You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
14 KiB
351 lines
14 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
control code for tailsitters. Enabled by setting Q_FRAME_CLASS=10 |
|
or by setting Q_TAILSIT_MOTMX nonzero and Q_FRAME_CLASS and Q_FRAME_TYPE |
|
to a configuration supported by AP_MotorsMatrix |
|
*/ |
|
|
|
#include <math.h> |
|
#include "Plane.h" |
|
|
|
/* |
|
return true when flying a tailsitter |
|
*/ |
|
bool QuadPlane::is_tailsitter(void) const |
|
{ |
|
return available() |
|
&& ((frame_class == AP_Motors::MOTOR_FRAME_TAILSITTER) || (tailsitter.motor_mask != 0)) |
|
&& (tilt.tilt_type != TILT_TYPE_BICOPTER); |
|
} |
|
|
|
/* |
|
return true when flying a control surface only tailsitter tailsitter |
|
*/ |
|
bool QuadPlane::is_contol_surface_tailsitter(void) const |
|
{ |
|
return frame_class == AP_Motors::MOTOR_FRAME_TAILSITTER |
|
&& ( is_zero(tailsitter.vectored_hover_gain) || !SRV_Channels::function_assigned(SRV_Channel::k_tiltMotorLeft)); |
|
} |
|
|
|
/* |
|
check if we are flying as a tailsitter |
|
*/ |
|
bool QuadPlane::tailsitter_active(void) |
|
{ |
|
if (!is_tailsitter()) { |
|
return false; |
|
} |
|
if (in_vtol_mode()) { |
|
return true; |
|
} |
|
// check if we are in ANGLE_WAIT fixed wing transition |
|
if (transition_state == TRANSITION_ANGLE_WAIT_FW) { |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
/* |
|
run output for tailsitters |
|
*/ |
|
void QuadPlane::tailsitter_output(void) |
|
{ |
|
if (!is_tailsitter() || motor_test.running) { |
|
// if motor test is running we don't want to overwrite it with output_motor_mask or motors_output |
|
return; |
|
} |
|
|
|
float tilt_left = 0.0f; |
|
float tilt_right = 0.0f; |
|
|
|
|
|
|
|
// handle forward flight modes and transition to VTOL modes |
|
if (!tailsitter_active() || in_tailsitter_vtol_transition()) { |
|
// get FW controller throttle demand and mask of motors enabled during forward flight |
|
float throttle = SRV_Channels::get_output_scaled(SRV_Channel::k_throttle); |
|
if (hal.util->get_soft_armed() && in_tailsitter_vtol_transition() && !throttle_wait && is_flying()) { |
|
/* |
|
during transitions to vtol mode set the throttle to |
|
hover thrust, center the rudder and set the altitude controller |
|
integrator to the same throttle level |
|
*/ |
|
throttle = motors->get_throttle_hover() * 100; |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, 0); |
|
pos_control->get_accel_z_pid().set_integrator(throttle*10); |
|
|
|
// override AP_MotorsTailsitter throttles during back transition |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, throttle); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleLeft, throttle); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttleRight, throttle); |
|
} |
|
|
|
if (!assisted_flight) { |
|
// set AP_MotorsMatrix throttles for forward flight |
|
motors->output_motor_mask(throttle * 0.01f, tailsitter.motor_mask, plane.rudder_dt); |
|
|
|
// in forward flight: set motor tilt servos and throttles using FW controller |
|
if (tailsitter.vectored_forward_gain > 0) { |
|
// thrust vectoring in fixed wing flight |
|
float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron); |
|
float elevator = SRV_Channels::get_output_scaled(SRV_Channel::k_elevator); |
|
tilt_left = (elevator + aileron) * tailsitter.vectored_forward_gain; |
|
tilt_right = (elevator - aileron) * tailsitter.vectored_forward_gain; |
|
} |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right); |
|
return; |
|
} |
|
} |
|
|
|
// handle Copter controller |
|
// the MultiCopter rate controller has already been run in an earlier call |
|
// to motors_output() from quadplane.update(), unless we are in assisted flight |
|
if (assisted_flight && is_tailsitter_in_fw_flight()) { |
|
hold_stabilize(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * 0.01f); |
|
motors_output(true); |
|
|
|
if ((options & OPTION_TAILSIT_Q_ASSIST_MOTORS_ONLY) != 0) { |
|
// only use motors for Q assist, control surfaces remain under plane control |
|
// zero copter I terms and use plane |
|
attitude_control->reset_rate_controller_I_terms(); |
|
|
|
// output tilt motors |
|
if (tailsitter.vectored_hover_gain > 0) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorLeft) * tailsitter.vectored_hover_gain); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorRight) * tailsitter.vectored_hover_gain); |
|
} |
|
|
|
// skip remainder of the function that overwrites plane control surface outputs with copter |
|
return; |
|
} |
|
} else { |
|
motors_output(false); |
|
} |
|
|
|
// In full Q assist it is better to use cotper I and zero plane |
|
plane.pitchController.reset_I(); |
|
plane.rollController.reset_I(); |
|
|
|
// pull in copter control outputs |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, (motors->get_yaw())*-SERVO_MAX); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, (motors->get_pitch())*SERVO_MAX); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, (motors->get_roll())*SERVO_MAX); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, (motors->get_throttle()) * 100); |
|
|
|
if (hal.util->get_soft_armed()) { |
|
// scale surfaces for throttle |
|
tailsitter_speed_scaling(); |
|
} |
|
|
|
if (tailsitter.vectored_hover_gain > 0) { |
|
// thrust vectoring VTOL modes |
|
tilt_left = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorLeft); |
|
tilt_right = SRV_Channels::get_output_scaled(SRV_Channel::k_tiltMotorRight); |
|
/* |
|
apply extra elevator when at high pitch errors, using a |
|
power law. This allows the motors to point straight up for |
|
takeoff without integrator windup |
|
*/ |
|
float des_pitch_cd = attitude_control->get_att_target_euler_cd().y; |
|
int32_t pitch_error_cd = (des_pitch_cd - ahrs_view->pitch_sensor) * 0.5; |
|
float extra_pitch = constrain_float(pitch_error_cd, -SERVO_MAX, SERVO_MAX) / SERVO_MAX; |
|
float extra_sign = extra_pitch > 0?1:-1; |
|
float extra_elevator = 0; |
|
if (!is_zero(extra_pitch) && in_vtol_mode()) { |
|
extra_elevator = extra_sign * powf(fabsf(extra_pitch), tailsitter.vectored_hover_power) * SERVO_MAX; |
|
} |
|
tilt_left = extra_elevator + tilt_left * tailsitter.vectored_hover_gain; |
|
tilt_right = extra_elevator + tilt_right * tailsitter.vectored_hover_gain; |
|
if (fabsf(tilt_left) >= SERVO_MAX || fabsf(tilt_right) >= SERVO_MAX) { |
|
// prevent integrator windup |
|
motors->limit.roll = 1; |
|
motors->limit.pitch = 1; |
|
motors->limit.yaw = 1; |
|
} |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorLeft, tilt_left); |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_tiltMotorRight, tilt_right); |
|
} |
|
|
|
|
|
if (tailsitter.input_mask_chan > 0 && |
|
tailsitter.input_mask > 0 && |
|
RC_Channels::get_radio_in(tailsitter.input_mask_chan-1) > 1700) { |
|
// the user is learning to prop-hang |
|
if (tailsitter.input_mask & TAILSITTER_MASK_AILERON) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, plane.channel_roll->get_control_in_zero_dz()); |
|
} |
|
if (tailsitter.input_mask & TAILSITTER_MASK_ELEVATOR) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, plane.channel_pitch->get_control_in_zero_dz()); |
|
} |
|
if (tailsitter.input_mask & TAILSITTER_MASK_THROTTLE) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, plane.get_throttle_input(true)); |
|
} |
|
if (tailsitter.input_mask & TAILSITTER_MASK_RUDDER) { |
|
SRV_Channels::set_output_scaled(SRV_Channel::k_rudder, plane.channel_rudder->get_control_in_zero_dz()); |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
return true when we have completed enough of a transition to switch to fixed wing control |
|
*/ |
|
bool QuadPlane::tailsitter_transition_fw_complete(void) |
|
{ |
|
if (plane.fly_inverted()) { |
|
// transition immediately |
|
return true; |
|
} |
|
int32_t roll_cd = labs(ahrs_view->roll_sensor); |
|
if (roll_cd > 9000) { |
|
roll_cd = 18000 - roll_cd; |
|
} |
|
if (labs(ahrs_view->pitch_sensor) > tailsitter.transition_angle*100 || |
|
roll_cd > tailsitter.transition_angle*100 || |
|
AP_HAL::millis() - transition_start_ms > uint32_t(transition_time_ms)) { |
|
return true; |
|
} |
|
// still waiting |
|
return false; |
|
} |
|
|
|
|
|
/* |
|
return true when we have completed enough of a transition to switch to VTOL control |
|
*/ |
|
bool QuadPlane::tailsitter_transition_vtol_complete(void) const |
|
{ |
|
if (plane.fly_inverted()) { |
|
// transition immediately |
|
return true; |
|
} |
|
if (labs(plane.ahrs.pitch_sensor) > tailsitter.transition_angle*100 || |
|
labs(plane.ahrs.roll_sensor) > tailsitter.transition_angle*100 || |
|
AP_HAL::millis() - transition_start_ms > 2000) { |
|
return true; |
|
} |
|
// still waiting |
|
attitude_control->reset_rate_controller_I_terms(); |
|
return false; |
|
} |
|
|
|
// handle different tailsitter input types |
|
void QuadPlane::tailsitter_check_input(void) |
|
{ |
|
if (tailsitter_active() && |
|
(tailsitter.input_type & TAILSITTER_INPUT_PLANE)) { |
|
// the user has asked for body frame controls when tailsitter |
|
// is active. We switch around the control_in value for the |
|
// channels to do this, as that ensures the value is |
|
// consistent throughout the code |
|
int16_t roll_in = plane.channel_roll->get_control_in(); |
|
int16_t yaw_in = plane.channel_rudder->get_control_in(); |
|
plane.channel_roll->set_control_in(yaw_in); |
|
plane.channel_rudder->set_control_in(-roll_in); |
|
} |
|
} |
|
|
|
/* |
|
return true if we are a tailsitter transitioning to VTOL flight |
|
*/ |
|
bool QuadPlane::in_tailsitter_vtol_transition(void) const |
|
{ |
|
return is_tailsitter() && in_vtol_mode() && transition_state == TRANSITION_ANGLE_WAIT_VTOL; |
|
} |
|
|
|
/* |
|
return true if we are a tailsitter in FW flight |
|
*/ |
|
bool QuadPlane::is_tailsitter_in_fw_flight(void) const |
|
{ |
|
return is_tailsitter() && !in_vtol_mode() && transition_state == TRANSITION_DONE; |
|
} |
|
|
|
/* |
|
account for speed scaling of control surfaces in VTOL modes |
|
*/ |
|
void QuadPlane::tailsitter_speed_scaling(void) |
|
{ |
|
const float hover_throttle = motors->get_throttle_hover(); |
|
const float throttle = motors->get_throttle(); |
|
float spd_scaler = 1.0f; |
|
|
|
if (tailsitter.gain_scaling_mask & TAILSITTER_GSCL_ATT_THR) { |
|
// reduce gains when flying at high speed in Q modes: |
|
|
|
// critical parameter: violent oscillations if too high |
|
// sudden loss of attitude control if too low |
|
const float min_scale = tailsitter.gain_scaling_min; |
|
float tthr = 1.25f * hover_throttle; |
|
|
|
// reduce control surface throws at large tilt |
|
// angles (assuming high airspeed) |
|
// ramp down from 1 to max_atten at tilt angles over trans_angle |
|
// (angles here are represented by their cosines) |
|
|
|
// Note that the cosf call will be necessary if trans_angle becomes a parameter |
|
// but the C language spec does not guarantee that trig functions can be used |
|
// in constant expressions, even though gcc currently allows it. |
|
constexpr float c_trans_angle = 0.9238795; // cosf(.125f * M_PI) |
|
|
|
// alpha = (1 - max_atten) / (c_trans_angle - cosf(radians(90))); |
|
const float alpha = (1 - min_scale) / c_trans_angle; |
|
const float beta = 1 - alpha * c_trans_angle; |
|
|
|
const float c_tilt = ahrs_view->get_rotation_body_to_ned().c.z; |
|
if (c_tilt < c_trans_angle) { |
|
spd_scaler = constrain_float(beta + alpha * c_tilt, min_scale, 1.0f); |
|
// reduce throttle attenuation threshold too |
|
tthr = 0.5f * hover_throttle; |
|
} |
|
// if throttle is above hover thrust, apply additional attenuation |
|
if (throttle > tthr) { |
|
const float throttle_atten = 1 - (throttle - tthr) / (1 - tthr); |
|
spd_scaler *= throttle_atten; |
|
spd_scaler = constrain_float(spd_scaler, min_scale, 1.0f); |
|
} |
|
|
|
// limit positive and negative slew rates of applied speed scaling |
|
constexpr float posTC = 2.0f; // seconds |
|
constexpr float negTC = 1.0f; // seconds |
|
const float posdelta = plane.G_Dt / posTC; |
|
const float negdelta = plane.G_Dt / negTC; |
|
spd_scaler = constrain_float(spd_scaler, last_spd_scaler - negdelta, last_spd_scaler + posdelta); |
|
last_spd_scaler = spd_scaler; |
|
} |
|
|
|
// if gain attenuation isn't active and boost is enabled |
|
if ((spd_scaler >= 1.0f) && (tailsitter.gain_scaling_mask & TAILSITTER_GSCL_BOOST)) { |
|
// boost gains at low throttle |
|
if (is_zero(throttle)) { |
|
spd_scaler = tailsitter.throttle_scale_max; |
|
} else { |
|
spd_scaler = constrain_float(hover_throttle / throttle, 1.0f, tailsitter.throttle_scale_max); |
|
} |
|
} |
|
|
|
const SRV_Channel::Aux_servo_function_t functions[] = { |
|
SRV_Channel::Aux_servo_function_t::k_aileron, |
|
SRV_Channel::Aux_servo_function_t::k_elevator, |
|
SRV_Channel::Aux_servo_function_t::k_rudder}; |
|
for (uint8_t i=0; i<ARRAY_SIZE(functions); i++) { |
|
int32_t v = SRV_Channels::get_output_scaled(functions[i]); |
|
v *= spd_scaler; |
|
v = constrain_int32(v, -SERVO_MAX, SERVO_MAX); |
|
SRV_Channels::set_output_scaled(functions[i], v); |
|
} |
|
}
|
|
|