You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
7.3 KiB
256 lines
7.3 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
//**************************************************************** |
|
// Function that will calculate the desired direction to fly and distance |
|
//**************************************************************** |
|
static void navigate() |
|
{ |
|
// do not navigate with corrupt data |
|
// --------------------------------- |
|
if (g_gps->fix == 0){ |
|
g_gps->new_data = false; |
|
return; |
|
} |
|
|
|
if(next_WP.lat == 0){ |
|
return; |
|
} |
|
|
|
// waypoint distance from plane |
|
// ---------------------------- |
|
wp_distance = get_distance(¤t_loc, &next_WP); |
|
|
|
if (wp_distance < 0){ |
|
//gcs.send_text_P(SEVERITY_HIGH,PSTR("<navigate> WP error - distance < 0")); |
|
//Serial.println(wp_distance,DEC); |
|
//print_current_waypoints(); |
|
return; |
|
} |
|
|
|
// target_bearing is where we should be heading |
|
// -------------------------------------------- |
|
target_bearing = get_bearing(¤t_loc, &next_WP); |
|
} |
|
|
|
static bool check_missed_wp() |
|
{ |
|
long temp = target_bearing - saved_target_bearing; |
|
temp = wrap_180(temp); |
|
return (abs(temp) > 10000); //we pased the waypoint by 10 ° |
|
} |
|
|
|
// ------------------------------ |
|
|
|
// long_error, lat_error |
|
static void calc_location_error(struct Location *next_loc) |
|
{ |
|
/* |
|
Becuase we are using lat and lon to do our distance errors here's a quick chart: |
|
100 = 1m |
|
1000 = 11m = 36 feet |
|
1800 = 19.80m = 60 feet |
|
3000 = 33m |
|
10000 = 111m |
|
pitch_max = 22° (2200) |
|
*/ |
|
|
|
// X ROLL |
|
long_error = (float)(next_loc->lng - current_loc.lng) * scaleLongDown; // 500 - 0 = 500 roll EAST |
|
|
|
// Y PITCH |
|
lat_error = next_loc->lat - current_loc.lat; // 0 - 500 = -500 pitch NORTH |
|
} |
|
|
|
|
|
// nav_roll = g.pid_of_roll.get_pid(-optflow.x_cm * 10, dTnav, 1.0); |
|
|
|
#define NAV_ERR_MAX 400 |
|
static void calc_nav_rate(int x_error, int y_error, int max_speed, int min_speed) |
|
{ |
|
// moved to globals for logging |
|
//int x_actual_speed, y_actual_speed; |
|
//int x_rate_error, y_rate_error; |
|
x_error = constrain(x_error, -NAV_ERR_MAX, NAV_ERR_MAX); |
|
y_error = constrain(y_error, -NAV_ERR_MAX, NAV_ERR_MAX); |
|
|
|
float scaler = (float)max_speed/(float)NAV_ERR_MAX; |
|
g.pi_loiter_lat.kP(scaler); |
|
g.pi_loiter_lon.kP(scaler); |
|
|
|
int x_target_speed = g.pi_loiter_lon.get_pi(x_error, dTnav); |
|
int y_target_speed = g.pi_loiter_lat.get_pi(y_error, dTnav); |
|
|
|
//Serial.printf("scaler: %1.3f, y_target_speed %d",scaler,y_target_speed); |
|
|
|
if(x_target_speed > 0){ |
|
x_target_speed = max(x_target_speed, min_speed); |
|
}else{ |
|
x_target_speed = min(x_target_speed, -min_speed); |
|
} |
|
|
|
if(y_target_speed > 0){ |
|
y_target_speed = max(y_target_speed, min_speed); |
|
}else{ |
|
y_target_speed = min(y_target_speed, -min_speed); |
|
} |
|
|
|
// find the rates: |
|
float temp = radians((float)g_gps->ground_course/100.0); |
|
|
|
#ifdef OPTFLOW_ENABLED |
|
// calc the cos of the error to tell how fast we are moving towards the target in cm |
|
if(g.optflow_enabled && current_loc.alt < 500 && g_gps->ground_speed < 150){ |
|
x_actual_speed = optflow.vlon * 10; |
|
y_actual_speed = optflow.vlat * 10; |
|
}else{ |
|
x_actual_speed = (float)g_gps->ground_speed * sin(temp); |
|
y_actual_speed = (float)g_gps->ground_speed * cos(temp); |
|
} |
|
#else |
|
x_actual_speed = (float)g_gps->ground_speed * sin(temp); |
|
y_actual_speed = (float)g_gps->ground_speed * cos(temp); |
|
#endif |
|
|
|
y_rate_error = y_target_speed - y_actual_speed; // 413 |
|
y_rate_error = constrain(y_rate_error, -600, 600); // added a rate error limit to keep pitching down to a minimum |
|
nav_lat = constrain(g.pi_nav_lat.get_pi(y_rate_error, dTnav), -3500, 3500); |
|
|
|
//Serial.printf("yr: %d, nav_lat: %d, int:%d \n",y_rate_error, nav_lat, g.pi_nav_lat.get_integrator()); |
|
|
|
x_rate_error = x_target_speed - x_actual_speed; |
|
x_rate_error = constrain(x_rate_error, -600, 600); |
|
nav_lon = constrain(g.pi_nav_lon.get_pi(x_rate_error, dTnav), -3500, 3500); |
|
} |
|
|
|
// nav_roll, nav_pitch |
|
static void calc_nav_pitch_roll() |
|
{ |
|
// rotate the vector |
|
nav_roll = (float)nav_lon * sin_yaw_y - (float)nav_lat * cos_yaw_x; |
|
nav_pitch = (float)nav_lon * cos_yaw_x + (float)nav_lat * sin_yaw_y; |
|
|
|
// flip pitch because forward is negative |
|
nav_pitch = -nav_pitch; |
|
} |
|
|
|
static long get_altitude_error() |
|
{ |
|
return next_WP.alt - current_loc.alt; |
|
} |
|
|
|
/* |
|
static void calc_altitude_smoothing_error() |
|
{ |
|
// limit climb rates - we draw a straight line between first location and edge of waypoint_radius |
|
target_altitude = next_WP.alt - ((float)(wp_distance * (next_WP.alt - prev_WP.alt)) / (float)(wp_totalDistance - g.waypoint_radius)); |
|
|
|
// stay within a certain range |
|
if(prev_WP.alt > next_WP.alt){ |
|
target_altitude = constrain(target_altitude, next_WP.alt, prev_WP.alt); |
|
}else{ |
|
target_altitude = constrain(target_altitude, prev_WP.alt, next_WP.alt); |
|
} |
|
|
|
altitude_error = target_altitude - current_loc.alt; |
|
} |
|
*/ |
|
|
|
static int get_loiter_angle() |
|
{ |
|
float power; |
|
int angle; |
|
|
|
if(wp_distance <= g.loiter_radius){ |
|
power = float(wp_distance) / float(g.loiter_radius); |
|
power = constrain(power, 0.5, 1); |
|
angle = 90.0 * (2.0 + power); |
|
}else if(wp_distance < (g.loiter_radius + LOITER_RANGE)){ |
|
power = -((float)(wp_distance - g.loiter_radius - LOITER_RANGE) / LOITER_RANGE); |
|
power = constrain(power, 0.5, 1); //power = constrain(power, 0, 1); |
|
angle = power * 90; |
|
} |
|
|
|
return angle; |
|
} |
|
|
|
|
|
static long wrap_360(long error) |
|
{ |
|
if (error > 36000) error -= 36000; |
|
if (error < 0) error += 36000; |
|
return error; |
|
} |
|
|
|
static long wrap_180(long error) |
|
{ |
|
if (error > 18000) error -= 36000; |
|
if (error < -18000) error += 36000; |
|
return error; |
|
} |
|
|
|
/* |
|
static long get_crosstrack_correction(void) |
|
{ |
|
// Crosstrack Error |
|
// ---------------- |
|
if (cross_track_test() < 9000) { // If we are too far off or too close we don't do track following |
|
|
|
// Meters we are off track line |
|
float error = sin(radians((target_bearing - crosstrack_bearing) / (float)100)) * (float)wp_distance; |
|
|
|
// take meters * 100 to get adjustment to nav_bearing |
|
long _crosstrack_correction = g.pi_crosstrack.get_pi(error, dTnav) * 100; |
|
|
|
// constrain answer to 30° to avoid overshoot |
|
return constrain(_crosstrack_correction, -g.crosstrack_entry_angle.get(), g.crosstrack_entry_angle.get()); |
|
} |
|
return 0; |
|
} |
|
*/ |
|
/* |
|
static long cross_track_test() |
|
{ |
|
long temp = wrap_180(target_bearing - crosstrack_bearing); |
|
return abs(temp); |
|
} |
|
*/ |
|
/* |
|
static void reset_crosstrack() |
|
{ |
|
crosstrack_bearing = get_bearing(¤t_loc, &next_WP); // Used for track following |
|
} |
|
*/ |
|
static long get_altitude_above_home(void) |
|
{ |
|
// This is the altitude above the home location |
|
// The GPS gives us altitude at Sea Level |
|
// if you slope soar, you should see a negative number sometimes |
|
// ------------------------------------------------------------- |
|
return current_loc.alt - home.alt; |
|
} |
|
|
|
// distance is returned in meters |
|
static long get_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
//if(loc1->lat == 0 || loc1->lng == 0) |
|
// return -1; |
|
//if(loc2->lat == 0 || loc2->lng == 0) |
|
// return -1; |
|
float dlat = (float)(loc2->lat - loc1->lat); |
|
float dlong = ((float)(loc2->lng - loc1->lng)) * scaleLongDown; |
|
return sqrt(sq(dlat) + sq(dlong)) * .01113195; |
|
} |
|
|
|
static long get_alt_distance(struct Location *loc1, struct Location *loc2) |
|
{ |
|
return abs(loc1->alt - loc2->alt); |
|
} |
|
|
|
static long get_bearing(struct Location *loc1, struct Location *loc2) |
|
{ |
|
long off_x = loc2->lng - loc1->lng; |
|
long off_y = (loc2->lat - loc1->lat) * scaleLongUp; |
|
long bearing = 9000 + atan2(-off_y, off_x) * 5729.57795; |
|
if (bearing < 0) bearing += 36000; |
|
return bearing; |
|
}
|
|
|