You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
222 lines
6.3 KiB
222 lines
6.3 KiB
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_RangeFinder_LeddarOne.h" |
|
#include <AP_SerialManager/AP_SerialManager.h> |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
/* |
|
The constructor also initialises the rangefinder. Note that this |
|
constructor is not called until detect() returns true, so we |
|
already know that we should setup the rangefinder |
|
*/ |
|
AP_RangeFinder_LeddarOne::AP_RangeFinder_LeddarOne(RangeFinder &_ranger, uint8_t instance, |
|
RangeFinder::RangeFinder_State &_state, |
|
AP_SerialManager &serial_manager) : |
|
AP_RangeFinder_Backend(_ranger, instance, _state) |
|
{ |
|
uart = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar, 0); |
|
if (uart != nullptr) { |
|
uart->begin(serial_manager.find_baudrate(AP_SerialManager::SerialProtocol_Lidar, 0)); |
|
} |
|
} |
|
|
|
/* |
|
detect if a LeddarOne rangefinder is connected. We'll detect by |
|
trying to take a reading on Serial. If we get a result the sensor is |
|
there. |
|
*/ |
|
bool AP_RangeFinder_LeddarOne::detect(RangeFinder &_ranger, uint8_t instance, AP_SerialManager &serial_manager) |
|
{ |
|
return serial_manager.find_serial(AP_SerialManager::SerialProtocol_Lidar, 0) != nullptr; |
|
} |
|
|
|
// read - return last value measured by sensor |
|
bool AP_RangeFinder_LeddarOne::get_reading(uint16_t &reading_cm) |
|
{ |
|
if (uart == nullptr) { |
|
return false; |
|
} |
|
|
|
// send a request message for Modbus function 4 |
|
if (send_request() != LEDDARONE_OK) { |
|
// TODO: handle LEDDARONE_ERR_SERIAL_PORT |
|
return false; |
|
} |
|
|
|
uint32_t start_ms = AP_HAL::millis(); |
|
while (!uart->available()) { |
|
// wait up to 200ms |
|
if (AP_HAL::millis() - start_ms > 200) { |
|
return false; |
|
} |
|
} |
|
|
|
// parse a response message, set number_detections, detections and sum_distance |
|
// must be signed to handle errors |
|
uint8_t number_detections; |
|
if (parse_response(number_detections) != LEDDARONE_OK) { |
|
// TODO: when (not LEDDARONE_OK) handle LEDDARONE_ERR_ |
|
return false; |
|
} |
|
|
|
// calculate average distance |
|
reading_cm = sum_distance / number_detections; |
|
|
|
return true; |
|
} |
|
|
|
/* |
|
update the state of the sensor |
|
*/ |
|
void AP_RangeFinder_LeddarOne::update(void) |
|
{ |
|
if (get_reading(state.distance_cm)) { |
|
// update range_valid state based on distance measured |
|
last_reading_ms = AP_HAL::millis(); |
|
update_status(); |
|
} else if (AP_HAL::millis() - last_reading_ms > 200) { |
|
set_status(RangeFinder::RangeFinder_NoData); |
|
} |
|
} |
|
|
|
/* |
|
CRC16 |
|
CRC-16-IBM(x16+x15+x2+1) |
|
*/ |
|
bool AP_RangeFinder_LeddarOne::CRC16(uint8_t *aBuffer, uint8_t aLength, bool aCheck) |
|
{ |
|
uint16_t crc = 0xFFFF; |
|
|
|
for (uint32_t i=0; i<aLength; i++) { |
|
crc ^= aBuffer[i]; |
|
for (uint32_t j=0; j<8; j++) { |
|
if (crc & 1) { |
|
crc = (crc >> 1) ^ 0xA001; |
|
} else { |
|
crc >>= 1; |
|
} |
|
} |
|
} |
|
|
|
uint8_t lCRCLo = LOWBYTE(crc); |
|
uint8_t lCRCHi = HIGHBYTE(crc); |
|
|
|
if (aCheck) { |
|
return (aBuffer[aLength] == lCRCLo) && (aBuffer[aLength+1] == lCRCHi); |
|
} else { |
|
aBuffer[aLength] = lCRCLo; |
|
aBuffer[aLength+1] = lCRCHi; |
|
return true; |
|
} |
|
} |
|
|
|
/* |
|
send a request message to execute ModBus function 0x04 |
|
*/ |
|
LeddarOne_Status AP_RangeFinder_LeddarOne::send_request(void) |
|
{ |
|
uint8_t data_buffer[10] = {0}; |
|
uint8_t i = 0; |
|
|
|
uint32_t nbytes = uart->available(); |
|
|
|
// clear buffer |
|
while (nbytes-- > 0) { |
|
uart->read(); |
|
if (++i > 250) { |
|
return LEDDARONE_ERR_SERIAL_PORT; |
|
} |
|
} |
|
|
|
// Modbus read input register (function code 0x04) |
|
data_buffer[0] = LEDDARONE_DEFAULT_ADDRESS; |
|
data_buffer[1] = 0x04; |
|
data_buffer[2] = 0; |
|
data_buffer[3] = 20; |
|
data_buffer[4] = 0; |
|
data_buffer[5] = 10; |
|
|
|
// CRC16 |
|
CRC16(data_buffer, 6, false); |
|
|
|
// write buffer data with CRC16 bits |
|
for (i=0; i<8; i++) { |
|
uart->write(data_buffer[i]); |
|
} |
|
uart->flush(); |
|
|
|
return LEDDARONE_OK; |
|
} |
|
|
|
/* |
|
parse a response message from Modbus |
|
*/ |
|
LeddarOne_Status AP_RangeFinder_LeddarOne::parse_response(uint8_t &number_detections) |
|
{ |
|
uint8_t data_buffer[25] = {0}; |
|
uint32_t start_ms = AP_HAL::millis(); |
|
uint32_t len = 0; |
|
uint8_t i; |
|
uint8_t index_offset = 11; |
|
|
|
// read serial |
|
while (AP_HAL::millis() - start_ms < 10) { |
|
uint32_t nbytes = uart->available(); |
|
if (len == 25 && nbytes == 0) { |
|
break; |
|
} else { |
|
for (i=len; i<nbytes+len; i++) { |
|
if (i >= 25) { |
|
return LEDDARONE_ERR_BAD_RESPONSE; |
|
} |
|
data_buffer[i] = uart->read(); |
|
} |
|
start_ms = AP_HAL::millis(); |
|
len += nbytes; |
|
} |
|
} |
|
|
|
if (len != 25) { |
|
return LEDDARONE_ERR_BAD_RESPONSE; |
|
} |
|
|
|
// CRC16 |
|
if (!CRC16(data_buffer, len-2, true)) { |
|
return LEDDARONE_ERR_BAD_CRC; |
|
} |
|
|
|
// number of detections |
|
number_detections = data_buffer[10]; |
|
|
|
// if the number of detection is over or zero , it is false |
|
if (number_detections > LEDDARONE_DETECTIONS_MAX || number_detections == 0) { |
|
return LEDDARONE_ERR_NUMBER_DETECTIONS; |
|
} |
|
|
|
memset(detections, 0, sizeof(detections)); |
|
sum_distance = 0; |
|
for (i=0; i<number_detections; i++) { |
|
// construct data word from two bytes and convert mm to cm |
|
detections[i] = (static_cast<uint16_t>(data_buffer[index_offset])*256 + data_buffer[index_offset+1]) / 10; |
|
sum_distance += detections[i]; |
|
index_offset += 4; |
|
} |
|
|
|
return LEDDARONE_OK; |
|
}
|
|
|