You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.5 KiB
121 lines
4.5 KiB
/* Variometer class by Samuel Tabor |
|
|
|
Manages the estimation of aircraft total energy, drag and vertical air velocity. |
|
*/ |
|
#include "Variometer.h" |
|
|
|
#include <AP_Logger/AP_Logger.h> |
|
|
|
Variometer::Variometer(AP_AHRS &ahrs, const AP_Vehicle::FixedWing &parms) : |
|
_ahrs(ahrs), |
|
_aparm(parms) |
|
{ |
|
_climb_filter = LowPassFilter<float>(1.0/60.0); |
|
|
|
_vdot_filter2 = LowPassFilter<float>(1.0f/60.0f); |
|
} |
|
|
|
void Variometer::update(const float polar_K, const float polar_Cd0, const float polar_B) |
|
{ |
|
_ahrs.get_relative_position_D_home(alt); |
|
alt = -alt; |
|
|
|
float aspd = 0; |
|
if (!_ahrs.airspeed_estimate(aspd)) { |
|
aspd = _aparm.airspeed_cruise_cm / 100.0f; |
|
} |
|
_aspd_filt = _sp_filter.apply(aspd); |
|
|
|
// Constrained airspeed. |
|
const float minV = sqrtf(polar_K/1.5); |
|
_aspd_filt_constrained = _aspd_filt>minV ? _aspd_filt : minV; |
|
|
|
|
|
tau = calculate_circling_time_constant(); |
|
|
|
float dt = (float)(AP_HAL::micros64() - _prev_update_time)/1e6; |
|
|
|
// Logic borrowed from AP_TECS.cpp |
|
// Update and average speed rate of change |
|
// Get DCM |
|
const Matrix3f &rotMat = _ahrs.get_rotation_body_to_ned(); |
|
// Calculate speed rate of change |
|
float temp = rotMat.c.x * GRAVITY_MSS + AP::ins().get_accel().x; |
|
// take 5 point moving average |
|
float dsp = _vdot_filter.apply(temp); |
|
|
|
// Now we need to high-pass this signal to remove bias. |
|
_vdot_filter2.set_cutoff_frequency(1/(20*tau)); |
|
float dsp_bias = _vdot_filter2.apply(temp, dt); |
|
|
|
float dsp_cor = dsp - dsp_bias; |
|
|
|
|
|
Vector3f velned; |
|
if (_ahrs.get_velocity_NED(velned)) { |
|
// if possible use the EKF vertical velocity |
|
raw_climb_rate = -velned.z; |
|
} |
|
|
|
_climb_filter.set_cutoff_frequency(1/(3*tau)); |
|
smoothed_climb_rate = _climb_filter.apply(raw_climb_rate, dt); |
|
|
|
// Compute still-air sinkrate |
|
float roll = _ahrs.roll; |
|
float sinkrate = calculate_aircraft_sinkrate(roll, polar_K, polar_Cd0, polar_B); |
|
|
|
reading = raw_climb_rate + dsp_cor*_aspd_filt_constrained/GRAVITY_MSS + sinkrate; |
|
|
|
|
|
filtered_reading = TE_FILT * reading + (1 - TE_FILT) * filtered_reading; // Apply low pass timeconst filter for noise |
|
displayed_reading = TE_FILT_DISPLAYED * reading + (1 - TE_FILT_DISPLAYED) * displayed_reading; |
|
|
|
_prev_update_time = AP_HAL::micros64(); |
|
|
|
float expected_roll = atanf(powf(_aspd_filt_constrained,2)/(GRAVITY_MSS*_aparm.loiter_radius)); |
|
_expected_thermalling_sink = calculate_aircraft_sinkrate(expected_roll, polar_K, polar_Cd0, polar_B); |
|
|
|
AP::logger().Write("VAR", "TimeUS,aspd_raw,aspd_filt,alt,roll,raw,filt,cl,fc,exs,dsp,dspb", "Qfffffffffff", |
|
AP_HAL::micros64(), |
|
(double)0.0, |
|
(double)_aspd_filt_constrained, |
|
(double)alt, |
|
(double)roll, |
|
(double)reading, |
|
(double)filtered_reading, |
|
(double)raw_climb_rate, |
|
(double)smoothed_climb_rate, |
|
(double)_expected_thermalling_sink, |
|
(double)dsp, |
|
(double)dsp_bias); |
|
} |
|
|
|
|
|
float Variometer::calculate_aircraft_sinkrate(float phi, |
|
const float polar_K, |
|
const float polar_CD0, |
|
const float polar_B) |
|
{ |
|
// Remove aircraft sink rate |
|
float CL0; // CL0 = 2*W/(rho*S*V^2) |
|
float C1; // C1 = CD0/CL0 |
|
float C2; // C2 = CDi0/CL0 = B*CL0 |
|
CL0 = polar_K / (_aspd_filt_constrained * _aspd_filt_constrained); |
|
|
|
C1 = polar_CD0 / CL0; // constant describing expected angle to overcome zero-lift drag |
|
C2 = polar_B * CL0; // constant describing expected angle to overcome lift induced drag at zero bank |
|
|
|
float cosphi = (1 - phi * phi / 2); // first two terms of mclaurin series for cos(phi) |
|
|
|
return _aspd_filt_constrained * (C1 + C2 / (cosphi * cosphi)); |
|
} |
|
|
|
float Variometer::calculate_circling_time_constant() |
|
{ |
|
// Calculate a time constant to use to filter quantities over a full thermal orbit. |
|
// This is used for rejecting variation in e.g. climb rate, or estimated climb rate |
|
// potential, as the aircraft orbits the thermal. |
|
// Use the time to circle - variations at the circling frequency then have a gain of 25% |
|
// and the response to a step input will reach 64% of final value in three orbits. |
|
return _aparm.loiter_radius*2*M_PI/_aspd_filt_constrained; |
|
}
|
|
|