You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
306 lines
9.7 KiB
306 lines
9.7 KiB
#include <AP_HAL/AP_HAL.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
|
|
#include "AP_InertialSensor_PX4.h" |
|
|
|
const extern AP_HAL::HAL& hal; |
|
|
|
#include <sys/types.h> |
|
#include <sys/stat.h> |
|
#include <fcntl.h> |
|
#include <unistd.h> |
|
|
|
#include <drivers/drv_accel.h> |
|
#include <drivers/drv_gyro.h> |
|
#include <drivers/drv_hrt.h> |
|
|
|
#include <stdio.h> |
|
|
|
AP_InertialSensor_PX4::AP_InertialSensor_PX4(AP_InertialSensor &imu) : |
|
AP_InertialSensor_Backend(imu) |
|
{ |
|
} |
|
|
|
/* |
|
detect the sensor |
|
*/ |
|
AP_InertialSensor_Backend *AP_InertialSensor_PX4::detect(AP_InertialSensor &_imu) |
|
{ |
|
AP_InertialSensor_PX4 *sensor = new AP_InertialSensor_PX4(_imu); |
|
if (sensor == nullptr) { |
|
return nullptr; |
|
} |
|
if (!sensor->_init_sensor()) { |
|
delete sensor; |
|
return nullptr; |
|
} |
|
return sensor; |
|
} |
|
|
|
/* |
|
calculate the right queue depth for a device with the given sensor |
|
sample rate |
|
*/ |
|
uint8_t AP_InertialSensor_PX4::_queue_depth(uint16_t sensor_sample_rate) const |
|
{ |
|
uint16_t requested_sample_rate = get_sample_rate_hz(); |
|
uint8_t min_depth = (sensor_sample_rate+requested_sample_rate-1)/requested_sample_rate; |
|
// add 5ms more worth of queue to account for possible timing jitter |
|
uint8_t ret = min_depth + (5 * sensor_sample_rate) / 1000; |
|
return ret; |
|
} |
|
|
|
bool AP_InertialSensor_PX4::_init_sensor(void) |
|
{ |
|
// assumes max 3 instances |
|
_accel_fd[0] = open(ACCEL_BASE_DEVICE_PATH "0", O_RDONLY); |
|
_accel_fd[1] = open(ACCEL_BASE_DEVICE_PATH "1", O_RDONLY); |
|
_accel_fd[2] = open(ACCEL_BASE_DEVICE_PATH "2", O_RDONLY); |
|
_gyro_fd[0] = open(GYRO_BASE_DEVICE_PATH "0", O_RDONLY); |
|
_gyro_fd[1] = open(GYRO_BASE_DEVICE_PATH "1", O_RDONLY); |
|
_gyro_fd[2] = open(GYRO_BASE_DEVICE_PATH "2", O_RDONLY); |
|
|
|
_num_accel_instances = 0; |
|
_num_gyro_instances = 0; |
|
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) { |
|
if (_accel_fd[i] >= 0) { |
|
_num_accel_instances = i+1; |
|
} |
|
if (_gyro_fd[i] >= 0) { |
|
_num_gyro_instances = i+1; |
|
} |
|
} |
|
if (_num_accel_instances == 0) { |
|
return false; |
|
} |
|
if (_num_gyro_instances == 0) { |
|
return false; |
|
} |
|
|
|
for (uint8_t i=0; i<_num_gyro_instances; i++) { |
|
int fd = _gyro_fd[i]; |
|
int devid = (ioctl(fd, DEVIOCGDEVICEID, 0) & 0x00FF0000)>>16; |
|
|
|
// software LPF off |
|
ioctl(fd, GYROIOCSLOWPASS, 0); |
|
// 2000dps range |
|
ioctl(fd, GYROIOCSRANGE, 2000); |
|
|
|
switch(devid) { |
|
case DRV_GYR_DEVTYPE_MPU6000: |
|
case DRV_GYR_DEVTYPE_MPU9250: |
|
// hardware LPF off |
|
ioctl(fd, GYROIOCSHWLOWPASS, 256); |
|
// khz sampling |
|
ioctl(fd, GYROIOCSSAMPLERATE, 1000); |
|
// set queue depth |
|
ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1000)); |
|
break; |
|
case DRV_GYR_DEVTYPE_L3GD20: |
|
// hardware LPF as high as possible |
|
ioctl(fd, GYROIOCSHWLOWPASS, 100); |
|
// ~khz sampling |
|
ioctl(fd, GYROIOCSSAMPLERATE, 800); |
|
// 10ms queue depth |
|
ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(800)); |
|
break; |
|
default: |
|
break; |
|
} |
|
// calculate gyro sample time |
|
int samplerate = ioctl(fd, GYROIOCGSAMPLERATE, 0); |
|
if (samplerate < 100 || samplerate > 10000) { |
|
AP_HAL::panic("Invalid gyro sample rate"); |
|
} |
|
_gyro_instance[i] = _imu.register_gyro(samplerate, ioctl(fd, DEVIOCGDEVICEID, 0)); |
|
_gyro_sample_time[i] = 1.0f / samplerate; |
|
} |
|
|
|
for (uint8_t i=0; i<_num_accel_instances; i++) { |
|
int fd = _accel_fd[i]; |
|
int devid = (ioctl(fd, DEVIOCGDEVICEID, 0) & 0x00FF0000)>>16; |
|
|
|
// software LPF off |
|
ioctl(fd, ACCELIOCSLOWPASS, 0); |
|
// 16g range |
|
ioctl(fd, ACCELIOCSRANGE, 16); |
|
|
|
switch(devid) { |
|
case DRV_ACC_DEVTYPE_MPU6000: |
|
case DRV_ACC_DEVTYPE_MPU9250: |
|
// hardware LPF off |
|
ioctl(fd, ACCELIOCSHWLOWPASS, 256); |
|
// khz sampling |
|
ioctl(fd, ACCELIOCSSAMPLERATE, 1000); |
|
// 10ms queue depth |
|
ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1000)); |
|
break; |
|
case DRV_ACC_DEVTYPE_LSM303D: |
|
// hardware LPF to ~1/10th sample rate for antialiasing |
|
ioctl(fd, ACCELIOCSHWLOWPASS, 194); |
|
// ~khz sampling |
|
ioctl(fd, ACCELIOCSSAMPLERATE, 1600); |
|
ioctl(fd,SENSORIOCSPOLLRATE, 1600); |
|
// 10ms queue depth |
|
ioctl(fd, SENSORIOCSQUEUEDEPTH, _queue_depth(1600)); |
|
break; |
|
default: |
|
break; |
|
} |
|
// calculate accel sample time |
|
int samplerate = ioctl(fd, ACCELIOCGSAMPLERATE, 0); |
|
if (samplerate < 100 || samplerate > 10000) { |
|
AP_HAL::panic("Invalid accel sample rate"); |
|
} |
|
_accel_instance[i] = _imu.register_accel(samplerate, ioctl(fd, DEVIOCGDEVICEID, 0)); |
|
_accel_sample_time[i] = 1.0f / samplerate; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool AP_InertialSensor_PX4::update(void) |
|
{ |
|
// get the latest sample from the sensor drivers |
|
_get_sample(); |
|
|
|
for (uint8_t k=0; k<_num_accel_instances; k++) { |
|
update_accel(_accel_instance[k]); |
|
} |
|
|
|
for (uint8_t k=0; k<_num_gyro_instances; k++) { |
|
update_gyro(_gyro_instance[k]); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
void AP_InertialSensor_PX4::_new_accel_sample(uint8_t i, accel_report &accel_report) |
|
{ |
|
Vector3f accel = Vector3f(accel_report.x, accel_report.y, accel_report.z); |
|
uint8_t frontend_instance = _accel_instance[i]; |
|
|
|
// apply corrections |
|
_rotate_and_correct_accel(frontend_instance, accel); |
|
_notify_new_accel_raw_sample(frontend_instance, accel, accel_report.timestamp); |
|
|
|
// save last timestamp |
|
_last_accel_timestamp[i] = accel_report.timestamp; |
|
|
|
// report error count |
|
_set_accel_error_count(frontend_instance, accel_report.error_count); |
|
|
|
// publish a temperature (for logging purposed only) |
|
_publish_temperature(frontend_instance, accel_report.temperature); |
|
|
|
#ifdef AP_INERTIALSENSOR_PX4_DEBUG |
|
// get time since last sample |
|
float dt = _accel_sample_time[i]; |
|
|
|
_accel_dt_max[i] = MAX(_accel_dt_max[i],dt); |
|
|
|
_accel_meas_count[i] ++; |
|
|
|
if(_accel_meas_count[i] >= 10000) { |
|
uint32_t tnow = AP_HAL::micros(); |
|
|
|
::printf("a%d %.2f Hz max %.8f s\n", frontend_instance, 10000.0f/((tnow-_accel_meas_count_start_us[i])*1.0e-6f),_accel_dt_max[i]); |
|
|
|
_accel_meas_count_start_us[i] = tnow; |
|
_accel_meas_count[i] = 0; |
|
_accel_dt_max[i] = 0; |
|
} |
|
#endif // AP_INERTIALSENSOR_PX4_DEBUG |
|
} |
|
|
|
void AP_InertialSensor_PX4::_new_gyro_sample(uint8_t i, gyro_report &gyro_report) |
|
{ |
|
Vector3f gyro = Vector3f(gyro_report.x, gyro_report.y, gyro_report.z); |
|
uint8_t frontend_instance = _gyro_instance[i]; |
|
|
|
// apply corrections |
|
_rotate_and_correct_gyro(frontend_instance, gyro); |
|
_notify_new_gyro_raw_sample(frontend_instance, gyro, gyro_report.timestamp); |
|
|
|
// save last timestamp |
|
_last_gyro_timestamp[i] = gyro_report.timestamp; |
|
|
|
// report error count |
|
_set_gyro_error_count(_gyro_instance[i], gyro_report.error_count); |
|
|
|
#ifdef AP_INERTIALSENSOR_PX4_DEBUG |
|
// get time since last sample |
|
float dt = _gyro_sample_time[i]; |
|
|
|
_gyro_dt_max[i] = MAX(_gyro_dt_max[i],dt); |
|
|
|
_gyro_meas_count[i] ++; |
|
|
|
if(_gyro_meas_count[i] >= 10000) { |
|
uint32_t tnow = AP_HAL::micros(); |
|
|
|
::printf("g%d %.2f Hz max %.8f s\n", frontend_instance, 10000.0f/((tnow-_gyro_meas_count_start_us[i])*1.0e-6f), _gyro_dt_max[i]); |
|
|
|
_gyro_meas_count_start_us[i] = tnow; |
|
_gyro_meas_count[i] = 0; |
|
_gyro_dt_max[i] = 0; |
|
} |
|
#endif // AP_INERTIALSENSOR_PX4_DEBUG |
|
} |
|
|
|
void AP_InertialSensor_PX4::_get_sample() |
|
{ |
|
for (uint8_t i=0; i<MAX(_num_accel_instances,_num_gyro_instances);i++) { |
|
struct accel_report accel_report; |
|
struct gyro_report gyro_report; |
|
|
|
bool gyro_valid = _get_gyro_sample(i,gyro_report); |
|
bool accel_valid = _get_accel_sample(i,accel_report); |
|
|
|
while(gyro_valid || accel_valid) { |
|
// interleave accel and gyro samples by time - this will allow sculling corrections later |
|
// check the next gyro measurement to see if it needs to be integrated first |
|
if(gyro_valid && accel_valid && gyro_report.timestamp <= accel_report.timestamp) { |
|
_new_gyro_sample(i,gyro_report); |
|
gyro_valid = _get_gyro_sample(i,gyro_report); |
|
continue; |
|
} |
|
// if not, try to integrate an accelerometer sample |
|
if(accel_valid) { |
|
_new_accel_sample(i,accel_report); |
|
accel_valid = _get_accel_sample(i,accel_report); |
|
continue; |
|
} |
|
// if not, we've only got gyro samples left in the buffer |
|
if(gyro_valid) { |
|
_new_gyro_sample(i,gyro_report); |
|
gyro_valid = _get_gyro_sample(i,gyro_report); |
|
} |
|
} |
|
} |
|
} |
|
|
|
bool AP_InertialSensor_PX4::_get_accel_sample(uint8_t i, struct accel_report &accel_report) |
|
{ |
|
if (i<_num_accel_instances && |
|
_accel_fd[i] != -1 && |
|
::read(_accel_fd[i], &accel_report, sizeof(accel_report)) == sizeof(accel_report) && |
|
accel_report.timestamp != _last_accel_timestamp[i]) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
bool AP_InertialSensor_PX4::_get_gyro_sample(uint8_t i, struct gyro_report &gyro_report) |
|
{ |
|
if (i<_num_gyro_instances && |
|
_gyro_fd[i] != -1 && |
|
::read(_gyro_fd[i], &gyro_report, sizeof(gyro_report)) == sizeof(gyro_report) && |
|
gyro_report.timestamp != _last_gyro_timestamp[i]) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
#endif // CONFIG_HAL_BOARD |
|
|
|
|