You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
3.4 KiB
125 lines
3.4 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#include "AP_TimerProcess.h" |
|
|
|
extern "C" { |
|
#include <inttypes.h> |
|
#include <stdint.h> |
|
#include <avr/interrupt.h> |
|
} |
|
#if defined(ARDUINO) && ARDUINO >= 100 |
|
#include "Arduino.h" |
|
#else |
|
#include "WConstants.h" |
|
#endif |
|
|
|
uint8_t AP_TimerProcess::_period; |
|
ap_procedure AP_TimerProcess::_proc[AP_TIMERPROCESS_MAX_PROCS]; |
|
ap_procedure AP_TimerProcess::_failsafe; |
|
bool AP_TimerProcess::_in_timer_call; |
|
uint8_t AP_TimerProcess::_pidx = 0; |
|
bool AP_TimerProcess::_suspended; |
|
|
|
AP_TimerProcess::AP_TimerProcess(uint8_t period) |
|
{ |
|
_period = period; |
|
} |
|
|
|
void AP_TimerProcess::init( Arduino_Mega_ISR_Registry * isr_reg ) |
|
{ |
|
// Enable Timer2 Overflow interrupt to trigger process. |
|
TIMSK2 = 0; // Disable interrupts |
|
TCCR2A = 0; // normal counting mode |
|
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of clk/256 |
|
TCNT2 = 0; // Set count to zero, so it goes off right away. |
|
TIFR2 = _BV(TOV2); // clear pending interrupts; |
|
TIMSK2 = _BV(TOIE2); // enable the overflow interrupt |
|
|
|
_failsafe = NULL; |
|
_suspended = false; |
|
_in_timer_call = false; |
|
|
|
for (uint8_t i = 0; i < AP_TIMERPROCESS_MAX_PROCS; i++) |
|
_proc[i] = NULL; |
|
|
|
isr_reg->register_signal( ISR_REGISTRY_TIMER2_OVF, AP_TimerProcess::run); |
|
} |
|
|
|
/* |
|
* register a process to be called at the timer interrupt rate |
|
*/ |
|
void AP_TimerProcess::register_process(ap_procedure proc) |
|
{ |
|
// see if its already registered (due to double initialisation |
|
// of a driver) |
|
for (uint8_t i=0; i<_pidx; i++) { |
|
if (_proc[i] == proc) return; |
|
} |
|
cli(); |
|
if (_pidx < AP_TIMERPROCESS_MAX_PROCS) |
|
_proc[_pidx++] = proc; |
|
sei(); |
|
} |
|
|
|
void AP_TimerProcess::set_failsafe(ap_procedure proc) |
|
{ |
|
_failsafe = proc; |
|
} |
|
|
|
void AP_TimerProcess::suspend_timer(void) |
|
{ |
|
_suspended = true; |
|
} |
|
|
|
void AP_TimerProcess::resume_timer(void) |
|
{ |
|
_suspended = false; |
|
} |
|
|
|
void AP_TimerProcess::run(void) |
|
{ |
|
// we enable the interrupt again immediately and also enable |
|
// interrupts. This allows other time critical interrupts to |
|
// run (such as the serial receive interrupt). We catch the |
|
// timer calls taking too long using _in_timer_call. |
|
// This approach also gives us a nice uniform spacing between |
|
// timer calls |
|
TCNT2 = _period; |
|
sei(); |
|
|
|
uint32_t tnow = micros(); |
|
|
|
if (_in_timer_call) { |
|
// the timer calls took longer than the period of the |
|
// timer. This is bad, and may indicate a serious |
|
// driver failure. We can't just call the drivers |
|
// again, as we could run out of stack. So we only |
|
// call the _failsafe call. It's job is to detect if |
|
// the drivers or the main loop are indeed dead and to |
|
// activate whatever failsafe it thinks may help if |
|
// need be. We assume the failsafe code can't |
|
// block. If it does then we will recurse and die when |
|
// we run out of stack |
|
if (_failsafe != NULL) { |
|
_failsafe(tnow); |
|
} |
|
return; |
|
} |
|
_in_timer_call = true; |
|
|
|
if (!_suspended) { |
|
// now call the timer based drivers |
|
for (int i = 0; i < _pidx; i++) { |
|
if (_proc[i] != NULL) { |
|
_proc[i](tnow); |
|
} |
|
} |
|
} |
|
|
|
// and the failsafe, if one is setup |
|
if (_failsafe != NULL) { |
|
_failsafe(tnow); |
|
} |
|
|
|
_in_timer_call = false; |
|
}
|
|
|