You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
585 lines
26 KiB
585 lines
26 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_Motors6DOF.cpp - ArduSub motors library |
|
*/ |
|
|
|
#include <AP_BattMonitor/AP_BattMonitor.h> |
|
#include <AP_HAL/AP_HAL.h> |
|
#include "AP_Motors6DOF.h" |
|
|
|
extern const AP_HAL::HAL& hal; |
|
|
|
// parameters for the motor class |
|
const AP_Param::GroupInfo AP_Motors6DOF::var_info[] = { |
|
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0), |
|
// @Param: 1_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("1_DIRECTION", 1, AP_Motors6DOF, _motor_reverse[0], 1), |
|
|
|
// @Param: 2_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("2_DIRECTION", 2, AP_Motors6DOF, _motor_reverse[1], 1), |
|
|
|
// @Param: 3_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("3_DIRECTION", 3, AP_Motors6DOF, _motor_reverse[2], 1), |
|
|
|
// @Param: 4_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("4_DIRECTION", 4, AP_Motors6DOF, _motor_reverse[3], 1), |
|
|
|
// @Param: 5_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("5_DIRECTION", 5, AP_Motors6DOF, _motor_reverse[4], 1), |
|
|
|
// @Param: 6_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("6_DIRECTION", 6, AP_Motors6DOF, _motor_reverse[5], 1), |
|
|
|
// @Param: 7_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("7_DIRECTION", 7, AP_Motors6DOF, _motor_reverse[6], 1), |
|
|
|
// @Param: 8_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("8_DIRECTION", 8, AP_Motors6DOF, _motor_reverse[7], 1), |
|
|
|
// @Param: FV_CPLNG_K |
|
// @DisplayName: Forward/vertical to pitch decoupling factor |
|
// @Description: Used to decouple pitch from forward/vertical motion. 0 to disable, 1.2 normal |
|
// @Range: 0.0 1.5 |
|
// @Increment: 0.1 |
|
// @User: Standard |
|
AP_GROUPINFO("FV_CPLNG_K", 9, AP_Motors6DOF, _forwardVerticalCouplingFactor, 1.0), |
|
|
|
// @Param: 9_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("9_DIRECTION", 10, AP_Motors6DOF, _motor_reverse[8], 1), |
|
|
|
// @Param: 10_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("10_DIRECTION", 11, AP_Motors6DOF, _motor_reverse[9], 1), |
|
|
|
// @Param: 11_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("11_DIRECTION", 12, AP_Motors6DOF, _motor_reverse[10], 1), |
|
|
|
// @Param: 12_DIRECTION |
|
// @DisplayName: Motor normal or reverse |
|
// @Description: Used to change motor rotation directions without changing wires |
|
// @Values: 1:normal,-1:reverse |
|
// @User: Standard |
|
AP_GROUPINFO("12_DIRECTION", 13, AP_Motors6DOF, _motor_reverse[11], 1), |
|
|
|
AP_GROUPEND |
|
}; |
|
|
|
void AP_Motors6DOF::setup_motors(motor_frame_class frame_class, motor_frame_type frame_type) |
|
{ |
|
// remove existing motors |
|
for (int8_t i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
remove_motor(i); |
|
} |
|
|
|
// hard coded config for supported frames |
|
switch ((sub_frame_t)frame_class) { |
|
// Motor # Roll Factor Pitch Factor Yaw Factor Throttle Factor Forward Factor Lateral Factor Testing Order |
|
case SUB_FRAME_BLUEROV1: |
|
_frame_class_string = "BLUEROV1"; |
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, -1.0f, 0, 1.0f, 0, 1); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, -0.5f, 0.5f, 0, 0.45f, 0, 0, 3); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0.5f, 0.5f, 0, 0.45f, 0, 0, 4); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, -1.0f, 0, 1.0f, 0, 0, 5); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_6, -0.25f, 0, 0, 0, 0, 1.0f, 6); |
|
break; |
|
|
|
case SUB_FRAME_VECTORED_6DOF_90DEG: |
|
_frame_class_string = "VECTORED_6DOF_90DEG"; |
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 1.0f, 1.0f, 0, 1.0f, 0, 0, 1); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 1.0f, -1.0f, 0, 1.0f, 0, 0, 3); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 0, 0, 0, 1.0f, 4); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, 0, 0, 0, 0, 1.0f, 5); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, 1.0f, 0, 1.0f, 0, 0, 6); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_7, 0, 0, -1.0f, 0, 1.0f, 0, 7); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_8, -1.0f, -1.0f, 0, 1.0f, 0, 0, 8); |
|
break; |
|
|
|
case SUB_FRAME_VECTORED_6DOF: |
|
_frame_class_string = "VECTORED_6DOF"; |
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, 1.0f, 0, -1.0f, 1.0f, 1); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, -1.0f, 0, -1.0f, -1.0f, 2); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, -1.0f, 0, 1.0f, 1.0f, 3); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 1.0f, 0, 1.0f, -1.0f, 4); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 1.0f, -1.0f, 0, -1.0f, 0, 0, 5); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, -1.0f, 0, -1.0f, 0, 0, 6); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_7, 1.0f, 1.0f, 0, -1.0f, 0, 0, 7); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_8, -1.0f, 1.0f, 0, -1.0f, 0, 0, 8); |
|
break; |
|
|
|
case SUB_FRAME_VECTORED: |
|
_frame_class_string = "VECTORED"; |
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, 1.0f, 0, -1.0f, 1.0f, 1); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, -1.0f, 0, -1.0f, -1.0f, 2); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, -1.0f, 0, 1.0f, 1.0f, 3); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, 0, 0, 1.0f, 0, 1.0f, -1.0f, 4); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 1.0f, 0, 0, -1.0f, 0, 0, 5); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_6, -1.0f, 0, 0, -1.0f, 0, 0, 6); |
|
break; |
|
|
|
case SUB_FRAME_CUSTOM: |
|
// Put your custom motor setup here |
|
//break; |
|
|
|
case SUB_FRAME_SIMPLEROV_3: |
|
_frame_class_string = "SIMPLEROV_3"; |
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, -1.0f, 0, 1.0f, 0, 1); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 0, 0, 0, -1.0f, 0, 0, 3); |
|
break; |
|
case SUB_FRAME_SIMPLEROV_4: |
|
case SUB_FRAME_SIMPLEROV_5: |
|
default: |
|
_frame_class_string = "DEFAULT"; |
|
add_motor_raw_6dof(AP_MOTORS_MOT_1, 0, 0, -1.0f, 0, 1.0f, 0, 1); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_2, 0, 0, 1.0f, 0, 1.0f, 0, 2); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_3, 1.0f, 0, 0, -1.0f, 0, 0, 3); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_4, -1.0f, 0, 0, -1.0f, 0, 0, 4); |
|
add_motor_raw_6dof(AP_MOTORS_MOT_5, 0, 0, 0, 0, 0, 1.0f, 5); |
|
break; |
|
} |
|
} |
|
|
|
void AP_Motors6DOF::add_motor_raw_6dof(int8_t motor_num, float roll_fac, float pitch_fac, float yaw_fac, float throttle_fac, float forward_fac, float lat_fac, uint8_t testing_order) |
|
{ |
|
//Parent takes care of enabling output and setting up masks |
|
add_motor_raw(motor_num, roll_fac, pitch_fac, yaw_fac, testing_order); |
|
|
|
//These are additional parameters for an ROV |
|
_throttle_factor[motor_num] = throttle_fac; |
|
_forward_factor[motor_num] = forward_fac; |
|
_lateral_factor[motor_num] = lat_fac; |
|
} |
|
|
|
// output_min - sends minimum values out to the motors |
|
void AP_Motors6DOF::output_min() |
|
{ |
|
int8_t i; |
|
|
|
// set limits flags |
|
limit.roll = true; |
|
limit.pitch = true; |
|
limit.yaw = true; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
// fill the motor_out[] array for HIL use and send minimum value to each motor |
|
// ToDo find a field to store the minimum pwm instead of hard coding 1500 |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rc_write(i, 1500); |
|
} |
|
} |
|
} |
|
|
|
int16_t AP_Motors6DOF::calc_thrust_to_pwm(float thrust_in) const |
|
{ |
|
return constrain_int16(1500 + thrust_in * 400, get_pwm_output_min(), get_pwm_output_max()); |
|
} |
|
|
|
void AP_Motors6DOF::output_to_motors() |
|
{ |
|
int8_t i; |
|
int16_t motor_out[AP_MOTORS_MAX_NUM_MOTORS]; // final pwm values sent to the motor |
|
|
|
switch (_spool_state) { |
|
case SpoolState::SHUT_DOWN: |
|
// sends minimum values out to the motors |
|
// set motor output based on thrust requests |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = 1500; |
|
} |
|
} |
|
break; |
|
case SpoolState::GROUND_IDLE: |
|
// sends output to motors when armed but not flying |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = 1500; |
|
} |
|
} |
|
break; |
|
case SpoolState::SPOOLING_UP: |
|
case SpoolState::THROTTLE_UNLIMITED: |
|
case SpoolState::SPOOLING_DOWN: |
|
// set motor output based on thrust requests |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
motor_out[i] = calc_thrust_to_pwm(_thrust_rpyt_out[i]); |
|
} |
|
} |
|
break; |
|
} |
|
|
|
// send output to each motor |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rc_write(i, motor_out[i]); |
|
} |
|
} |
|
} |
|
|
|
float AP_Motors6DOF::get_current_limit_max_throttle() |
|
{ |
|
return 1.0f; |
|
} |
|
|
|
// output_armed - sends commands to the motors |
|
// includes new scaling stability patch |
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions |
|
// ToDo calculate headroom for rpy to be added for stabilization during full throttle/forward/lateral commands |
|
void AP_Motors6DOF::output_armed_stabilizing() |
|
{ |
|
if ((sub_frame_t)_active_frame_class == SUB_FRAME_VECTORED) { |
|
output_armed_stabilizing_vectored(); |
|
} else if ((sub_frame_t)_active_frame_class == SUB_FRAME_VECTORED_6DOF) { |
|
output_armed_stabilizing_vectored_6dof(); |
|
} else { |
|
uint8_t i; // general purpose counter |
|
float roll_thrust; // roll thrust input value, +/- 1.0 |
|
float pitch_thrust; // pitch thrust input value, +/- 1.0 |
|
float yaw_thrust; // yaw thrust input value, +/- 1.0 |
|
float throttle_thrust; // throttle thrust input value, +/- 1.0 |
|
float forward_thrust; // forward thrust input value, +/- 1.0 |
|
float lateral_thrust; // lateral thrust input value, +/- 1.0 |
|
|
|
roll_thrust = (_roll_in + _roll_in_ff); |
|
pitch_thrust = (_pitch_in + _pitch_in_ff); |
|
yaw_thrust = (_yaw_in + _yaw_in_ff); |
|
throttle_thrust = get_throttle_bidirectional(); |
|
forward_thrust = _forward_in; |
|
lateral_thrust = _lateral_in; |
|
|
|
float rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. |
|
float linear_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor |
|
|
|
// initialize limits flags |
|
limit.roll = false; |
|
limit.pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
// sanity check throttle is above zero and below current limited throttle |
|
if (throttle_thrust <= -_throttle_thrust_max) { |
|
throttle_thrust = -_throttle_thrust_max; |
|
limit.throttle_lower = true; |
|
} |
|
if (throttle_thrust >= _throttle_thrust_max) { |
|
throttle_thrust = _throttle_thrust_max; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// calculate roll, pitch and yaw for each motor |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rpy_out[i] = roll_thrust * _roll_factor[i] + |
|
pitch_thrust * _pitch_factor[i] + |
|
yaw_thrust * _yaw_factor[i]; |
|
|
|
} |
|
} |
|
|
|
// calculate linear command for each motor |
|
// linear factors should be 0.0 or 1.0 for now |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
linear_out[i] = throttle_thrust * _throttle_factor[i] + |
|
forward_thrust * _forward_factor[i] + |
|
lateral_thrust * _lateral_factor[i]; |
|
} |
|
} |
|
|
|
// Calculate final output for each motor |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpy_out[i] + linear_out[i]),-1.0f,1.0f); |
|
} |
|
} |
|
} |
|
|
|
const AP_BattMonitor &battery = AP::battery(); |
|
|
|
// Current limiting |
|
float _batt_current; |
|
if (_batt_current_max <= 0.0f || !battery.current_amps(_batt_current)) { |
|
return; |
|
} |
|
|
|
float _batt_current_delta = _batt_current - _batt_current_last; |
|
|
|
float loop_interval = 1.0f/_loop_rate; |
|
|
|
float _current_change_rate = _batt_current_delta / loop_interval; |
|
|
|
float predicted_current = _batt_current + (_current_change_rate * loop_interval * 5); |
|
|
|
float batt_current_ratio = _batt_current/_batt_current_max; |
|
|
|
float predicted_current_ratio = predicted_current/_batt_current_max; |
|
_batt_current_last = _batt_current; |
|
|
|
if (predicted_current > _batt_current_max * 1.5f) { |
|
batt_current_ratio = 2.5f; |
|
} else if (_batt_current < _batt_current_max && predicted_current > _batt_current_max) { |
|
batt_current_ratio = predicted_current_ratio; |
|
} |
|
_output_limited += (loop_interval/(loop_interval+_batt_current_time_constant)) * (1 - batt_current_ratio); |
|
|
|
_output_limited = constrain_float(_output_limited, 0.0f, 1.0f); |
|
|
|
for (uint8_t i = 0; i < AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] *= _output_limited; |
|
} |
|
} |
|
} |
|
|
|
// output_armed - sends commands to the motors |
|
// includes new scaling stability patch |
|
// TODO pull code that is common to output_armed_not_stabilizing into helper functions |
|
// ToDo calculate headroom for rpy to be added for stabilization during full throttle/forward/lateral commands |
|
void AP_Motors6DOF::output_armed_stabilizing_vectored() |
|
{ |
|
uint8_t i; // general purpose counter |
|
float roll_thrust; // roll thrust input value, +/- 1.0 |
|
float pitch_thrust; // pitch thrust input value, +/- 1.0 |
|
float yaw_thrust; // yaw thrust input value, +/- 1.0 |
|
float throttle_thrust; // throttle thrust input value, +/- 1.0 |
|
float forward_thrust; // forward thrust input value, +/- 1.0 |
|
float lateral_thrust; // lateral thrust input value, +/- 1.0 |
|
|
|
roll_thrust = (_roll_in + _roll_in_ff); |
|
pitch_thrust = (_pitch_in + _pitch_in_ff); |
|
yaw_thrust = (_yaw_in + _yaw_in_ff); |
|
throttle_thrust = get_throttle_bidirectional(); |
|
forward_thrust = _forward_in; |
|
lateral_thrust = _lateral_in; |
|
|
|
float rpy_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. |
|
float linear_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor |
|
|
|
// initialize limits flags |
|
limit.roll= false; |
|
limit.pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
// sanity check throttle is above zero and below current limited throttle |
|
if (throttle_thrust <= -_throttle_thrust_max) { |
|
throttle_thrust = -_throttle_thrust_max; |
|
limit.throttle_lower = true; |
|
} |
|
|
|
if (throttle_thrust >= _throttle_thrust_max) { |
|
throttle_thrust = _throttle_thrust_max; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// calculate roll, pitch and yaw for each motor |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rpy_out[i] = roll_thrust * _roll_factor[i] + |
|
pitch_thrust * _pitch_factor[i] + |
|
yaw_thrust * _yaw_factor[i]; |
|
} |
|
} |
|
|
|
float forward_coupling_limit = 1-_forwardVerticalCouplingFactor*float(fabsf(throttle_thrust)); |
|
if (forward_coupling_limit < 0) { |
|
forward_coupling_limit = 0; |
|
} |
|
int8_t forward_coupling_direction[] = {-1,-1,1,1,0,0,0,0,0,0,0,0}; |
|
|
|
// calculate linear command for each motor |
|
// linear factors should be 0.0 or 1.0 for now |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
|
|
float forward_thrust_limited = forward_thrust; |
|
|
|
// The following statements decouple forward/vertical hydrodynamic coupling on |
|
// vectored ROVs. This is done by limiting the maximum output of the "rear" vectored |
|
// thruster (where "rear" depends on direction of travel). |
|
if (!is_zero(forward_thrust_limited)) { |
|
if ((forward_thrust < 0) == (forward_coupling_direction[i] < 0) && forward_coupling_direction[i] != 0) { |
|
forward_thrust_limited = constrain_float(forward_thrust, -forward_coupling_limit, forward_coupling_limit); |
|
} |
|
} |
|
|
|
linear_out[i] = throttle_thrust * _throttle_factor[i] + |
|
forward_thrust_limited * _forward_factor[i] + |
|
lateral_thrust * _lateral_factor[i]; |
|
} |
|
} |
|
|
|
// Calculate final output for each motor |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpy_out[i] + linear_out[i]), -1.0f, 1.0f); |
|
} |
|
} |
|
} |
|
|
|
// Band Aid fix for motor normalization issues. |
|
// TODO: find a global solution for managing saturation that works for all vehicles |
|
void AP_Motors6DOF::output_armed_stabilizing_vectored_6dof() |
|
{ |
|
uint8_t i; // general purpose counter |
|
float roll_thrust; // roll thrust input value, +/- 1.0 |
|
float pitch_thrust; // pitch thrust input value, +/- 1.0 |
|
float yaw_thrust; // yaw thrust input value, +/- 1.0 |
|
float throttle_thrust; // throttle thrust input value, +/- 1.0 |
|
float forward_thrust; // forward thrust input value, +/- 1.0 |
|
float lateral_thrust; // lateral thrust input value, +/- 1.0 |
|
|
|
roll_thrust = (_roll_in + _roll_in_ff); |
|
pitch_thrust = (_pitch_in + _pitch_in_ff); |
|
yaw_thrust = (_yaw_in + _yaw_in_ff); |
|
throttle_thrust = get_throttle_bidirectional(); |
|
forward_thrust = _forward_in; |
|
lateral_thrust = _lateral_in; |
|
|
|
float rpt_out[AP_MOTORS_MAX_NUM_MOTORS]; // buffer so we don't have to multiply coefficients multiple times. |
|
float yfl_out[AP_MOTORS_MAX_NUM_MOTORS]; // 3 linear DOF mix for each motor |
|
float rpt_max; |
|
float yfl_max; |
|
|
|
// initialize limits flags |
|
limit.roll = false; |
|
limit.pitch = false; |
|
limit.yaw = false; |
|
limit.throttle_lower = false; |
|
limit.throttle_upper = false; |
|
|
|
// sanity check throttle is above zero and below current limited throttle |
|
if (throttle_thrust <= -_throttle_thrust_max) { |
|
throttle_thrust = -_throttle_thrust_max; |
|
limit.throttle_lower = true; |
|
} |
|
|
|
if (throttle_thrust >= _throttle_thrust_max) { |
|
throttle_thrust = _throttle_thrust_max; |
|
limit.throttle_upper = true; |
|
} |
|
|
|
// calculate roll, pitch and Throttle for each motor (only used by vertical thrusters) |
|
rpt_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
rpt_out[i] = roll_thrust * _roll_factor[i] + |
|
pitch_thrust * _pitch_factor[i] + |
|
throttle_thrust * _throttle_factor[i]; |
|
if (fabsf(rpt_out[i]) > rpt_max) { |
|
rpt_max = fabsf(rpt_out[i]); |
|
} |
|
} |
|
} |
|
|
|
// calculate linear/yaw command for each motor (only used for translational thrusters) |
|
// linear factors should be 0.0 or 1.0 for now |
|
yfl_max = 1; //Initialized to 1 so that normalization will only occur if value is saturated |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
yfl_out[i] = yaw_thrust * _yaw_factor[i] + |
|
forward_thrust * _forward_factor[i] + |
|
lateral_thrust * _lateral_factor[i]; |
|
if (fabsf(yfl_out[i]) > yfl_max) { |
|
yfl_max = fabsf(yfl_out[i]); |
|
} |
|
} |
|
} |
|
|
|
// Calculate final output for each motor and normalize if necessary |
|
for (i=0; i<AP_MOTORS_MAX_NUM_MOTORS; i++) { |
|
if (motor_enabled[i]) { |
|
_thrust_rpyt_out[i] = constrain_float(_motor_reverse[i]*(rpt_out[i]/rpt_max + yfl_out[i]/yfl_max),-1.0f,1.0f); |
|
} |
|
} |
|
} |
|
|
|
Vector3f AP_Motors6DOF::get_motor_angular_factors(int motor_number) { |
|
if (motor_number < 0 || motor_number >= AP_MOTORS_MAX_NUM_MOTORS) { |
|
return Vector3f(0,0,0); |
|
} |
|
return Vector3f(_roll_factor[motor_number], _pitch_factor[motor_number], _yaw_factor[motor_number]); |
|
} |
|
|
|
bool AP_Motors6DOF::motor_is_enabled(int motor_number) { |
|
if (motor_number < 0 || motor_number >= AP_MOTORS_MAX_NUM_MOTORS) { |
|
return false; |
|
} |
|
return motor_enabled[motor_number]; |
|
} |
|
|
|
bool AP_Motors6DOF::set_reversed(int motor_number, bool reversed) { |
|
if (motor_number < 0 || motor_number >= AP_MOTORS_MAX_NUM_MOTORS) { |
|
return false; |
|
} |
|
if (reversed) { |
|
_motor_reverse[motor_number].set_and_save(-1); |
|
} else { |
|
_motor_reverse[motor_number].set_and_save(1); |
|
} |
|
return true; |
|
}
|
|
|