You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
7.5 KiB
184 lines
7.5 KiB
#include "Copter.h" |
|
|
|
#if MODE_FOLLOW_ENABLED == ENABLED |
|
|
|
/* |
|
* mode_follow.cpp - follow another mavlink-enabled vehicle by system id |
|
* |
|
* TODO: stick control to move around on sphere |
|
* TODO: stick control to change sphere diameter |
|
* TODO: "channel 7 option" to lock onto "pointed at" target |
|
* TODO: do better in terms of loitering around the moving point; may need a PID? Maybe use loiter controller somehow? |
|
* TODO: extrapolate target vehicle position using its velocity and acceleration |
|
* TODO: ensure AC_AVOID_ENABLED is true because we rely on it velocity limiting functions |
|
*/ |
|
|
|
// initialise follow mode |
|
bool ModeFollow::init(const bool ignore_checks) |
|
{ |
|
if (!g2.follow.enabled()) { |
|
gcs().send_text(MAV_SEVERITY_WARNING, "Set FOLL_ENABLE = 1"); |
|
return false; |
|
} |
|
// re-use guided mode |
|
return ModeGuided::init(ignore_checks); |
|
} |
|
|
|
// perform cleanup required when leaving follow mode |
|
void ModeFollow::exit() |
|
{ |
|
g2.follow.clear_offsets_if_required(); |
|
} |
|
|
|
void ModeFollow::run() |
|
{ |
|
// if not armed set throttle to zero and exit immediately |
|
if (is_disarmed_or_landed()) { |
|
make_safe_spool_down(); |
|
return; |
|
} |
|
|
|
// set motors to full range |
|
motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); |
|
|
|
// re-use guided mode's velocity controller |
|
// Note: this is safe from interference from GCSs and companion computer's whose guided mode |
|
// position and velocity requests will be ignored while the vehicle is not in guided mode |
|
|
|
// variables to be sent to velocity controller |
|
Vector3f desired_velocity_neu_cms; |
|
bool use_yaw = false; |
|
float yaw_cd = 0.0f; |
|
|
|
Vector3f dist_vec; // vector to lead vehicle |
|
Vector3f dist_vec_offs; // vector to lead vehicle + offset |
|
Vector3f vel_of_target; // velocity of lead vehicle |
|
if (g2.follow.get_target_dist_and_vel_ned(dist_vec, dist_vec_offs, vel_of_target)) { |
|
// convert dist_vec_offs to cm in NEU |
|
const Vector3f dist_vec_offs_neu(dist_vec_offs.x * 100.0f, dist_vec_offs.y * 100.0f, -dist_vec_offs.z * 100.0f); |
|
|
|
// calculate desired velocity vector in cm/s in NEU |
|
const float kp = g2.follow.get_pos_p().kP(); |
|
desired_velocity_neu_cms.x = (vel_of_target.x * 100.0f) + (dist_vec_offs_neu.x * kp); |
|
desired_velocity_neu_cms.y = (vel_of_target.y * 100.0f) + (dist_vec_offs_neu.y * kp); |
|
desired_velocity_neu_cms.z = (-vel_of_target.z * 100.0f) + (dist_vec_offs_neu.z * kp); |
|
|
|
// scale desired velocity to stay within horizontal speed limit |
|
float desired_speed_xy = safe_sqrt(sq(desired_velocity_neu_cms.x) + sq(desired_velocity_neu_cms.y)); |
|
if (!is_zero(desired_speed_xy) && (desired_speed_xy > pos_control->get_max_speed_xy())) { |
|
const float scalar_xy = pos_control->get_max_speed_xy() / desired_speed_xy; |
|
desired_velocity_neu_cms.x *= scalar_xy; |
|
desired_velocity_neu_cms.y *= scalar_xy; |
|
desired_speed_xy = pos_control->get_max_speed_xy(); |
|
} |
|
|
|
// limit desired velocity to be between maximum climb and descent rates |
|
desired_velocity_neu_cms.z = constrain_float(desired_velocity_neu_cms.z, -fabsf(pos_control->get_max_speed_down()), pos_control->get_max_speed_up()); |
|
|
|
// unit vector towards target position (i.e. vector to lead vehicle + offset) |
|
Vector3f dir_to_target_neu = dist_vec_offs_neu; |
|
const float dir_to_target_neu_len = dir_to_target_neu.length(); |
|
if (!is_zero(dir_to_target_neu_len)) { |
|
dir_to_target_neu /= dir_to_target_neu_len; |
|
} |
|
|
|
// create horizontal desired velocity vector (required for slow down calculations) |
|
Vector2f desired_velocity_xy_cms(desired_velocity_neu_cms.x, desired_velocity_neu_cms.y); |
|
|
|
// create horizontal unit vector towards target (required for slow down calculations) |
|
Vector2f dir_to_target_xy(desired_velocity_xy_cms.x, desired_velocity_xy_cms.y); |
|
if (!dir_to_target_xy.is_zero()) { |
|
dir_to_target_xy.normalize(); |
|
} |
|
|
|
// slow down horizontally as we approach target (use 1/2 of maximum deceleration for gentle slow down) |
|
const float dist_to_target_xy = Vector2f(dist_vec_offs_neu.x, dist_vec_offs_neu.y).length(); |
|
copter.avoid.limit_velocity(pos_control->get_pos_xy_p().kP().get(), pos_control->get_max_accel_xy() * 0.5f, desired_velocity_xy_cms, dir_to_target_xy, dist_to_target_xy, copter.G_Dt); |
|
|
|
// limit the horizontal velocity to prevent fence violations |
|
copter.avoid.adjust_velocity(pos_control->get_pos_xy_p().kP().get(), pos_control->get_max_accel_xy(), desired_velocity_xy_cms, G_Dt); |
|
|
|
// copy horizontal velocity limits back to 3d vector |
|
desired_velocity_neu_cms.x = desired_velocity_xy_cms.x; |
|
desired_velocity_neu_cms.y = desired_velocity_xy_cms.y; |
|
|
|
// limit vertical desired_velocity_neu_cms to slow as we approach target (we use 1/2 of maximum deceleration for gentle slow down) |
|
const float des_vel_z_max = copter.avoid.get_max_speed(pos_control->get_pos_z_p().kP().get(), pos_control->get_max_accel_z() * 0.5f, fabsf(dist_vec_offs_neu.z), copter.G_Dt); |
|
desired_velocity_neu_cms.z = constrain_float(desired_velocity_neu_cms.z, -des_vel_z_max, des_vel_z_max); |
|
|
|
// get avoidance adjusted climb rate |
|
desired_velocity_neu_cms.z = get_avoidance_adjusted_climbrate(desired_velocity_neu_cms.z); |
|
|
|
// calculate vehicle heading |
|
switch (g2.follow.get_yaw_behave()) { |
|
case AP_Follow::YAW_BEHAVE_FACE_LEAD_VEHICLE: { |
|
const Vector3f dist_vec_xy(dist_vec.x, dist_vec.y, 0.0f); |
|
if (dist_vec_xy.length() > 1.0f) { |
|
yaw_cd = get_bearing_cd(Vector3f(), dist_vec_xy); |
|
use_yaw = true; |
|
} |
|
break; |
|
} |
|
|
|
case AP_Follow::YAW_BEHAVE_SAME_AS_LEAD_VEHICLE: { |
|
float target_hdg = 0.0f; |
|
if (g2.follow.get_target_heading_deg(target_hdg)) { |
|
yaw_cd = target_hdg * 100.0f; |
|
use_yaw = true; |
|
} |
|
break; |
|
} |
|
|
|
case AP_Follow::YAW_BEHAVE_DIR_OF_FLIGHT: { |
|
const Vector3f vel_vec(desired_velocity_neu_cms.x, desired_velocity_neu_cms.y, 0.0f); |
|
if (vel_vec.length() > 100.0f) { |
|
yaw_cd = get_bearing_cd(Vector3f(), vel_vec); |
|
use_yaw = true; |
|
} |
|
break; |
|
} |
|
|
|
case AP_Follow::YAW_BEHAVE_NONE: |
|
default: |
|
// do nothing |
|
break; |
|
|
|
} |
|
} |
|
|
|
// log output at 10hz |
|
uint32_t now = AP_HAL::millis(); |
|
bool log_request = false; |
|
if ((now - last_log_ms >= 100) || (last_log_ms == 0)) { |
|
log_request = true; |
|
last_log_ms = now; |
|
} |
|
// re-use guided mode's velocity controller (takes NEU) |
|
ModeGuided::set_velocity(desired_velocity_neu_cms, use_yaw, yaw_cd, false, 0.0f, false, log_request); |
|
|
|
ModeGuided::run(); |
|
} |
|
|
|
uint32_t ModeFollow::wp_distance() const |
|
{ |
|
return g2.follow.get_distance_to_target() * 100; |
|
} |
|
|
|
int32_t ModeFollow::wp_bearing() const |
|
{ |
|
return g2.follow.get_bearing_to_target() * 100; |
|
} |
|
|
|
/* |
|
get target position for mavlink reporting |
|
*/ |
|
bool ModeFollow::get_wp(Location &loc) |
|
{ |
|
float dist = g2.follow.get_distance_to_target(); |
|
float bearing = g2.follow.get_bearing_to_target(); |
|
loc = copter.current_loc; |
|
loc.offset_bearing(bearing, dist); |
|
return true; |
|
} |
|
|
|
#endif // MODE_FOLLOW_ENABLED == ENABLED
|
|
|