You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
421 lines
15 KiB
421 lines
15 KiB
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
helicopter simulator class |
|
*/ |
|
|
|
#include "SIM_Helicopter.h" |
|
|
|
#include <stdio.h> |
|
|
|
namespace SITL { |
|
|
|
Helicopter::Helicopter(const char *frame_str) : |
|
Aircraft(frame_str) |
|
{ |
|
mass = 4.54f; |
|
|
|
if (strstr(frame_str, "-dual")) { |
|
frame_type = HELI_FRAME_DUAL; |
|
_time_delay = 30; |
|
nominal_rpm = 1300; |
|
} else if (strstr(frame_str, "-compound")) { |
|
frame_type = HELI_FRAME_COMPOUND; |
|
_time_delay = 50; |
|
nominal_rpm = 1500; |
|
} else if (strstr(frame_str, "-blade360")) { |
|
frame_type = HELI_FRAME_BLADE360; |
|
_time_delay = 40; |
|
nominal_rpm = 2100; |
|
} else { |
|
frame_type = HELI_FRAME_CONVENTIONAL; |
|
_time_delay = 50; |
|
nominal_rpm = 1500; |
|
} |
|
|
|
/* |
|
For conventional and compound |
|
scaling from motor power to Newtons. Allows the copter |
|
to hover against gravity when the motor is at hover_throttle |
|
normalized to hover at 1500RPM at 5 deg collective. |
|
*/ |
|
thrust_scale = (mass * GRAVITY_MSS) / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f)); |
|
|
|
// calculates tail rotor thrust to overcome rotor torque using the lean angle in a hover |
|
torque_scale = 0.83f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / (hover_coll * sq(nominal_rpm * 2.0f * M_PI / 60.0f)); |
|
|
|
// torque with zero collective pitch. Percentage of total hover torque is based on full scale helicopters. |
|
torque_mpog = 0.17f * mass * GRAVITY_MSS * sinf(radians(hover_lean)) * tr_dist / sq(nominal_rpm * 2.0f * M_PI / 60.0f); |
|
|
|
frame_height = 0.1; |
|
|
|
gas_heli = (strstr(frame_str, "-gas") != nullptr); |
|
|
|
ground_behavior = GROUND_BEHAVIOR_NO_MOVEMENT; |
|
lock_step_scheduled = true; |
|
} |
|
|
|
/* |
|
update the helicopter simulation by one time step |
|
*/ |
|
void Helicopter::update(const struct sitl_input &input) |
|
{ |
|
const float dt = frame_time_us * 1.0e-6f; |
|
|
|
// get wind vector setup |
|
update_wind(input); |
|
|
|
motor_interlock = input.servos[7] > 1400; |
|
|
|
float rsc = constrain_float((input.servos[7]-1000) / 1000.0f, 0, 1); |
|
float rsc_scale = rsc/rsc_setpoint; |
|
|
|
float thrust = 0; |
|
float roll_rate = 0; |
|
float pitch_rate = 0; |
|
float yaw_rate = 0; |
|
float torque_effect_accel = 0; |
|
float lateral_x_thrust = 0; |
|
float lateral_y_thrust = 0; |
|
|
|
|
|
if (_time_delay == 0) { |
|
for (uint8_t i = 0; i < 6; i++) { |
|
_servos_delayed[i] = input.servos[i]; |
|
} |
|
} else if (servos_stored_buffer == nullptr) { |
|
uint16_t buffer_size = constrain_int16(_time_delay, 1, 100) * 0.001f / dt; |
|
servos_stored_buffer = new ObjectBuffer<servos_stored>(buffer_size); |
|
while (servos_stored_buffer->space() != 0) { |
|
push_to_buffer(input.servos); |
|
} |
|
for (uint8_t i = 0; i < 6; i++) { |
|
_servos_delayed[i] = input.servos[i]; |
|
} |
|
} else { |
|
pull_from_buffer(_servos_delayed); |
|
push_to_buffer(input.servos); |
|
} |
|
|
|
float swash1 = (_servos_delayed[0]-1000) / 1000.0f; |
|
float swash2 = (_servos_delayed[1]-1000) / 1000.0f; |
|
float swash3 = (_servos_delayed[2]-1000) / 1000.0f; |
|
|
|
|
|
|
|
Vector3f rot_accel; |
|
Vector3f air_resistance; |
|
|
|
switch (frame_type) { |
|
case HELI_FRAME_CONVENTIONAL: { |
|
// simulate a traditional helicopter |
|
|
|
float Ma1s = 617.5f; |
|
float Lb1s = 3588.6f; |
|
float Mu = 0.003f; |
|
float Lv = -0.006; |
|
float Xu = -0.125; |
|
float Yv = -0.375; |
|
float Zw = -0.375; |
|
|
|
float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f; |
|
|
|
// determine RPM |
|
rpm[0] = update_rpm(motor_interlock, dt); |
|
|
|
// thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM |
|
float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f; |
|
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll); |
|
|
|
// Calculate main rotor torque effect on body |
|
torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz; |
|
|
|
// Calculate rotor tip path plane angle |
|
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar; |
|
float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar; |
|
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); |
|
update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); |
|
|
|
float yaw_cmd = 2.0f * tail_rotor - 1.0f; // convert range to -1 to 1 |
|
float tail_rotor_torque = (21.6f * 2.96f * yaw_cmd - 2.96f * gyro.z) * sq(rpm[0]/nominal_rpm); |
|
float tail_rotor_thrust = -1.0f * tail_rotor_torque * izz / tr_dist; //right pedal produces left body accel |
|
|
|
// rotational acceleration, in rad/s/s, in body frame |
|
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y; |
|
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x; |
|
rot_accel.z = tail_rotor_torque + torque_effect_accel; |
|
|
|
lateral_y_thrust = tail_rotor_thrust / mass + GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y; |
|
lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; |
|
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass + velocity_air_bf.z * Zw); |
|
|
|
break; |
|
} |
|
|
|
case HELI_FRAME_BLADE360: { |
|
// simulate a Blade 360 helicopter. This model was taken from the following reference. |
|
// Walker, J, Tishler, M, "Identification and Control Design of a Sub-Scale Flybarless Helicopter", |
|
// Vertical Flight Society’s 77th Annual Forum & Technology Display, Virtual, May 10-14, 2021. |
|
|
|
float Ma1s = 796.7f; |
|
float Lb1s = 5115.2f; |
|
float Mu = 2.7501f; |
|
float Mv = -2.3039f; |
|
float Lu = -28.7796f; |
|
float Lv = -5.5376f; |
|
float Xu = -0.2270f; |
|
float Yv = -0.1852f; |
|
float Yp = 0.2303f; |
|
float Zw = -0.5910f; |
|
float Nr = -2.0131f; |
|
float Nw = 5.7574f; |
|
float Nv = 1.7258f; |
|
float Ncol = -32.4616f; |
|
float Nped = 63.0040f; |
|
float Zcol = -22.3239f; |
|
|
|
float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f; |
|
|
|
// determine RPM |
|
rpm[0] = update_rpm(motor_interlock, dt); |
|
|
|
// collective adjusted for coll_min(1460) to coll_max(1740) as 0 to 1 with 1500 being zero thrust |
|
float coll = 3.51 * ((swash1+swash2+swash3) / 3.0f - 0.5f); |
|
|
|
// Calculate rotor tip path plane angle |
|
float roll_cyclic = 1.283f * (swash1 - swash2); |
|
float pitch_cyclic = 1.48f * ((swash1+swash2) / 2.0f - swash3); |
|
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); |
|
update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); |
|
|
|
float yaw_cmd = 1.45f * (2.0f * tail_rotor - 1.0f); // convert range to -1 to 1 |
|
|
|
// rotational acceleration, in rad/s/s, in body frame |
|
rot_accel.x = _tpp_angle.x * Lb1s + Lu * velocity_air_bf.x + Lv * velocity_air_bf.y; |
|
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x + Mv * velocity_air_bf.y; |
|
rot_accel.z = Nv * velocity_air_bf.y + Nr * gyro.z + sq(rpm[0]/nominal_rpm) * Nped * yaw_cmd + Nw * velocity_air_bf.z + sq(rpm[0]/nominal_rpm) * Ncol * (coll - 0.5f); |
|
|
|
lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y + Yp * gyro.x - 3.2 * 0.01745 * GRAVITY_MSS; |
|
lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; |
|
float vertical_thrust = Zcol * coll * sq(rpm[0]/nominal_rpm) + velocity_air_bf.z * Zw; |
|
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, vertical_thrust); |
|
|
|
break; |
|
} |
|
|
|
case HELI_FRAME_DUAL: { |
|
// simulate a tandem helicopter |
|
thrust_scale = (mass * GRAVITY_MSS) / hover_throttle; |
|
|
|
float swash4 = (_servos_delayed[3]-1000) / 1000.0f; |
|
float swash5 = (_servos_delayed[4]-1000) / 1000.0f; |
|
float swash6 = (_servos_delayed[5]-1000) / 1000.0f; |
|
|
|
thrust = (rsc / rsc_setpoint) * (swash1+swash2+swash3+swash4+swash5+swash6) / 6.0f; |
|
torque_effect_accel = (rsc_scale + rsc / rsc_setpoint) * rotor_rot_accel * ((swash1+swash2+swash3) - (swash4+swash5+swash6)); |
|
|
|
roll_rate = (swash1-swash2) + (swash4-swash5); |
|
pitch_rate = (swash1+swash2+swash3) - (swash4+swash5+swash6); |
|
yaw_rate = (swash1-swash2) + (swash5-swash4); |
|
|
|
roll_rate *= rsc_scale; |
|
pitch_rate *= rsc_scale; |
|
yaw_rate *= rsc_scale; |
|
|
|
// rotational acceleration, in rad/s/s, in body frame |
|
rot_accel.x = roll_rate * roll_rate_max; |
|
rot_accel.y = pitch_rate * pitch_rate_max; |
|
rot_accel.z = yaw_rate * yaw_rate_max; |
|
|
|
// rotational air resistance |
|
rot_accel.x -= gyro.x * radians(5000.0) / terminal_rotation_rate; |
|
rot_accel.y -= gyro.y * radians(5000.0) / terminal_rotation_rate; |
|
rot_accel.z -= gyro.z * radians(400.0) / terminal_rotation_rate; |
|
|
|
// torque effect on tail |
|
rot_accel.z += torque_effect_accel; |
|
|
|
// air resistance |
|
air_resistance = -velocity_air_ef * (GRAVITY_MSS/terminal_velocity); |
|
|
|
// simulate rotor speed |
|
rpm[0] = thrust * nominal_rpm; |
|
|
|
// scale thrust to newtons |
|
thrust *= thrust_scale; |
|
|
|
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass); |
|
accel_body += dcm.transposed() * air_resistance; |
|
|
|
break; |
|
} |
|
|
|
case HELI_FRAME_COMPOUND: { |
|
// simulate a compound helicopter |
|
|
|
float Ma1s = 617.5f; |
|
float Lb1s = 3588.6f; |
|
float Mu = 0.003f; |
|
float Lv = -0.006; |
|
float Xu = -0.125; |
|
float Yv = -0.375; |
|
float Zw = -0.375; |
|
|
|
// determine RPM |
|
rpm[0] = update_rpm(motor_interlock, dt); |
|
|
|
// thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM |
|
float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f; |
|
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll); |
|
|
|
// Calculate main rotor torque effect on body |
|
torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz; |
|
|
|
// Calculate rotor tip path plane angle |
|
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar; |
|
float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar; |
|
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic); |
|
update_rotor_dynamics(gyro, ctrl_pos, _tpp_angle, dt); |
|
|
|
// Calculate thruster yaw and forward thrust effects |
|
// Thruster command range -1 to 1. Positive is forward thrust for both |
|
float right_thruster_cmd = 2.0f * (_servos_delayed[3]-1000) / 1000.0f - 1.0f; |
|
float left_thruster_cmd = 2.0f * (_servos_delayed[4]-1000) / 1000.0f - 1.0f; |
|
|
|
// assume torque from each thruster only half of normal tailrotor since thrusters 1/2 distance from cg |
|
float right_thruster_torque = (-0.5f * 21.6f * 2.96f * right_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] / nominal_rpm); |
|
float left_thruster_torque = (0.5f * 21.6f * 2.96f * left_thruster_cmd - 2.96f * gyro.z) * sq(rpm[0] / nominal_rpm); |
|
|
|
float right_thruster_force = -1.0f * right_thruster_torque * izz / (0.5f * tr_dist); |
|
float left_thruster_force = left_thruster_torque * izz / (0.5f * tr_dist); |
|
|
|
// rotational acceleration, in rad/s/s, in body frame |
|
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y; |
|
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x; |
|
rot_accel.z = right_thruster_torque + left_thruster_torque + torque_effect_accel; |
|
|
|
lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y; |
|
lateral_x_thrust = (right_thruster_force + left_thruster_force) / mass - GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x; |
|
accel_body = Vector3f(lateral_x_thrust, lateral_y_thrust, -thrust / mass + velocity_air_bf.z * Zw); |
|
|
|
break; |
|
} |
|
} |
|
|
|
|
|
update_dynamics(rot_accel); |
|
update_external_payload(input); |
|
|
|
// update lat/lon/altitude |
|
update_position(); |
|
time_advance(); |
|
|
|
// update magnetic field |
|
update_mag_field_bf(); |
|
} |
|
|
|
void Helicopter::update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector2f &tpp_angle, float dt) |
|
{ |
|
|
|
float tf_inv; |
|
float Lfa1s; |
|
float Mfb1s; |
|
float Lflt; |
|
float Lflg; |
|
float Mflt; |
|
float Mflg; |
|
|
|
if (frame_type == HELI_FRAME_BLADE360) { |
|
tf_inv = 1.0f / 0.0353f; |
|
Lfa1s = 1.0477f; |
|
Mfb1s = -1.0057f; |
|
Lflt = 0.2375f; |
|
Lflg = -0.0286f; |
|
Mflt = 0.0344f; |
|
Mflg = 0.2292f; |
|
} else { |
|
tf_inv = 1.0f / 0.068232f; |
|
Lfa1s = 1.2963f; |
|
Mfb1s = -1.3402f; |
|
Lflt = 1.7635f; |
|
Lflg = -0.61171f; |
|
Mflt = 0.52454f; |
|
Mflg = 1.9432f; |
|
} |
|
|
|
float b1s_dot = -1 * gyro.x - tf_inv * tpp_angle.x + tf_inv * (Lfa1s * tpp_angle.y + Lflt * ctrl_pos.x + Lflg * ctrl_pos.y); |
|
float a1s_dot = -1 * gyro.y - tf_inv * tpp_angle.y + tf_inv * (Mfb1s * tpp_angle.x + Mflt * ctrl_pos.x + Mflg * ctrl_pos.y); |
|
|
|
tpp_angle.x += b1s_dot * dt; |
|
tpp_angle.y += a1s_dot * dt; |
|
|
|
} |
|
|
|
float Helicopter::update_rpm(bool interlock, float dt) |
|
{ |
|
static float rotor_runup_output; |
|
float runup_time = 8.0f; |
|
// ramp speed estimate towards control out |
|
float runup_increment = dt / runup_time; |
|
if (interlock) { |
|
if (rotor_runup_output < 1.0f) { |
|
rotor_runup_output += runup_increment; |
|
} else { |
|
rotor_runup_output = 1.0f; |
|
} |
|
}else{ |
|
if (rotor_runup_output > 0.0f) { |
|
rotor_runup_output -= runup_increment; |
|
} else { |
|
rotor_runup_output = 0.0f; |
|
} |
|
} |
|
|
|
return nominal_rpm * constrain_float(rotor_runup_output,0.0f,1.0f); |
|
|
|
} |
|
|
|
// push servo input to buffer |
|
void Helicopter::push_to_buffer(const uint16_t servos_input[16]) |
|
{ |
|
servos_stored sample; |
|
sample.servo1 = servos_input[0]; |
|
sample.servo2 = servos_input[1]; |
|
sample.servo3 = servos_input[2]; |
|
sample.servo4 = servos_input[3]; |
|
sample.servo5 = servos_input[4]; |
|
sample.servo6 = servos_input[5]; |
|
servos_stored_buffer->push(sample); |
|
|
|
} |
|
|
|
// pull servo delay from buffer |
|
void Helicopter::pull_from_buffer(uint16_t servos_delayed[6]) |
|
{ |
|
servos_stored sample; |
|
if (!servos_stored_buffer->pop(sample)) { |
|
// no sample |
|
return; |
|
} |
|
servos_delayed[0] = sample.servo1; |
|
servos_delayed[1] = sample.servo2; |
|
servos_delayed[2] = sample.servo3; |
|
servos_delayed[3] = sample.servo4; |
|
servos_delayed[4] = sample.servo5; |
|
servos_delayed[5] = sample.servo6; |
|
|
|
} |
|
|
|
} // namespace SITL
|
|
|