You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1113 lines
32 KiB
1113 lines
32 KiB
/* |
|
* Copyright (C) 2014 Pavel Kirienko <pavel.kirienko@gmail.com> |
|
* |
|
* With modifications for Ardupilot CAN driver |
|
* Copyright (C) 2017 Eugene Shamaev |
|
*/ |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include <AP_HAL/system.h> |
|
|
|
|
|
#if HAL_WITH_UAVCAN |
|
|
|
#include <cassert> |
|
#include <cstring> |
|
#include "CAN.h" |
|
|
|
#include <nuttx/irq.h> |
|
#include <unistd.h> |
|
#include <drivers/drv_hrt.h> |
|
|
|
#include <arch/board/board.h> |
|
|
|
#include "Scheduler.h" |
|
|
|
#include <AP_BoardConfig/AP_BoardConfig_CAN.h> |
|
|
|
/* |
|
* FOR INVESTIGATION: |
|
* AP_HAL::micros64() was called for monotonic time counter |
|
* pavel-kirienko: This will work as long as we don't need to synchronize the autopilot's own clock with an external |
|
* time base, e.g. a GNSS time provided by an external GNSS receiver. Libuavcan's STM32 driver supports automatic time |
|
* synchronization only if it has a dedicated hardware timer to work with. |
|
*/ |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
extern "C" { |
|
static int can1_irq(const int irq, void*); |
|
#if CAN_STM32_NUM_IFACES > 1 |
|
static int can2_irq(const int irq, void*); |
|
#endif |
|
} |
|
|
|
using namespace PX4; |
|
|
|
uint64_t clock::getUtcUSecFromCanInterrupt() |
|
{ |
|
return AP_HAL::micros64(); |
|
} |
|
|
|
uavcan::MonotonicTime clock::getMonotonic() |
|
{ |
|
return uavcan::MonotonicTime::fromUSec(AP_HAL::micros64()); |
|
} |
|
|
|
BusEvent::BusEvent(PX4CANManager& can_driver) : |
|
_signal(0) |
|
{ |
|
sem_init(&_wait_semaphore, 0, 0); |
|
} |
|
|
|
BusEvent::~BusEvent() |
|
{ |
|
} |
|
|
|
bool BusEvent::wait(uavcan::MonotonicDuration duration) |
|
{ |
|
struct hrt_call wait_call; |
|
|
|
irqstate_t irs = irqsave(); |
|
if (_signal) { |
|
_signal = 0; |
|
irqrestore(irs); |
|
return true; |
|
} |
|
|
|
sem_init(&_wait_semaphore, 0, 0); |
|
irqrestore(irs); |
|
|
|
hrt_call_after(&wait_call, duration.toUSec(), (hrt_callout) signalFromCallOut, this); |
|
sem_wait(&_wait_semaphore); |
|
|
|
hrt_cancel(&wait_call); |
|
|
|
irs = irqsave(); |
|
if (_signal) { |
|
_signal = 0; |
|
irqrestore(irs); |
|
|
|
return true; |
|
} |
|
irqrestore(irs); |
|
|
|
return false; |
|
} |
|
|
|
void BusEvent::signalFromCallOut(BusEvent *sem) |
|
{ |
|
sem_post(&sem->_wait_semaphore); |
|
} |
|
|
|
void BusEvent::signalFromInterrupt() |
|
{ |
|
_signal++; |
|
sem_post(&_wait_semaphore); |
|
} |
|
|
|
static void handleTxInterrupt(uint8_t iface_index) |
|
{ |
|
if (iface_index >= CAN_STM32_NUM_IFACES) { |
|
return; |
|
} |
|
uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); |
|
|
|
for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) { |
|
if (hal.can_mgr[i] == nullptr) { |
|
continue; |
|
} |
|
PX4CAN* iface = ((PX4CANManager*) hal.can_mgr[i])->getIface_out_to_in(iface_index); |
|
if (iface != nullptr) { |
|
iface->handleTxInterrupt(utc_usec); |
|
} |
|
} |
|
} |
|
|
|
static void handleRxInterrupt(uint8_t iface_index, uint8_t fifo_index) |
|
{ |
|
if (iface_index >= CAN_STM32_NUM_IFACES) { |
|
return; |
|
} |
|
uint64_t utc_usec = clock::getUtcUSecFromCanInterrupt(); |
|
|
|
for (uint8_t i = 0; i < MAX_NUMBER_OF_CAN_DRIVERS; i++) { |
|
if (hal.can_mgr[i] == nullptr) { |
|
continue; |
|
} |
|
PX4CAN* iface = ((PX4CANManager*) hal.can_mgr[i])->getIface_out_to_in(iface_index); |
|
if (iface != nullptr) { |
|
iface->handleRxInterrupt(fifo_index, utc_usec); |
|
} |
|
} |
|
} |
|
|
|
const uint32_t PX4CAN::TSR_ABRQx[PX4CAN::NumTxMailboxes] = { bxcan::TSR_ABRQ0, bxcan::TSR_ABRQ1, bxcan::TSR_ABRQ2 }; |
|
|
|
int PX4CAN::computeTimings(const uint32_t target_bitrate, Timings& out_timings) |
|
{ |
|
if (target_bitrate < 1) { |
|
return -ErrInvalidBitRate; |
|
} |
|
|
|
/* |
|
* Hardware configuration |
|
*/ |
|
const uint32_t pclk = STM32_PCLK1_FREQUENCY; |
|
|
|
static const uint8_t MaxBS1 = 16; |
|
static const uint8_t MaxBS2 = 8; |
|
|
|
/* |
|
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG |
|
* CAN in Automation, 2003 |
|
* |
|
* According to the source, optimal quanta per bit are: |
|
* Bitrate Optimal Maximum |
|
* 1000 kbps 8 10 |
|
* 500 kbps 16 17 |
|
* 250 kbps 16 17 |
|
* 125 kbps 16 17 |
|
*/ |
|
const uint8_t max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; |
|
|
|
if (max_quanta_per_bit > (MaxBS1 + MaxBS2)) { |
|
if (AP::can().get_debug_level(self_index_) >= 1) { |
|
printf("PX4CAN::computeTimings max_quanta_per_bit problem\n\r"); |
|
} |
|
} |
|
|
|
static const uint16_t MaxSamplePointLocation = 900; |
|
|
|
/* |
|
* Computing (prescaler * BS): |
|
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual |
|
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified |
|
* let: |
|
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit |
|
* PRESCALER_BS = PRESCALER * BS |
|
* ==> |
|
* PRESCALER_BS = PCLK / BITRATE |
|
*/ |
|
const uint32_t prescaler_bs = pclk / target_bitrate; |
|
|
|
/* |
|
* Searching for such prescaler value so that the number of quanta per bit is highest. |
|
*/ |
|
uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1); |
|
|
|
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { |
|
if (bs1_bs2_sum <= 2) { |
|
return -ErrInvalidBitRate; // No solution |
|
} |
|
bs1_bs2_sum--; |
|
} |
|
|
|
const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); |
|
if ((prescaler < 1U) || (prescaler > 1024U)) { |
|
return -ErrInvalidBitRate; // No solution |
|
} |
|
|
|
/* |
|
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. |
|
* We need to find the values so that the sample point is as close as possible to the optimal value. |
|
* |
|
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) |
|
* {{bs2 -> (1 + bs1)/7}} |
|
* |
|
* Hence: |
|
* bs2 = (1 + bs1) / 7 |
|
* bs1 = (7 * bs1_bs2_sum - 1) / 8 |
|
* |
|
* Sample point location can be computed as follows: |
|
* Sample point location = (1 + bs1) / (1 + bs1 + bs2) |
|
* |
|
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: |
|
* - With rounding to nearest |
|
* - With rounding to zero |
|
*/ |
|
struct BsPair { |
|
uint8_t bs1; |
|
uint8_t bs2; |
|
uint16_t sample_point_permill; |
|
|
|
BsPair() : |
|
bs1(0), bs2(0), sample_point_permill(0) |
|
{ |
|
} |
|
|
|
BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) : |
|
bs1(arg_bs1), bs2(uint8_t(bs1_bs2_sum - bs1)), sample_point_permill( |
|
uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) |
|
{ |
|
if (bs1_bs2_sum <= arg_bs1) { |
|
AP_HAL::panic("PX4CAN::computeTimings bs1_bs2_sum <= arg_bs1"); |
|
} |
|
} |
|
|
|
bool isValid() const |
|
{ |
|
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); |
|
} |
|
}; |
|
|
|
// First attempt with rounding to nearest |
|
BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); |
|
|
|
if (solution.sample_point_permill > MaxSamplePointLocation || !solution.isValid()) { |
|
// Second attempt with rounding to zero |
|
solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8)); |
|
|
|
if (!solution.isValid()) |
|
{ |
|
printf("PX4CAN::computeTimings second solution invalid\n\r"); |
|
return -ErrLogic; |
|
} |
|
} |
|
|
|
/* |
|
* Final validation |
|
*/ |
|
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { |
|
if (AP::can().get_debug_level(self_index_) >= 1) { |
|
printf("PX4CAN::computeTimings target_bitrate error\n\r"); |
|
} |
|
return -ErrLogic; |
|
} |
|
|
|
if (AP::can().get_debug_level(self_index_) >= 2) { |
|
printf("PX4CAN::computeTimings Timings: quanta/bit: %d, sample point location: %.1f%%\n\r", |
|
int(1 + solution.bs1 + solution.bs2), double(solution.sample_point_permill / 10.0)); |
|
} |
|
|
|
out_timings.prescaler = uint16_t(prescaler - 1U); |
|
out_timings.sjw = 0; // Which means one |
|
out_timings.bs1 = uint8_t(solution.bs1 - 1); |
|
out_timings.bs2 = uint8_t(solution.bs2 - 1); |
|
|
|
return 0; |
|
} |
|
|
|
int16_t PX4CAN::send(const uavcan::CanFrame& frame, uavcan::MonotonicTime tx_deadline, uavcan::CanIOFlags flags) |
|
{ |
|
if (frame.isErrorFrame() || frame.dlc > 8) { |
|
return -ErrUnsupportedFrame; |
|
} |
|
|
|
/* |
|
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because |
|
* it is possible that the highest-priority frame between select() and send() could have been |
|
* replaced with a lower priority one due to TX timeout. But we don't do this check because: |
|
* |
|
* - It is a highly unlikely scenario. |
|
* |
|
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new |
|
* frame can only have higher priority, which doesn't break the logic. |
|
* |
|
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other |
|
* issues to take care of before this one becomes relevant. |
|
* |
|
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive. |
|
*/ |
|
CriticalSectionLocker lock; |
|
|
|
/* |
|
* Seeking for an empty slot |
|
*/ |
|
uint8_t txmailbox = 0xFF; |
|
if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) { |
|
txmailbox = 0; |
|
} else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) { |
|
txmailbox = 1; |
|
} else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) { |
|
txmailbox = 2; |
|
} else { |
|
return 0; // No transmission for you. |
|
} |
|
|
|
peak_tx_mailbox_index_ = uavcan::max(peak_tx_mailbox_index_, txmailbox); // Statistics |
|
|
|
/* |
|
* Setting up the mailbox |
|
*/ |
|
bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox]; |
|
if (frame.isExtended()) { |
|
mb.TIR = ((frame.id & uavcan::CanFrame::MaskExtID) << 3) | bxcan::TIR_IDE; |
|
} else { |
|
mb.TIR = ((frame.id & uavcan::CanFrame::MaskStdID) << 21); |
|
} |
|
|
|
if (frame.isRemoteTransmissionRequest()) { |
|
mb.TIR |= bxcan::TIR_RTR; |
|
} |
|
|
|
mb.TDTR = frame.dlc; |
|
|
|
mb.TDHR = (uint32_t(frame.data[7]) << 24) | (uint32_t(frame.data[6]) << 16) | (uint32_t(frame.data[5]) << 8) |
|
| (uint32_t(frame.data[4]) << 0); |
|
mb.TDLR = (uint32_t(frame.data[3]) << 24) | (uint32_t(frame.data[2]) << 16) | (uint32_t(frame.data[1]) << 8) |
|
| (uint32_t(frame.data[0]) << 0); |
|
|
|
mb.TIR |= bxcan::TIR_TXRQ; // Go. |
|
|
|
/* |
|
* Registering the pending transmission so we can track its deadline and loopback it as needed |
|
*/ |
|
TxItem& txi = pending_tx_[txmailbox]; |
|
txi.deadline = tx_deadline; |
|
txi.frame = frame; |
|
txi.loopback = (flags & uavcan::CanIOFlagLoopback) != 0; |
|
txi.abort_on_error = (flags & uavcan::CanIOFlagAbortOnError) != 0; |
|
txi.pending = true; |
|
return 1; |
|
} |
|
|
|
int16_t PX4CAN::receive(uavcan::CanFrame& out_frame, uavcan::MonotonicTime& out_ts_monotonic, |
|
uavcan::UtcTime& out_ts_utc, uavcan::CanIOFlags& out_flags) |
|
{ |
|
out_ts_monotonic = clock::getMonotonic(); // High precision is not required for monotonic timestamps |
|
uint64_t utc_usec = 0; |
|
{ |
|
CriticalSectionLocker lock; |
|
if (rx_queue_.available() == 0) { |
|
return 0; |
|
} |
|
|
|
CanRxItem frm; |
|
rx_queue_.pop(frm); |
|
out_frame = frm.frame; |
|
utc_usec = frm.utc_usec; |
|
out_flags = frm.flags; |
|
} |
|
out_ts_utc = uavcan::UtcTime::fromUSec(utc_usec); |
|
return 1; |
|
} |
|
|
|
int16_t PX4CAN::configureFilters(const uavcan::CanFilterConfig* filter_configs, uint16_t num_configs) |
|
{ |
|
if (num_configs > NumFilters) { |
|
return -ErrFilterNumConfigs; |
|
} |
|
|
|
CriticalSectionLocker lock; |
|
|
|
can_->FMR |= bxcan::FMR_FINIT; |
|
|
|
// Slave (CAN2) gets half of the filters |
|
can_->FMR = (can_->FMR & ~0x00003F00) | static_cast<uint32_t>(NumFilters) << 8; |
|
|
|
can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters |
|
can_->FM1R = 0; // Identifier Mask mode |
|
can_->FS1R = 0x7ffffff; // Single 32-bit for all |
|
|
|
const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters; |
|
|
|
if (num_configs == 0) { |
|
can_->FilterRegister[filter_start_index].FR1 = 0; |
|
can_->FilterRegister[filter_start_index].FR2 = 0; |
|
can_->FA1R = 1 << filter_start_index; |
|
} else { |
|
for (uint8_t i = 0; i < NumFilters; i++) { |
|
if (i < num_configs) { |
|
uint32_t id = 0; |
|
uint32_t mask = 0; |
|
|
|
const uavcan::CanFilterConfig* const cfg = filter_configs + i; |
|
|
|
if ((cfg->id & uavcan::CanFrame::FlagEFF) || !(cfg->mask & uavcan::CanFrame::FlagEFF)) { |
|
id = (cfg->id & uavcan::CanFrame::MaskExtID) << 3; |
|
mask = (cfg->mask & uavcan::CanFrame::MaskExtID) << 3; |
|
id |= bxcan::RIR_IDE; |
|
} else { |
|
id = (cfg->id & uavcan::CanFrame::MaskStdID) << 21; |
|
mask = (cfg->mask & uavcan::CanFrame::MaskStdID) << 21; |
|
} |
|
|
|
if (cfg->id & uavcan::CanFrame::FlagRTR) { |
|
id |= bxcan::RIR_RTR; |
|
} |
|
|
|
if (cfg->mask & uavcan::CanFrame::FlagEFF) { |
|
mask |= bxcan::RIR_IDE; |
|
} |
|
|
|
if (cfg->mask & uavcan::CanFrame::FlagRTR) { |
|
mask |= bxcan::RIR_RTR; |
|
} |
|
|
|
can_->FilterRegister[filter_start_index + i].FR1 = id; |
|
can_->FilterRegister[filter_start_index + i].FR2 = mask; |
|
|
|
can_->FA1R |= (1 << (filter_start_index + i)); |
|
} else { |
|
can_->FA1R &= ~(1 << (filter_start_index + i)); |
|
} |
|
} |
|
} |
|
|
|
can_->FMR &= ~bxcan::FMR_FINIT; |
|
|
|
return 0; |
|
} |
|
|
|
bool PX4CAN::waitMsrINakBitStateChange(bool target_state) |
|
{ |
|
const unsigned Timeout = 1000; |
|
for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) { |
|
const bool state = (can_->MSR & bxcan::MSR_INAK) != 0; |
|
if (state == target_state) { |
|
return true; |
|
} |
|
hal.scheduler->delay_microseconds(1000); |
|
} |
|
return false; |
|
} |
|
|
|
int PX4CAN::init(const uint32_t bitrate, const OperatingMode mode) |
|
{ |
|
/* We need to silence the controller in the first order, otherwise it may interfere with the following operations. */ |
|
|
|
{ |
|
CriticalSectionLocker lock; |
|
|
|
can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode |
|
can_->MCR |= bxcan::MCR_INRQ; // Request init |
|
|
|
can_->IER = 0; // Disable CAN interrupts while initialization is in progress |
|
} |
|
|
|
if (!waitMsrINakBitStateChange(true)) { |
|
if (AP::can().get_debug_level(self_index_) >= 1) { |
|
printf("PX4CAN::init MSR INAK not set\n\r"); |
|
} |
|
can_->MCR = bxcan::MCR_RESET; |
|
return -ErrMsrInakNotSet; |
|
} |
|
|
|
/* |
|
* Object state - CAN interrupts are disabled, so it's safe to modify it now |
|
*/ |
|
rx_queue_.clear(); |
|
error_cnt_ = 0; |
|
served_aborts_cnt_ = 0; |
|
uavcan::fill_n(pending_tx_, NumTxMailboxes, TxItem()); |
|
peak_tx_mailbox_index_ = 0; |
|
had_activity_ = false; |
|
|
|
/* |
|
* CAN timings for this bitrate |
|
*/ |
|
Timings timings; |
|
const int timings_res = computeTimings(bitrate, timings); |
|
if (timings_res < 0) { |
|
can_->MCR = bxcan::MCR_RESET; |
|
return timings_res; |
|
} |
|
if (AP::can().get_debug_level(self_index_) >= 2) { |
|
printf("PX4CAN::init Timings: presc=%u sjw=%u bs1=%u bs2=%u\n\r", unsigned(timings.prescaler), |
|
unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); |
|
} |
|
|
|
/* |
|
* Hardware initialization (the hardware has already confirmed initialization mode, see above) |
|
*/ |
|
can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648 |
|
|
|
can_->BTR = ((timings.sjw & 3U) << 24) | ((timings.bs1 & 15U) << 16) | ((timings.bs2 & 7U) << 20) |
|
| (timings.prescaler & 1023U) | ((mode == SilentMode) ? bxcan::BTR_SILM : 0); |
|
|
|
can_->IER = bxcan::IER_TMEIE | // TX mailbox empty |
|
bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty |
|
bxcan::IER_FMPIE1; // RX FIFO 1 is not empty |
|
|
|
can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode |
|
|
|
if (!waitMsrINakBitStateChange(false)) { |
|
if (AP::can().get_debug_level(self_index_) >= 1) { |
|
printf("PX4CAN::init MSR INAK not cleared\n\r"); |
|
} |
|
can_->MCR = bxcan::MCR_RESET; |
|
return -ErrMsrInakNotCleared; |
|
} |
|
|
|
/* |
|
* Default filter configuration |
|
*/ |
|
if (self_index_ == 0) { |
|
can_->FMR |= bxcan::FMR_FINIT; |
|
|
|
can_->FMR &= 0xFFFFC0F1; |
|
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8; // Slave (CAN2) gets half of the filters |
|
|
|
can_->FFA1R = 0; // All assigned to FIFO0 by default |
|
can_->FM1R = 0; // Indentifier Mask mode |
|
|
|
#if CAN_STM32_NUM_IFACES > 1 |
|
can_->FS1R = 0x7ffffff; // Single 32-bit for all |
|
can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything |
|
can_->FilterRegister[0].FR2 = 0; |
|
can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything |
|
can_->FilterRegister[NumFilters].FR2 = 0; |
|
can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface |
|
#else |
|
can_->FS1R = 0x1fff; |
|
can_->FilterRegister[0].FR1 = 0; |
|
can_->FilterRegister[0].FR2 = 0; |
|
can_->FA1R = 1; |
|
#endif |
|
|
|
can_->FMR &= ~bxcan::FMR_FINIT; |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
void PX4CAN::handleTxMailboxInterrupt(uint8_t mailbox_index, bool txok, const uint64_t utc_usec) |
|
{ |
|
if (mailbox_index < NumTxMailboxes) { |
|
|
|
had_activity_ = had_activity_ || txok; |
|
|
|
TxItem& txi = pending_tx_[mailbox_index]; |
|
|
|
if (txi.loopback && txok && txi.pending) { |
|
CanRxItem frm; |
|
frm.frame = txi.frame; |
|
frm.flags = uavcan::CanIOFlagLoopback; |
|
frm.utc_usec = utc_usec; |
|
rx_queue_.push(frm); |
|
} |
|
|
|
txi.pending = false; |
|
} |
|
} |
|
|
|
void PX4CAN::handleTxInterrupt(const uint64_t utc_usec) |
|
{ |
|
// TXOK == false means that there was a hardware failure |
|
if (can_->TSR & bxcan::TSR_RQCP0) { |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK0; |
|
can_->TSR = bxcan::TSR_RQCP0; |
|
handleTxMailboxInterrupt(0, txok, utc_usec); |
|
} |
|
if (can_->TSR & bxcan::TSR_RQCP1) { |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK1; |
|
can_->TSR = bxcan::TSR_RQCP1; |
|
handleTxMailboxInterrupt(1, txok, utc_usec); |
|
} |
|
if (can_->TSR & bxcan::TSR_RQCP2) { |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK2; |
|
can_->TSR = bxcan::TSR_RQCP2; |
|
handleTxMailboxInterrupt(2, txok, utc_usec); |
|
} |
|
|
|
if (update_event_ != nullptr) { |
|
update_event_->signalFromInterrupt(); |
|
} |
|
|
|
pollErrorFlagsFromISR(); |
|
} |
|
|
|
void PX4CAN::handleRxInterrupt(uint8_t fifo_index, uint64_t utc_usec) |
|
{ |
|
if (fifo_index >= 2) { |
|
return; |
|
} |
|
|
|
volatile uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R; |
|
if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) { |
|
return; |
|
} |
|
|
|
/* |
|
* Register overflow as a hardware error |
|
*/ |
|
if ((*rfr_reg & bxcan::RFR_FOVR) != 0) { |
|
error_cnt_++; |
|
} |
|
|
|
/* |
|
* Read the frame contents |
|
*/ |
|
uavcan::CanFrame frame; |
|
const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index]; |
|
|
|
if ((rf.RIR & bxcan::RIR_IDE) == 0) { |
|
frame.id = uavcan::CanFrame::MaskStdID & (rf.RIR >> 21); |
|
} else { |
|
frame.id = uavcan::CanFrame::MaskExtID & (rf.RIR >> 3); |
|
frame.id |= uavcan::CanFrame::FlagEFF; |
|
} |
|
|
|
if ((rf.RIR & bxcan::RIR_RTR) != 0) { |
|
frame.id |= uavcan::CanFrame::FlagRTR; |
|
} |
|
|
|
frame.dlc = rf.RDTR & 15; |
|
|
|
frame.data[0] = uint8_t(0xFF & (rf.RDLR >> 0)); |
|
frame.data[1] = uint8_t(0xFF & (rf.RDLR >> 8)); |
|
frame.data[2] = uint8_t(0xFF & (rf.RDLR >> 16)); |
|
frame.data[3] = uint8_t(0xFF & (rf.RDLR >> 24)); |
|
frame.data[4] = uint8_t(0xFF & (rf.RDHR >> 0)); |
|
frame.data[5] = uint8_t(0xFF & (rf.RDHR >> 8)); |
|
frame.data[6] = uint8_t(0xFF & (rf.RDHR >> 16)); |
|
frame.data[7] = uint8_t(0xFF & (rf.RDHR >> 24)); |
|
|
|
*rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read |
|
|
|
/* |
|
* Store with timeout into the FIFO buffer and signal update event |
|
*/ |
|
CanRxItem frm; |
|
frm.frame = frame; |
|
frm.flags = 0; |
|
frm.utc_usec = utc_usec; |
|
rx_queue_.push(frm); |
|
|
|
had_activity_ = true; |
|
if (update_event_ != nullptr) { |
|
update_event_->signalFromInterrupt(); |
|
} |
|
|
|
pollErrorFlagsFromISR(); |
|
} |
|
|
|
void PX4CAN::pollErrorFlagsFromISR() |
|
{ |
|
const uint8_t lec = uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT); |
|
if (lec == 0) { |
|
return; |
|
} |
|
can_->ESR = 0; |
|
error_cnt_++; |
|
|
|
// Serving abort requests |
|
for (int i = 0; i < NumTxMailboxes; i++) { // Dear compiler, may I suggest you to unroll this loop please. |
|
TxItem& txi = pending_tx_[i]; |
|
if (txi.pending && txi.abort_on_error) { |
|
can_->TSR = TSR_ABRQx[i]; |
|
txi.pending = false; |
|
served_aborts_cnt_++; |
|
} |
|
} |
|
} |
|
|
|
void PX4CAN::discardTimedOutTxMailboxes(uavcan::MonotonicTime current_time) |
|
{ |
|
CriticalSectionLocker lock; |
|
for (int i = 0; i < NumTxMailboxes; i++) { |
|
TxItem& txi = pending_tx_[i]; |
|
if (txi.pending && txi.deadline < current_time) { |
|
can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission |
|
txi.pending = false; |
|
error_cnt_++; |
|
} |
|
} |
|
} |
|
|
|
bool PX4CAN::canAcceptNewTxFrame(const uavcan::CanFrame& frame) const |
|
{ |
|
/* |
|
* We can accept more frames only if the following conditions are satisfied: |
|
* - There is at least one TX mailbox free (obvious enough); |
|
* - The priority of the new frame is higher than priority of all TX mailboxes. |
|
*/ |
|
{ |
|
static const uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2; |
|
const uint32_t tme = can_->TSR & TME; |
|
|
|
if (tme == TME) { // All TX mailboxes are free (as in freedom). |
|
return true; |
|
} |
|
|
|
if (tme == 0) { // All TX mailboxes are busy transmitting. |
|
return false; |
|
} |
|
} |
|
|
|
/* |
|
* The second condition requires a critical section. |
|
*/ |
|
CriticalSectionLocker lock; |
|
|
|
for (int mbx = 0; mbx < NumTxMailboxes; mbx++) { |
|
if (pending_tx_[mbx].pending && !frame.priorityHigherThan(pending_tx_[mbx].frame)) { |
|
return false; // There's a mailbox whose priority is higher or equal the priority of the new frame. |
|
} |
|
} |
|
|
|
return true; // This new frame will be added to a free TX mailbox in the next @ref send(). |
|
} |
|
|
|
bool PX4CAN::isRxBufferEmpty() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return rx_queue_.available() == 0; |
|
} |
|
|
|
uint64_t PX4CAN::getErrorCount() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return error_cnt_; |
|
//TODO: + rx_queue_.getOverflowCount(); |
|
} |
|
|
|
unsigned PX4CAN::getRxQueueLength() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return rx_queue_.available(); |
|
} |
|
|
|
bool PX4CAN::hadActivity() |
|
{ |
|
CriticalSectionLocker lock; |
|
const bool ret = had_activity_; |
|
had_activity_ = false; |
|
return ret; |
|
} |
|
|
|
bool PX4CAN::begin(uint32_t bitrate) |
|
{ |
|
if (init(bitrate, OperatingMode::NormalMode) == 0) { |
|
bitrate_ = bitrate; |
|
initialized_ = true; |
|
} else { |
|
initialized_ = false; |
|
} |
|
return initialized_; |
|
} |
|
|
|
void PX4CAN::reset() |
|
{ |
|
if (initialized_ && bitrate_ != 0) { |
|
init(bitrate_, OperatingMode::NormalMode); |
|
} |
|
} |
|
|
|
bool PX4CAN::is_initialized() |
|
{ |
|
return initialized_; |
|
} |
|
|
|
int32_t PX4CAN::available() |
|
{ |
|
if (initialized_) { |
|
return getRxQueueLength(); |
|
} else { |
|
return -1; |
|
} |
|
} |
|
|
|
int32_t PX4CAN::tx_pending() |
|
{ |
|
if (!initialized_) { |
|
return -1; |
|
} |
|
|
|
int32_t ret = 0; |
|
|
|
CriticalSectionLocker lock; |
|
|
|
for (int mbx = 0; mbx < NumTxMailboxes; mbx++) { |
|
if (pending_tx_[mbx].pending) { |
|
ret++; |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
/* |
|
* CanDriver |
|
*/ |
|
|
|
PX4CANManager::PX4CANManager() : |
|
AP_HAL::CANManager(this), update_event_(*this), if0_(bxcan::Can[0], nullptr, 0, CAN_STM32_RX_QUEUE_SIZE), if1_( |
|
bxcan::Can[1], nullptr, 1, CAN_STM32_RX_QUEUE_SIZE), initialized_(false) |
|
{ |
|
uavcan::StaticAssert<(CAN_STM32_RX_QUEUE_SIZE <= PX4CAN::MaxRxQueueCapacity)>::check(); |
|
|
|
for(uint8_t i = 0; i < CAN_STM32_NUM_IFACES; i++) { |
|
_ifaces_out_to_in[i] = UINT8_MAX; |
|
} |
|
} |
|
|
|
uavcan::CanSelectMasks PX4CANManager::makeSelectMasks(const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces]) const |
|
{ |
|
uavcan::CanSelectMasks msk; |
|
|
|
for (uint8_t i = 0; i < _ifaces_num; i++) { |
|
if (ifaces[i] == nullptr) { |
|
continue; |
|
} |
|
|
|
if (!ifaces[i]->isRxBufferEmpty()) { |
|
msk.read |= 1 << i; |
|
} |
|
|
|
if (pending_tx[i] != nullptr) { |
|
if (ifaces[i]->canAcceptNewTxFrame(*pending_tx[i])) { |
|
msk.write |= 1 << i; |
|
} |
|
} |
|
} |
|
|
|
return msk; |
|
} |
|
|
|
bool PX4CANManager::hasReadableInterfaces() const |
|
{ |
|
bool ret = false; |
|
|
|
for (uint8_t i = 0; i < _ifaces_num; i++) { |
|
if (ifaces[i] != nullptr) { |
|
ret |= !ifaces[i]->isRxBufferEmpty(); |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
int16_t PX4CANManager::select(uavcan::CanSelectMasks& inout_masks, |
|
const uavcan::CanFrame* (&pending_tx)[uavcan::MaxCanIfaces], const uavcan::MonotonicTime blocking_deadline) |
|
{ |
|
const uavcan::CanSelectMasks in_masks = inout_masks; |
|
const uavcan::MonotonicTime time = clock::getMonotonic(); |
|
|
|
for (uint8_t i = 0; i < _ifaces_num; i++) { |
|
if (ifaces[i] == nullptr) { |
|
continue; |
|
} |
|
ifaces[i]->discardTimedOutTxMailboxes(time); |
|
{ |
|
CriticalSectionLocker cs_locker; |
|
ifaces[i]->pollErrorFlagsFromISR(); |
|
} |
|
} |
|
|
|
inout_masks = makeSelectMasks(pending_tx); // Check if we already have some of the requested events |
|
if ((inout_masks.read & in_masks.read) != 0 || (inout_masks.write & in_masks.write) != 0) { |
|
return 1; |
|
} |
|
|
|
(void) update_event_.wait(blocking_deadline - time); // Block until timeout expires or any iface updates |
|
inout_masks = makeSelectMasks(pending_tx); // Return what we got even if none of the requested events are set |
|
return 1; // Return value doesn't matter as long as it is non-negative |
|
} |
|
|
|
void PX4CANManager::initOnce(uint8_t can_number) |
|
{ |
|
{ |
|
CriticalSectionLocker lock; |
|
if (can_number == 0) { |
|
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_CAN1EN); |
|
} |
|
#if CAN_STM32_NUM_IFACES > 1 |
|
if (can_number == 1) { |
|
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_CAN2EN); |
|
} |
|
#endif |
|
} |
|
|
|
if (can_number == 0) { |
|
#if defined(GPIO_CAN1_RX) && defined(GPIO_CAN1_TX) |
|
stm32_configgpio(GPIO_CAN1_RX); |
|
stm32_configgpio(GPIO_CAN1_TX); |
|
#else |
|
# error "Need to define GPIO_CAN1_RX/TX" |
|
#endif |
|
} |
|
#if CAN_STM32_NUM_IFACES > 1 |
|
if (can_number == 1) { |
|
#if defined(GPIO_CAN2_RX) && defined(GPIO_CAN2_TX) |
|
stm32_configgpio(GPIO_CAN2_RX | GPIO_PULLUP); |
|
stm32_configgpio(GPIO_CAN2_TX); |
|
#else |
|
# error "Need to define GPIO_CAN2_RX/TX" |
|
#endif // defined(GPIO_CAN2_RX) && defined(GPIO_CAN2_TX) |
|
} |
|
#endif // CAN_STM32_NUM_IFACES > 1 |
|
|
|
/* |
|
* IRQ |
|
*/ |
|
if (can_number == 0) { |
|
#if defined(STM32_IRQ_CAN1TX) && defined(STM32_IRQ_CAN1RX0) && defined(STM32_IRQ_CAN1RX1) |
|
CAN_IRQ_ATTACH(STM32_IRQ_CAN1TX, can1_irq); |
|
CAN_IRQ_ATTACH(STM32_IRQ_CAN1RX0, can1_irq); |
|
CAN_IRQ_ATTACH(STM32_IRQ_CAN1RX1, can1_irq); |
|
#else |
|
# error "Need to define STM32_IRQ_CAN1TX/RX0/RX1" |
|
#endif |
|
} |
|
|
|
#if CAN_STM32_NUM_IFACES > 1 |
|
if (can_number == 1) { |
|
#if defined(STM32_IRQ_CAN2TX) && defined(STM32_IRQ_CAN2RX0) && defined(STM32_IRQ_CAN2RX1) |
|
CAN_IRQ_ATTACH(STM32_IRQ_CAN2TX, can2_irq); |
|
CAN_IRQ_ATTACH(STM32_IRQ_CAN2RX0, can2_irq); |
|
CAN_IRQ_ATTACH(STM32_IRQ_CAN2RX1, can2_irq); |
|
#else |
|
# error "Need to define STM32_IRQ_CAN2TX/RX0/RX1" |
|
#endif // defined(STM32_IRQ_CAN2TX) && defined(STM32_IRQ_CAN2RX0) && defined(STM32_IRQ_CAN2RX1) |
|
} |
|
#endif // CAN_STM32_NUM_IFACES > 1 |
|
} |
|
|
|
int PX4CANManager::init(const uint32_t bitrate, const PX4CAN::OperatingMode mode, uint8_t can_number) |
|
{ |
|
if (can_number >= CAN_STM32_NUM_IFACES) { |
|
return -ErrNotImplemented; |
|
} |
|
static bool initialized_once[CAN_STM32_NUM_IFACES]; |
|
|
|
int res = 0; |
|
|
|
if (AP::can().get_debug_level(can_number) >= 2) { |
|
printf("PX4CANManager::init Bitrate %lu mode %d bus %d\n\r", static_cast<unsigned long>(bitrate), |
|
static_cast<int>(mode), static_cast<int>(can_number)); |
|
} |
|
|
|
// If this outside physical interface was never inited - do this and add it to in/out conversion tables |
|
if (!initialized_once[can_number]) { |
|
initialized_once[can_number] = true; |
|
_ifaces_num++; |
|
_ifaces_out_to_in[can_number] = _ifaces_num - 1; |
|
|
|
if (AP::can().get_debug_level(can_number) >= 2) { |
|
printf("PX4CANManager::init First initialization bus %d\n\r", static_cast<int>(can_number)); |
|
} |
|
|
|
initOnce(can_number); |
|
} |
|
|
|
/* |
|
* CAN1 |
|
*/ |
|
if (can_number == 0) { |
|
if (AP::can().get_debug_level(0) >= 2) { |
|
printf("PX4CANManager::init Initing iface 0...\n\r"); |
|
} |
|
ifaces[_ifaces_out_to_in[can_number]] = &if0_; // This link must be initialized first, |
|
} |
|
|
|
#if CAN_STM32_NUM_IFACES > 1 |
|
/* |
|
* CAN2 |
|
*/ |
|
if (can_number == 1) { |
|
if (AP::can().get_debug_level(1) >= 2) { |
|
printf("PX4CANManager::init Initing iface 1...\n\r"); |
|
} |
|
ifaces[_ifaces_out_to_in[can_number]] = &if1_; // Same thing here. |
|
} |
|
#endif |
|
|
|
ifaces[_ifaces_out_to_in[can_number]]->set_update_event(&update_event_); |
|
res = ifaces[_ifaces_out_to_in[can_number]]->init(bitrate, mode); |
|
if (res < 0) { |
|
ifaces[_ifaces_out_to_in[can_number]] = nullptr; |
|
return res; |
|
} |
|
|
|
if (AP::can().get_debug_level(can_number) >= 2) { |
|
printf("PX4CANManager::init CAN drv init OK, res = %d\n\r", res); |
|
} |
|
|
|
return res; |
|
} |
|
|
|
PX4CAN* PX4CANManager::getIface(uint8_t iface_index) |
|
{ |
|
if (iface_index < _ifaces_num) { |
|
return ifaces[iface_index]; |
|
} |
|
|
|
return nullptr; |
|
} |
|
|
|
PX4CAN* PX4CANManager::getIface_out_to_in(uint8_t iface_index) |
|
{ |
|
// Find which internal interface corresponds to required outside physical interface |
|
if (iface_index < CAN_STM32_NUM_IFACES) { |
|
if (_ifaces_out_to_in[iface_index] != UINT8_MAX) { |
|
return ifaces[_ifaces_out_to_in[iface_index]]; |
|
} |
|
} |
|
|
|
return nullptr; |
|
} |
|
|
|
bool PX4CANManager::hadActivity() |
|
{ |
|
bool ret = false; |
|
|
|
// Go through all interfaces that are present in this manager |
|
for (uint8_t i = 0; i < _ifaces_num; i++) |
|
{ |
|
if (ifaces[i] != nullptr) { |
|
ret |= ifaces[i]->hadActivity(); |
|
} |
|
} |
|
|
|
return ret; |
|
} |
|
|
|
bool PX4CANManager::begin(uint32_t bitrate, uint8_t can_number) |
|
{ |
|
// Try to init outside physical interface 'can_number' |
|
if (init(bitrate, PX4CAN::OperatingMode::NormalMode, can_number) >= 0) { |
|
return true; |
|
} |
|
|
|
return false; |
|
} |
|
|
|
bool PX4CANManager::is_initialized() |
|
{ |
|
return initialized_; |
|
} |
|
|
|
void PX4CANManager::initialized(bool val) |
|
{ |
|
initialized_ = val; |
|
} |
|
|
|
/* |
|
* Interrupt handlers |
|
*/ |
|
extern "C" { |
|
static int can1_irq(const int irq, void*) |
|
{ |
|
if (irq == STM32_IRQ_CAN1TX) { |
|
handleTxInterrupt(0); |
|
} else if (irq == STM32_IRQ_CAN1RX0) { |
|
handleRxInterrupt(0, 0); |
|
} else if (irq == STM32_IRQ_CAN1RX1) { |
|
handleRxInterrupt(0, 1); |
|
} else { |
|
printf("can1_irq unhandled"); |
|
} |
|
return 0; |
|
} |
|
|
|
#if CAN_STM32_NUM_IFACES > 1 |
|
static int can2_irq(const int irq, void*) |
|
{ |
|
if (irq == STM32_IRQ_CAN2TX) { |
|
handleTxInterrupt(1); |
|
} else if (irq == STM32_IRQ_CAN2RX0) { |
|
handleRxInterrupt(1, 0); |
|
} else if (irq == STM32_IRQ_CAN2RX1) { |
|
handleRxInterrupt(1, 1); |
|
} else { |
|
printf("can2_irq unhandled"); |
|
} |
|
return 0; |
|
} |
|
#endif |
|
|
|
} // extern "C" |
|
|
|
#endif
|
|
|