} |
|
|
|
#endif
|
|
|