You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1078 lines
33 KiB
1078 lines
33 KiB
/* |
|
* The MIT License (MIT) |
|
* |
|
* Copyright (c) 2014 Pavel Kirienko |
|
* |
|
* Permission is hereby granted, free of charge, to any person obtaining a copy of |
|
* this software and associated documentation files (the "Software"), to deal in |
|
* the Software without restriction, including without limitation the rights to |
|
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of |
|
* the Software, and to permit persons to whom the Software is furnished to do so, |
|
* subject to the following conditions: |
|
* |
|
* The above copyright notice and this permission notice shall be included in all |
|
* copies or substantial portions of the Software. |
|
* |
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS |
|
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR |
|
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER |
|
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
*/ |
|
|
|
/* |
|
* This file is free software: you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation, either version 3 of the License, or |
|
* (at your option) any later version. |
|
* |
|
* This file is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
|
* See the GNU General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License along |
|
* with this program. If not, see <http://www.gnu.org/licenses/>. |
|
* |
|
* Code by Siddharth Bharat Purohit |
|
*/ |
|
|
|
#include <hal.h> |
|
#include "AP_HAL_ChibiOS.h" |
|
|
|
#if HAL_NUM_CAN_IFACES |
|
#include <cassert> |
|
#include <cstring> |
|
#include <AP_Math/AP_Math.h> |
|
# include <hal.h> |
|
#include <AP_CANManager/AP_CANManager.h> |
|
#include <AP_Common/ExpandingString.h> |
|
|
|
# if !defined(STM32H7XX) && !defined(STM32G4) |
|
#include "CANIface.h" |
|
|
|
/* STM32F3's only CAN inteface does not have a number. */ |
|
#if defined(STM32F3XX) |
|
#define RCC_APB1ENR_CAN1EN RCC_APB1ENR_CANEN |
|
#define RCC_APB1RSTR_CAN1RST RCC_APB1RSTR_CANRST |
|
#define CAN1_TX_IRQn CAN_TX_IRQn |
|
#define CAN1_RX0_IRQn CAN_RX0_IRQn |
|
#define CAN1_RX1_IRQn CAN_RX1_IRQn |
|
#define CAN1_TX_IRQ_Handler STM32_CAN1_TX_HANDLER |
|
#define CAN1_RX0_IRQ_Handler STM32_CAN1_RX0_HANDLER |
|
#define CAN1_RX1_IRQ_Handler STM32_CAN1_RX1_HANDLER |
|
#else |
|
#define CAN1_TX_IRQ_Handler STM32_CAN1_TX_HANDLER |
|
#define CAN1_RX0_IRQ_Handler STM32_CAN1_RX0_HANDLER |
|
#define CAN1_RX1_IRQ_Handler STM32_CAN1_RX1_HANDLER |
|
#define CAN2_TX_IRQ_Handler STM32_CAN2_TX_HANDLER |
|
#define CAN2_RX0_IRQ_Handler STM32_CAN2_RX0_HANDLER |
|
#define CAN2_RX1_IRQ_Handler STM32_CAN2_RX1_HANDLER |
|
#endif // #if defined(STM32F3XX) |
|
|
|
#if HAL_CANMANAGER_ENABLED |
|
#define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANIface", fmt, ##args); } while (0) |
|
#else |
|
#define Debug(fmt, args...) |
|
#endif |
|
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
#define PERF_STATS(x) (x++) |
|
#else |
|
#define PERF_STATS(x) |
|
#endif |
|
|
|
|
|
extern AP_HAL::HAL& hal; |
|
|
|
using namespace ChibiOS; |
|
|
|
constexpr bxcan::CanType* const CANIface::Can[]; |
|
static ChibiOS::CANIface* can_ifaces[HAL_NUM_CAN_IFACES]; |
|
|
|
uint8_t CANIface::next_interface; |
|
|
|
// mapping from logical interface to physical. First physical is 0, first logical is 0 |
|
static constexpr uint8_t can_interfaces[HAL_NUM_CAN_IFACES] = { HAL_CAN_INTERFACE_LIST }; |
|
|
|
// mapping from physical interface back to logical. First physical is 0, first logical is 0 |
|
static constexpr int8_t can_iface_to_idx[3] = { HAL_CAN_INTERFACE_REV_LIST }; |
|
|
|
static inline void handleTxInterrupt(uint8_t phys_index) |
|
{ |
|
const int8_t iface_index = can_iface_to_idx[phys_index]; |
|
if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) { |
|
return; |
|
} |
|
uint64_t precise_time = AP_HAL::micros64(); |
|
if (precise_time > 0) { |
|
precise_time--; |
|
} |
|
if (can_ifaces[iface_index] != nullptr) { |
|
can_ifaces[iface_index]->handleTxInterrupt(precise_time); |
|
} |
|
} |
|
|
|
static inline void handleRxInterrupt(uint8_t phys_index, uint8_t fifo_index) |
|
{ |
|
const int8_t iface_index = can_iface_to_idx[phys_index]; |
|
if (iface_index < 0 || iface_index >= HAL_NUM_CAN_IFACES) { |
|
return; |
|
} |
|
uint64_t precise_time = AP_HAL::micros64(); |
|
if (precise_time > 0) { |
|
precise_time--; |
|
} |
|
if (can_ifaces[iface_index] != nullptr) { |
|
can_ifaces[iface_index]->handleRxInterrupt(fifo_index, precise_time); |
|
} |
|
} |
|
|
|
/* |
|
* CANIface |
|
*/ |
|
const uint32_t CANIface::TSR_ABRQx[CANIface::NumTxMailboxes] = { |
|
bxcan::TSR_ABRQ0, |
|
bxcan::TSR_ABRQ1, |
|
bxcan::TSR_ABRQ2 |
|
}; |
|
|
|
|
|
CANIface::CANIface(uint8_t index) : |
|
self_index_(index), |
|
rx_bytebuffer_((uint8_t*)rx_buffer, sizeof(rx_buffer)), |
|
rx_queue_(&rx_bytebuffer_) |
|
{ |
|
if (index >= HAL_NUM_CAN_IFACES) { |
|
AP_HAL::panic("Bad CANIface index."); |
|
} else { |
|
can_ = Can[index]; |
|
} |
|
} |
|
|
|
// constructor suitable for array |
|
CANIface::CANIface() : |
|
CANIface(next_interface++) |
|
{} |
|
|
|
bool CANIface::computeTimings(uint32_t target_bitrate, Timings& out_timings) |
|
{ |
|
if (target_bitrate < 1) { |
|
return false; |
|
} |
|
|
|
/* |
|
* Hardware configuration |
|
*/ |
|
const uint32_t pclk = STM32_PCLK1; |
|
|
|
static const int MaxBS1 = 16; |
|
static const int MaxBS2 = 8; |
|
|
|
/* |
|
* Ref. "Automatic Baudrate Detection in CANopen Networks", U. Koppe, MicroControl GmbH & Co. KG |
|
* CAN in Automation, 2003 |
|
* |
|
* According to the source, optimal quanta per bit are: |
|
* Bitrate Optimal Maximum |
|
* 1000 kbps 8 10 |
|
* 500 kbps 16 17 |
|
* 250 kbps 16 17 |
|
* 125 kbps 16 17 |
|
*/ |
|
const int max_quanta_per_bit = (target_bitrate >= 1000000) ? 10 : 17; |
|
|
|
static const int MaxSamplePointLocation = 900; |
|
|
|
/* |
|
* Computing (prescaler * BS): |
|
* BITRATE = 1 / (PRESCALER * (1 / PCLK) * (1 + BS1 + BS2)) -- See the Reference Manual |
|
* BITRATE = PCLK / (PRESCALER * (1 + BS1 + BS2)) -- Simplified |
|
* let: |
|
* BS = 1 + BS1 + BS2 -- Number of time quanta per bit |
|
* PRESCALER_BS = PRESCALER * BS |
|
* ==> |
|
* PRESCALER_BS = PCLK / BITRATE |
|
*/ |
|
const uint32_t prescaler_bs = pclk / target_bitrate; |
|
|
|
/* |
|
* Searching for such prescaler value so that the number of quanta per bit is highest. |
|
*/ |
|
uint8_t bs1_bs2_sum = uint8_t(max_quanta_per_bit - 1); |
|
|
|
while ((prescaler_bs % (1 + bs1_bs2_sum)) != 0) { |
|
if (bs1_bs2_sum <= 2) { |
|
return false; // No solution |
|
} |
|
bs1_bs2_sum--; |
|
} |
|
|
|
const uint32_t prescaler = prescaler_bs / (1 + bs1_bs2_sum); |
|
if ((prescaler < 1U) || (prescaler > 1024U)) { |
|
return false; // No solution |
|
} |
|
|
|
/* |
|
* Now we have a constraint: (BS1 + BS2) == bs1_bs2_sum. |
|
* We need to find the values so that the sample point is as close as possible to the optimal value. |
|
* |
|
* Solve[(1 + bs1)/(1 + bs1 + bs2) == 7/8, bs2] (* Where 7/8 is 0.875, the recommended sample point location *) |
|
* {{bs2 -> (1 + bs1)/7}} |
|
* |
|
* Hence: |
|
* bs2 = (1 + bs1) / 7 |
|
* bs1 = (7 * bs1_bs2_sum - 1) / 8 |
|
* |
|
* Sample point location can be computed as follows: |
|
* Sample point location = (1 + bs1) / (1 + bs1 + bs2) |
|
* |
|
* Since the optimal solution is so close to the maximum, we prepare two solutions, and then pick the best one: |
|
* - With rounding to nearest |
|
* - With rounding to zero |
|
*/ |
|
struct BsPair { |
|
uint8_t bs1; |
|
uint8_t bs2; |
|
uint16_t sample_point_permill; |
|
|
|
BsPair() : |
|
bs1(0), |
|
bs2(0), |
|
sample_point_permill(0) |
|
{ } |
|
|
|
BsPair(uint8_t bs1_bs2_sum, uint8_t arg_bs1) : |
|
bs1(arg_bs1), |
|
bs2(uint8_t(bs1_bs2_sum - bs1)), |
|
sample_point_permill(uint16_t(1000 * (1 + bs1) / (1 + bs1 + bs2))) |
|
{} |
|
|
|
bool isValid() const |
|
{ |
|
return (bs1 >= 1) && (bs1 <= MaxBS1) && (bs2 >= 1) && (bs2 <= MaxBS2); |
|
} |
|
}; |
|
|
|
// First attempt with rounding to nearest |
|
BsPair solution(bs1_bs2_sum, uint8_t(((7 * bs1_bs2_sum - 1) + 4) / 8)); |
|
|
|
if (solution.sample_point_permill > MaxSamplePointLocation) { |
|
// Second attempt with rounding to zero |
|
solution = BsPair(bs1_bs2_sum, uint8_t((7 * bs1_bs2_sum - 1) / 8)); |
|
} |
|
|
|
/* |
|
* Final validation |
|
* Helpful Python: |
|
* def sample_point_from_btr(x): |
|
* assert 0b0011110010000000111111000000000 & x == 0 |
|
* ts2,ts1,brp = (x>>20)&7, (x>>16)&15, x&511 |
|
* return (1+ts1+1)/(1+ts1+1+ts2+1) |
|
* |
|
*/ |
|
if ((target_bitrate != (pclk / (prescaler * (1 + solution.bs1 + solution.bs2)))) || !solution.isValid()) { |
|
return false; |
|
} |
|
|
|
Debug("Timings: quanta/bit: %d, sample point location: %.1f%%", |
|
int(1 + solution.bs1 + solution.bs2), float(solution.sample_point_permill) / 10.F); |
|
|
|
out_timings.prescaler = uint16_t(prescaler - 1U); |
|
out_timings.sjw = 0; // Which means one |
|
out_timings.bs1 = uint8_t(solution.bs1 - 1); |
|
out_timings.bs2 = uint8_t(solution.bs2 - 1); |
|
return true; |
|
} |
|
|
|
int16_t CANIface::send(const AP_HAL::CANFrame& frame, uint64_t tx_deadline, |
|
CanIOFlags flags) |
|
{ |
|
if (frame.isErrorFrame() || frame.dlc > 8) { |
|
return -1; |
|
} |
|
|
|
/* |
|
* Normally we should perform the same check as in @ref canAcceptNewTxFrame(), because |
|
* it is possible that the highest-priority frame between select() and send() could have been |
|
* replaced with a lower priority one due to TX timeout. But we don't do this check because: |
|
* |
|
* - It is a highly unlikely scenario. |
|
* |
|
* - Frames do not timeout on a properly functioning bus. Since frames do not timeout, the new |
|
* frame can only have higher priority, which doesn't break the logic. |
|
* |
|
* - If high-priority frames are timing out in the TX queue, there's probably a lot of other |
|
* issues to take care of before this one becomes relevant. |
|
* |
|
* - It takes CPU time. Not just CPU time, but critical section time, which is expensive. |
|
*/ |
|
|
|
{ |
|
CriticalSectionLocker lock; |
|
|
|
/* |
|
* Seeking for an empty slot |
|
*/ |
|
uint8_t txmailbox = 0xFF; |
|
if ((can_->TSR & bxcan::TSR_TME0) == bxcan::TSR_TME0) { |
|
txmailbox = 0; |
|
} else if ((can_->TSR & bxcan::TSR_TME1) == bxcan::TSR_TME1) { |
|
txmailbox = 1; |
|
} else if ((can_->TSR & bxcan::TSR_TME2) == bxcan::TSR_TME2) { |
|
txmailbox = 2; |
|
} else { |
|
PERF_STATS(stats.tx_rejected); |
|
return 0; // No transmission for you. |
|
} |
|
|
|
/* |
|
* Setting up the mailbox |
|
*/ |
|
bxcan::TxMailboxType& mb = can_->TxMailbox[txmailbox]; |
|
if (frame.isExtended()) { |
|
mb.TIR = ((frame.id & AP_HAL::CANFrame::MaskExtID) << 3) | bxcan::TIR_IDE; |
|
} else { |
|
mb.TIR = ((frame.id & AP_HAL::CANFrame::MaskStdID) << 21); |
|
} |
|
|
|
if (frame.isRemoteTransmissionRequest()) { |
|
mb.TIR |= bxcan::TIR_RTR; |
|
} |
|
|
|
mb.TDTR = frame.dlc; |
|
|
|
mb.TDHR = frame.data_32[1]; |
|
mb.TDLR = frame.data_32[0]; |
|
|
|
mb.TIR |= bxcan::TIR_TXRQ; // Go. |
|
|
|
/* |
|
* Registering the pending transmission so we can track its deadline and loopback it as needed |
|
*/ |
|
CanTxItem& txi = pending_tx_[txmailbox]; |
|
txi.deadline = tx_deadline; |
|
txi.frame = frame; |
|
txi.loopback = (flags & Loopback) != 0; |
|
txi.abort_on_error = (flags & AbortOnError) != 0; |
|
// setup frame initial state |
|
txi.pushed = false; |
|
} |
|
|
|
return AP_HAL::CANIface::send(frame, tx_deadline, flags); |
|
} |
|
|
|
int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us, CanIOFlags& out_flags) |
|
{ |
|
{ |
|
CriticalSectionLocker lock; |
|
CanRxItem rx_item; |
|
if (!rx_queue_.pop(rx_item)) { |
|
return 0; |
|
} |
|
out_frame = rx_item.frame; |
|
out_timestamp_us = rx_item.timestamp_us; |
|
out_flags = rx_item.flags; |
|
} |
|
|
|
return AP_HAL::CANIface::receive(out_frame, out_timestamp_us, out_flags); |
|
} |
|
|
|
#if !defined(HAL_BOOTLOADER_BUILD) |
|
bool CANIface::configureFilters(const CanFilterConfig* filter_configs, |
|
uint16_t num_configs) |
|
{ |
|
#if !defined(HAL_BUILD_AP_PERIPH) |
|
// only do filtering for AP_Periph |
|
can_->FMR &= ~bxcan::FMR_FINIT; |
|
return true; |
|
#else |
|
if (mode_ != FilteredMode) { |
|
return false; |
|
} |
|
if (num_configs <= NumFilters && filter_configs != nullptr) { |
|
CriticalSectionLocker lock; |
|
|
|
can_->FMR |= bxcan::FMR_FINIT; |
|
|
|
// Slave (CAN2) gets half of the filters |
|
can_->FMR &= ~0x00003F00UL; |
|
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8; |
|
|
|
can_->FFA1R = 0x0AAAAAAA; // FIFO's are interleaved between filters |
|
can_->FM1R = 0; // Identifier Mask mode |
|
can_->FS1R = 0x7ffffff; // Single 32-bit for all |
|
|
|
const uint8_t filter_start_index = (self_index_ == 0) ? 0 : NumFilters; |
|
|
|
if (num_configs == 0) { |
|
can_->FilterRegister[filter_start_index].FR1 = 0; |
|
can_->FilterRegister[filter_start_index].FR2 = 0; |
|
can_->FA1R = 1 << filter_start_index; |
|
} else { |
|
for (uint8_t i = 0; i < NumFilters; i++) { |
|
if (i < num_configs) { |
|
uint32_t id = 0; |
|
uint32_t mask = 0; |
|
|
|
const CanFilterConfig* const cfg = filter_configs + i; |
|
|
|
if ((cfg->id & AP_HAL::CANFrame::FlagEFF) || !(cfg->mask & AP_HAL::CANFrame::FlagEFF)) { |
|
id = (cfg->id & AP_HAL::CANFrame::MaskExtID) << 3; |
|
mask = (cfg->mask & AP_HAL::CANFrame::MaskExtID) << 3; |
|
id |= bxcan::RIR_IDE; |
|
} else { |
|
id = (cfg->id & AP_HAL::CANFrame::MaskStdID) << 21; // Regular std frames, nothing fancy. |
|
mask = (cfg->mask & AP_HAL::CANFrame::MaskStdID) << 21; // Boring. |
|
} |
|
|
|
if (cfg->id & AP_HAL::CANFrame::FlagRTR) { |
|
id |= bxcan::RIR_RTR; |
|
} |
|
|
|
if (cfg->mask & AP_HAL::CANFrame::FlagEFF) { |
|
mask |= bxcan::RIR_IDE; |
|
} |
|
|
|
if (cfg->mask & AP_HAL::CANFrame::FlagRTR) { |
|
mask |= bxcan::RIR_RTR; |
|
} |
|
|
|
can_->FilterRegister[filter_start_index + i].FR1 = id; |
|
can_->FilterRegister[filter_start_index + i].FR2 = mask; |
|
|
|
can_->FA1R |= (1 << (filter_start_index + i)); |
|
} else { |
|
can_->FA1R &= ~(1 << (filter_start_index + i)); |
|
} |
|
} |
|
} |
|
|
|
can_->FMR &= ~bxcan::FMR_FINIT; |
|
|
|
return true; |
|
} |
|
|
|
return false; |
|
#endif // AP_Periph |
|
} |
|
#endif |
|
|
|
bool CANIface::waitMsrINakBitStateChange(bool target_state) |
|
{ |
|
const unsigned Timeout = 1000; |
|
for (unsigned wait_ack = 0; wait_ack < Timeout; wait_ack++) { |
|
const bool state = (can_->MSR & bxcan::MSR_INAK) != 0; |
|
if (state == target_state) { |
|
return true; |
|
} |
|
chThdSleep(chTimeMS2I(1)); |
|
} |
|
return false; |
|
} |
|
|
|
void CANIface::handleTxMailboxInterrupt(uint8_t mailbox_index, bool txok, const uint64_t timestamp_us) |
|
{ |
|
if (mailbox_index > NumTxMailboxes) { |
|
return; |
|
} |
|
|
|
had_activity_ = had_activity_ || txok; |
|
|
|
CanTxItem& txi = pending_tx_[mailbox_index]; |
|
|
|
if (txi.loopback && txok && !txi.pushed) { |
|
CanRxItem rx_item; |
|
rx_item.frame = txi.frame; |
|
rx_item.timestamp_us = timestamp_us; |
|
rx_item.flags = AP_HAL::CANIface::Loopback; |
|
PERF_STATS(stats.tx_loopback); |
|
add_to_rx_queue(rx_item); |
|
} |
|
|
|
if (txok && !txi.pushed) { |
|
txi.pushed = true; |
|
PERF_STATS(stats.tx_success); |
|
} |
|
} |
|
|
|
void CANIface::handleTxInterrupt(const uint64_t utc_usec) |
|
{ |
|
// TXOK == false means that there was a hardware failure |
|
if (can_->TSR & bxcan::TSR_RQCP0) { |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK0; |
|
can_->TSR = bxcan::TSR_RQCP0; |
|
handleTxMailboxInterrupt(0, txok, utc_usec); |
|
} |
|
if (can_->TSR & bxcan::TSR_RQCP1) { |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK1; |
|
can_->TSR = bxcan::TSR_RQCP1; |
|
handleTxMailboxInterrupt(1, txok, utc_usec); |
|
} |
|
if (can_->TSR & bxcan::TSR_RQCP2) { |
|
const bool txok = can_->TSR & bxcan::TSR_TXOK2; |
|
can_->TSR = bxcan::TSR_RQCP2; |
|
handleTxMailboxInterrupt(2, txok, utc_usec); |
|
} |
|
|
|
#if CH_CFG_USE_EVENTS == TRUE |
|
if (event_handle_ != nullptr) { |
|
PERF_STATS(stats.num_events); |
|
evt_src_.signalI(1 << self_index_); |
|
} |
|
#endif |
|
pollErrorFlagsFromISR(); |
|
} |
|
|
|
void CANIface::handleRxInterrupt(uint8_t fifo_index, uint64_t timestamp_us) |
|
{ |
|
volatile uint32_t* const rfr_reg = (fifo_index == 0) ? &can_->RF0R : &can_->RF1R; |
|
if ((*rfr_reg & bxcan::RFR_FMP_MASK) == 0) { |
|
return; |
|
} |
|
|
|
/* |
|
* Register overflow as a hardware error |
|
*/ |
|
if ((*rfr_reg & bxcan::RFR_FOVR) != 0) { |
|
PERF_STATS(stats.rx_errors); |
|
} |
|
|
|
/* |
|
* Read the frame contents |
|
*/ |
|
AP_HAL::CANFrame &frame = isr_rx_frame; |
|
const bxcan::RxMailboxType& rf = can_->RxMailbox[fifo_index]; |
|
|
|
if ((rf.RIR & bxcan::RIR_IDE) == 0) { |
|
frame.id = AP_HAL::CANFrame::MaskStdID & (rf.RIR >> 21); |
|
} else { |
|
frame.id = AP_HAL::CANFrame::MaskExtID & (rf.RIR >> 3); |
|
frame.id |= AP_HAL::CANFrame::FlagEFF; |
|
} |
|
|
|
if ((rf.RIR & bxcan::RIR_RTR) != 0) { |
|
frame.id |= AP_HAL::CANFrame::FlagRTR; |
|
} |
|
|
|
frame.dlc = rf.RDTR & 15; |
|
|
|
frame.data[0] = uint8_t(0xFF & (rf.RDLR >> 0)); |
|
frame.data[1] = uint8_t(0xFF & (rf.RDLR >> 8)); |
|
frame.data[2] = uint8_t(0xFF & (rf.RDLR >> 16)); |
|
frame.data[3] = uint8_t(0xFF & (rf.RDLR >> 24)); |
|
frame.data[4] = uint8_t(0xFF & (rf.RDHR >> 0)); |
|
frame.data[5] = uint8_t(0xFF & (rf.RDHR >> 8)); |
|
frame.data[6] = uint8_t(0xFF & (rf.RDHR >> 16)); |
|
frame.data[7] = uint8_t(0xFF & (rf.RDHR >> 24)); |
|
|
|
*rfr_reg = bxcan::RFR_RFOM | bxcan::RFR_FOVR | bxcan::RFR_FULL; // Release FIFO entry we just read |
|
|
|
/* |
|
* Store with timeout into the FIFO buffer and signal update event |
|
*/ |
|
CanRxItem &rx_item = isr_rx_item; |
|
rx_item.frame = frame; |
|
rx_item.timestamp_us = timestamp_us; |
|
rx_item.flags = 0; |
|
if (add_to_rx_queue(rx_item)) { |
|
PERF_STATS(stats.rx_received); |
|
} else { |
|
PERF_STATS(stats.rx_overflow); |
|
} |
|
|
|
had_activity_ = true; |
|
|
|
#if CH_CFG_USE_EVENTS == TRUE |
|
if (event_handle_ != nullptr) { |
|
PERF_STATS(stats.num_events); |
|
evt_src_.signalI(1 << self_index_); |
|
} |
|
#endif |
|
pollErrorFlagsFromISR(); |
|
} |
|
|
|
void CANIface::pollErrorFlagsFromISR() |
|
{ |
|
const uint8_t lec = uint8_t((can_->ESR & bxcan::ESR_LEC_MASK) >> bxcan::ESR_LEC_SHIFT); |
|
if (lec != 0) { |
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
stats.esr = can_->ESR; // Record error status |
|
#endif |
|
can_->ESR = 0; |
|
|
|
// Serving abort requests |
|
for (int i = 0; i < NumTxMailboxes; i++) { |
|
CanTxItem& txi = pending_tx_[i]; |
|
if (txi.aborted && txi.abort_on_error) { |
|
can_->TSR = TSR_ABRQx[i]; |
|
txi.aborted = true; |
|
PERF_STATS(stats.tx_abort); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void CANIface::discardTimedOutTxMailboxes(uint64_t current_time) |
|
{ |
|
CriticalSectionLocker lock; |
|
for (int i = 0; i < NumTxMailboxes; i++) { |
|
CanTxItem& txi = pending_tx_[i]; |
|
if (txi.aborted || !txi.setup) { |
|
continue; |
|
} |
|
if (txi.deadline < current_time) { |
|
can_->TSR = TSR_ABRQx[i]; // Goodnight sweet transmission |
|
pending_tx_[i].aborted = true; |
|
PERF_STATS(stats.tx_timedout); |
|
} |
|
} |
|
} |
|
|
|
void CANIface::clear_rx() |
|
{ |
|
CriticalSectionLocker lock; |
|
rx_queue_.clear(); |
|
} |
|
|
|
void CANIface::pollErrorFlags() |
|
{ |
|
CriticalSectionLocker cs_locker; |
|
pollErrorFlagsFromISR(); |
|
} |
|
|
|
bool CANIface::canAcceptNewTxFrame(const AP_HAL::CANFrame& frame) const |
|
{ |
|
/* |
|
* We can accept more frames only if the following conditions are satisfied: |
|
* - There is at least one TX mailbox free (obvious enough); |
|
* - The priority of the new frame is higher than priority of all TX mailboxes. |
|
*/ |
|
{ |
|
static const uint32_t TME = bxcan::TSR_TME0 | bxcan::TSR_TME1 | bxcan::TSR_TME2; |
|
const uint32_t tme = can_->TSR & TME; |
|
|
|
if (tme == TME) { // All TX mailboxes are free (as in freedom). |
|
return true; |
|
} |
|
|
|
if (tme == 0) { // All TX mailboxes are busy transmitting. |
|
return false; |
|
} |
|
} |
|
|
|
/* |
|
* The second condition requires a critical section. |
|
*/ |
|
CriticalSectionLocker lock; |
|
|
|
for (int mbx = 0; mbx < NumTxMailboxes; mbx++) { |
|
if (!(pending_tx_[mbx].pushed || pending_tx_[mbx].aborted) && !frame.priorityHigherThan(pending_tx_[mbx].frame)) { |
|
return false; // There's a mailbox whose priority is higher or equal the priority of the new frame. |
|
} |
|
} |
|
|
|
return true; // This new frame will be added to a free TX mailbox in the next @ref send(). |
|
} |
|
|
|
bool CANIface::isRxBufferEmpty() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return rx_queue_.available() == 0; |
|
} |
|
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
uint32_t CANIface::getErrorCount() const |
|
{ |
|
CriticalSectionLocker lock; |
|
return stats.num_busoff_err + |
|
stats.rx_errors + |
|
stats.rx_overflow + |
|
stats.tx_rejected + |
|
stats.tx_abort + |
|
stats.tx_timedout; |
|
} |
|
|
|
#endif // #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
|
|
#if CH_CFG_USE_EVENTS == TRUE |
|
ChibiOS::EventSource CANIface::evt_src_; |
|
bool CANIface::set_event_handle(AP_HAL::EventHandle* handle) |
|
{ |
|
CriticalSectionLocker lock; |
|
event_handle_ = handle; |
|
event_handle_->set_source(&evt_src_); |
|
return event_handle_->register_event(1 << self_index_); |
|
} |
|
|
|
#endif // #if CH_CFG_USE_EVENTS == TRUE |
|
|
|
void CANIface::checkAvailable(bool& read, bool& write, const AP_HAL::CANFrame* pending_tx) const |
|
{ |
|
write = false; |
|
read = !isRxBufferEmpty(); |
|
|
|
if (pending_tx != nullptr) { |
|
write = canAcceptNewTxFrame(*pending_tx); |
|
} |
|
} |
|
|
|
bool CANIface::select(bool &read, bool &write, |
|
const AP_HAL::CANFrame* pending_tx, |
|
uint64_t blocking_deadline) |
|
{ |
|
const bool in_read = read; |
|
const bool in_write= write; |
|
uint64_t time = AP_HAL::micros64(); |
|
|
|
if (!read && !write) { |
|
//invalid request |
|
return false; |
|
} |
|
|
|
discardTimedOutTxMailboxes(time); // Check TX timeouts - this may release some TX slots |
|
pollErrorFlags(); |
|
|
|
checkAvailable(read, write, pending_tx); // Check if we already have some of the requested events |
|
if ((read && in_read) || (write && in_write)) { |
|
return true; |
|
} |
|
|
|
#if CH_CFG_USE_EVENTS == TRUE |
|
// we don't support blocking select in AP_Periph and bootloader |
|
while (time < blocking_deadline) { |
|
if (event_handle_ == nullptr) { |
|
break; |
|
} |
|
event_handle_->wait(blocking_deadline - time); // Block until timeout expires or any iface updates |
|
checkAvailable(read, write, pending_tx); // Check what we got |
|
if ((read && in_read) || (write && in_write)) { |
|
return true; |
|
} |
|
time = AP_HAL::micros64(); |
|
} |
|
#endif // #if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
return true; |
|
} |
|
|
|
void CANIface::initOnce(bool enable_irq) |
|
{ |
|
/* |
|
* CAN1, CAN2 |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
switch (can_interfaces[self_index_]) { |
|
case 0: |
|
#if defined(RCC_APB1ENR1_CAN1EN) |
|
RCC->APB1ENR1 |= RCC_APB1ENR1_CAN1EN; |
|
RCC->APB1RSTR1 |= RCC_APB1RSTR1_CAN1RST; |
|
RCC->APB1RSTR1 &= ~RCC_APB1RSTR1_CAN1RST; |
|
#else |
|
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN; |
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN1RST; |
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN1RST; |
|
#endif |
|
break; |
|
#ifdef RCC_APB1ENR_CAN2EN |
|
case 1: |
|
RCC->APB1ENR |= RCC_APB1ENR_CAN2EN; |
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN2RST; |
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN2RST; |
|
break; |
|
#endif |
|
#ifdef RCC_APB1ENR_CAN3EN |
|
case 2: |
|
RCC->APB1ENR |= RCC_APB1ENR_CAN3EN; |
|
RCC->APB1RSTR |= RCC_APB1RSTR_CAN3RST; |
|
RCC->APB1RSTR &= ~RCC_APB1RSTR_CAN3RST; |
|
break; |
|
#endif |
|
} |
|
} |
|
|
|
/* |
|
* IRQ |
|
*/ |
|
if (!irq_init_ && enable_irq) { |
|
CriticalSectionLocker lock; |
|
switch (can_interfaces[self_index_]) { |
|
case 0: |
|
#ifdef HAL_CAN_IFACE1_ENABLE |
|
nvicEnableVector(CAN1_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
nvicEnableVector(CAN1_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
nvicEnableVector(CAN1_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
#endif |
|
break; |
|
case 1: |
|
#ifdef HAL_CAN_IFACE2_ENABLE |
|
nvicEnableVector(CAN2_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
nvicEnableVector(CAN2_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
nvicEnableVector(CAN2_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
#endif |
|
break; |
|
case 2: |
|
#ifdef HAL_CAN_IFACE3_ENABLE |
|
nvicEnableVector(CAN3_TX_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
nvicEnableVector(CAN3_RX0_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
nvicEnableVector(CAN3_RX1_IRQn, CORTEX_MAX_KERNEL_PRIORITY); |
|
#endif |
|
break; |
|
} |
|
irq_init_ = true; |
|
} |
|
} |
|
|
|
bool CANIface::init(const uint32_t bitrate, const CANIface::OperatingMode mode) |
|
{ |
|
Debug("Bitrate %lu mode %d", static_cast<unsigned long>(bitrate), static_cast<int>(mode)); |
|
if (self_index_ > HAL_NUM_CAN_IFACES) { |
|
Debug("CAN drv init failed"); |
|
return false; |
|
} |
|
if (can_ifaces[self_index_] == nullptr) { |
|
can_ifaces[self_index_] = this; |
|
#if !defined(HAL_BOOTLOADER_BUILD) |
|
hal.can[self_index_] = this; |
|
#endif |
|
} |
|
|
|
bitrate_ = bitrate; |
|
mode_ = mode; |
|
|
|
if (can_ifaces[0] == nullptr) { |
|
can_ifaces[0] = new CANIface(0); |
|
Debug("Failed to allocate CAN iface 0"); |
|
if (can_ifaces[0] == nullptr) { |
|
return false; |
|
} |
|
} |
|
if (self_index_ == 1 && !can_ifaces[0]->is_initialized()) { |
|
Debug("Iface 0 is not initialized yet but we need it for Iface 1, trying to init it"); |
|
Debug("Enabling CAN iface 0"); |
|
can_ifaces[0]->initOnce(false); |
|
Debug("Initing iface 0..."); |
|
if (!can_ifaces[0]->init(bitrate, mode)) { |
|
Debug("Iface 0 init failed"); |
|
return false; |
|
} |
|
|
|
Debug("Enabling CAN iface"); |
|
} |
|
initOnce(true); |
|
/* |
|
* We need to silence the controller in the first order, otherwise it may interfere with the following operations. |
|
*/ |
|
{ |
|
CriticalSectionLocker lock; |
|
|
|
can_->MCR &= ~bxcan::MCR_SLEEP; // Exit sleep mode |
|
can_->MCR |= bxcan::MCR_INRQ; // Request init |
|
|
|
can_->IER = 0; // Disable interrupts while initialization is in progress |
|
} |
|
|
|
if (!waitMsrINakBitStateChange(true)) { |
|
Debug("MSR INAK not set"); |
|
can_->MCR = bxcan::MCR_RESET; |
|
return false; |
|
} |
|
|
|
/* |
|
* Object state - interrupts are disabled, so it's safe to modify it now |
|
*/ |
|
rx_queue_.clear(); |
|
|
|
for (uint32_t i=0; i < NumTxMailboxes; i++) { |
|
pending_tx_[i] = CanTxItem(); |
|
} |
|
had_activity_ = false; |
|
|
|
/* |
|
* CAN timings for this bitrate |
|
*/ |
|
Timings timings; |
|
if (!computeTimings(bitrate, timings)) { |
|
can_->MCR = bxcan::MCR_RESET; |
|
return false; |
|
} |
|
Debug("Timings: presc=%u sjw=%u bs1=%u bs2=%u", |
|
unsigned(timings.prescaler), unsigned(timings.sjw), unsigned(timings.bs1), unsigned(timings.bs2)); |
|
|
|
/* |
|
* Hardware initialization (the hardware has already confirmed initialization mode, see above) |
|
*/ |
|
can_->MCR = bxcan::MCR_ABOM | bxcan::MCR_AWUM | bxcan::MCR_INRQ; // RM page 648 |
|
|
|
can_->BTR = ((timings.sjw & 3U) << 24) | |
|
((timings.bs1 & 15U) << 16) | |
|
((timings.bs2 & 7U) << 20) | |
|
(timings.prescaler & 1023U) | |
|
((mode == SilentMode) ? bxcan::BTR_SILM : 0); |
|
|
|
can_->IER = bxcan::IER_TMEIE | // TX mailbox empty |
|
bxcan::IER_FMPIE0 | // RX FIFO 0 is not empty |
|
bxcan::IER_FMPIE1; // RX FIFO 1 is not empty |
|
|
|
can_->MCR &= ~bxcan::MCR_INRQ; // Leave init mode |
|
|
|
if (!waitMsrINakBitStateChange(false)) { |
|
Debug("MSR INAK not cleared"); |
|
can_->MCR = bxcan::MCR_RESET; |
|
return false; |
|
} |
|
|
|
/* |
|
* Default filter configuration |
|
*/ |
|
if (self_index_ == 0) { |
|
can_->FMR |= bxcan::FMR_FINIT; |
|
|
|
can_->FMR &= 0xFFFFC0F1; |
|
can_->FMR |= static_cast<uint32_t>(NumFilters) << 8; // Slave (CAN2) gets half of the filters |
|
|
|
can_->FFA1R = 0; // All assigned to FIFO0 by default |
|
can_->FM1R = 0; // Indentifier Mask mode |
|
|
|
#if HAL_NUM_CAN_IFACES > 1 |
|
can_->FS1R = 0x7ffffff; // Single 32-bit for all |
|
can_->FilterRegister[0].FR1 = 0; // CAN1 accepts everything |
|
can_->FilterRegister[0].FR2 = 0; |
|
can_->FilterRegister[NumFilters].FR1 = 0; // CAN2 accepts everything |
|
can_->FilterRegister[NumFilters].FR2 = 0; |
|
can_->FA1R = 1 | (1 << NumFilters); // One filter per each iface |
|
#else |
|
can_->FS1R = 0x1fff; |
|
can_->FilterRegister[0].FR1 = 0; |
|
can_->FilterRegister[0].FR2 = 0; |
|
can_->FA1R = 1; |
|
#endif |
|
|
|
can_->FMR &= ~bxcan::FMR_FINIT; |
|
} |
|
initialised_ = true; |
|
|
|
return true; |
|
} |
|
|
|
#if !defined(HAL_BUILD_AP_PERIPH) && !defined(HAL_BOOTLOADER_BUILD) |
|
void CANIface::get_stats(ExpandingString &str) |
|
{ |
|
CriticalSectionLocker lock; |
|
str.printf("tx_requests: %lu\n" |
|
"tx_rejected: %lu\n" |
|
"tx_success: %lu\n" |
|
"tx_timedout: %lu\n" |
|
"tx_abort: %lu\n" |
|
"rx_received: %lu\n" |
|
"rx_overflow: %lu\n" |
|
"rx_errors: %lu\n" |
|
"num_busoff_err: %lu\n" |
|
"num_events: %lu\n" |
|
"ESR: %lx\n", |
|
stats.tx_requests, |
|
stats.tx_rejected, |
|
stats.tx_success, |
|
stats.tx_timedout, |
|
stats.tx_abort, |
|
stats.rx_received, |
|
stats.rx_overflow, |
|
stats.rx_errors, |
|
stats.num_busoff_err, |
|
stats.num_events, |
|
stats.esr); |
|
} |
|
#endif |
|
|
|
/* |
|
* Interrupt handlers |
|
*/ |
|
extern "C" |
|
{ |
|
#ifdef HAL_CAN_IFACE1_ENABLE |
|
// CAN1 |
|
CH_IRQ_HANDLER(CAN1_TX_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN1_TX_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleTxInterrupt(0); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
CH_IRQ_HANDLER(CAN1_RX0_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN1_RX0_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleRxInterrupt(0, 0); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
CH_IRQ_HANDLER(CAN1_RX1_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN1_RX1_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleRxInterrupt(0, 1); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
#endif |
|
|
|
#ifdef HAL_CAN_IFACE2_ENABLE |
|
// CAN2 |
|
CH_IRQ_HANDLER(CAN2_TX_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN2_TX_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleTxInterrupt(1); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
CH_IRQ_HANDLER(CAN2_RX0_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN2_RX0_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleRxInterrupt(1, 0); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
CH_IRQ_HANDLER(CAN2_RX1_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN2_RX1_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleRxInterrupt(1, 1); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
#endif |
|
|
|
#ifdef HAL_CAN_IFACE3_ENABLE |
|
// CAN3 |
|
CH_IRQ_HANDLER(CAN3_TX_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN3_TX_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleTxInterrupt(2); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
CH_IRQ_HANDLER(CAN3_RX0_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN3_RX0_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleRxInterrupt(2, 0); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
|
|
CH_IRQ_HANDLER(CAN3_RX1_IRQ_Handler); |
|
CH_IRQ_HANDLER(CAN3_RX1_IRQ_Handler) |
|
{ |
|
CH_IRQ_PROLOGUE(); |
|
handleRxInterrupt(2, 1); |
|
CH_IRQ_EPILOGUE(); |
|
} |
|
#endif |
|
|
|
} // extern "C" |
|
|
|
#endif //!defined(STM32H7XX) |
|
|
|
#endif //HAL_NUM_CAN_IFACES
|
|
|