You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
402 lines
14 KiB
402 lines
14 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
This is an INS driver for the combination L3G4200D gyro and ADXL345 accelerometer. |
|
This combination is available as a cheap 10DOF sensor on ebay |
|
*/ |
|
// ADXL345 Accelerometer http://www.analog.com/static/imported-files/data_sheets/ADXL345.pdf |
|
// L3G4200D gyro http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/CD00265057.pdf |
|
|
|
#include <AP_HAL.h> |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX || CONFIG_HAL_BOARD == HAL_BOARD_ERLE |
|
|
|
#include <AP_Math.h> |
|
#include "AP_InertialSensor_L3G4200D.h" |
|
#include <stdio.h> |
|
#include <unistd.h> |
|
#include <errno.h> |
|
#include <sys/time.h> |
|
#include <sched.h> |
|
#include <linux/rtc.h> |
|
#include <stdio.h> |
|
#include <time.h> |
|
#include <math.h> |
|
#include <sched.h> |
|
#include <linux/rtc.h> |
|
#include <sys/ioctl.h> |
|
#include <sys/time.h> |
|
#include <sys/types.h> |
|
#include <fcntl.h> |
|
#include <stdint.h> |
|
#include <stdbool.h> |
|
#include <errno.h> |
|
#include <string.h> |
|
#include <stdlib.h> |
|
#include <sys/mman.h> |
|
|
|
const extern AP_HAL::HAL& hal; |
|
|
|
/////// |
|
/// Accelerometer ADXL345 register definitions |
|
#define ADXL345_ACCELEROMETER_ADDRESS 0x53 |
|
#define ADXL345_ACCELEROMETER_XL345_DEVID 0xe5 |
|
#define ADXL345_ACCELEROMETER_ADXLREG_BW_RATE 0x2c |
|
#define ADXL345_ACCELEROMETER_ADXLREG_POWER_CTL 0x2d |
|
#define ADXL345_ACCELEROMETER_ADXLREG_DATA_FORMAT 0x31 |
|
#define ADXL345_ACCELEROMETER_ADXLREG_DEVID 0x00 |
|
#define ADXL345_ACCELEROMETER_ADXLREG_DATAX0 0x32 |
|
#define ADXL345_ACCELEROMETER_ADXLREG_FIFO_CTL 0x38 |
|
#define ADXL345_ACCELEROMETER_ADXLREG_FIFO_CTL_STREAM 0x9F |
|
#define ADXL345_ACCELEROMETER_ADXLREG_FIFO_STATUS 0x39 |
|
|
|
// ADXL345 accelerometer scaling |
|
// Result will be scaled to 1m/s/s |
|
// ADXL345 in Full resolution mode (any g scaling) is 256 counts/g, so scale by 9.81/256 = 0.038320312 |
|
#define ADXL345_ACCELEROMETER_SCALE_M_S (GRAVITY_MSS / 256.0f) |
|
|
|
/// Gyro ITG3205 register definitions |
|
#define L3G4200D_I2C_ADDRESS 0x69 |
|
|
|
#define L3G4200D_REG_WHO_AM_I 0x0f |
|
#define L3G4200D_REG_WHO_AM_I_VALUE 0xd3 |
|
|
|
#define L3G4200D_REG_CTRL_REG1 0x20 |
|
#define L3G4200D_REG_CTRL_REG1_DRBW_800_110 0xf0 |
|
#define L3G4200D_REG_CTRL_REG1_PD 0x08 |
|
#define L3G4200D_REG_CTRL_REG1_XYZ_ENABLE 0x07 |
|
|
|
#define L3G4200D_REG_CTRL_REG4 0x23 |
|
#define L3G4200D_REG_CTRL_REG4_FS_2000 0x30 |
|
|
|
#define L3G4200D_REG_CTRL_REG5 0x24 |
|
#define L3G4200D_REG_CTRL_REG5_FIFO_EN 0x40 |
|
|
|
#define L3G4200D_REG_FIFO_CTL 0x2e |
|
#define L3G4200D_REG_FIFO_CTL_STREAM 0x40 |
|
|
|
#define L3G4200D_REG_FIFO_SRC 0x2f |
|
#define L3G4200D_REG_FIFO_SRC_ENTRIES_MASK 0x1f |
|
#define L3G4200D_REG_FIFO_SRC_EMPTY 0x20 |
|
#define L3G4200D_REG_FIFO_SRC_OVERRUN 0x40 |
|
|
|
#define L3G4200D_REG_XL 0x28 |
|
|
|
// this bit is ORd into the register to enable auto-increment mode |
|
#define L3G4200D_REG_AUTO_INCREMENT 0x80 |
|
|
|
// L3G4200D Gyroscope scaling |
|
// running at 2000 DPS full range, 16 bit signed data, datasheet |
|
// specifies 70 mdps per bit |
|
#define L3G4200D_GYRO_SCALE_R_S (DEG_TO_RAD * 70.0f * 0.001f) |
|
|
|
// constructor |
|
AP_InertialSensor_L3G4200D::AP_InertialSensor_L3G4200D() : |
|
AP_InertialSensor(), |
|
_accel_filter_x(800, 10), |
|
_accel_filter_y(800, 10), |
|
_accel_filter_z(800, 10), |
|
_gyro_filter_x(800, 10), |
|
_gyro_filter_y(800, 10), |
|
_gyro_filter_z(800, 10) |
|
{} |
|
|
|
uint16_t AP_InertialSensor_L3G4200D::_init_sensor( Sample_rate sample_rate ) |
|
{ |
|
|
|
switch (sample_rate) { |
|
case RATE_50HZ: |
|
_default_filter_hz = 10; |
|
_sample_period_usec = (1000*1000) / 50; |
|
_gyro_samples_needed = 16; |
|
break; |
|
case RATE_100HZ: |
|
_default_filter_hz = 20; |
|
_sample_period_usec = (1000*1000) / 100; |
|
_gyro_samples_needed = 8; |
|
break; |
|
case RATE_200HZ: |
|
default: |
|
_default_filter_hz = 20; |
|
_sample_period_usec = (1000*1000) / 200; |
|
_gyro_samples_needed = 4; |
|
break; |
|
} |
|
|
|
// get pointer to i2c bus semaphore |
|
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); |
|
|
|
// take i2c bus sempahore |
|
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) |
|
return false; |
|
|
|
// Init the accelerometer |
|
uint8_t data = 0; |
|
hal.i2c->readRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_DEVID, &data); |
|
if (data != ADXL345_ACCELEROMETER_XL345_DEVID) { |
|
hal.scheduler->panic(PSTR("AP_InertialSensor_L3G4200D: could not find ADXL345 accelerometer sensor")); |
|
} |
|
hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_POWER_CTL, 0x00); |
|
hal.scheduler->delay(5); |
|
hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_POWER_CTL, 0xff); |
|
hal.scheduler->delay(5); |
|
// Measure mode: |
|
hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_POWER_CTL, 0x08); |
|
hal.scheduler->delay(5); |
|
|
|
// Full resolution, 8g: |
|
// Caution, this must agree with ADXL345_ACCELEROMETER_SCALE_1G |
|
// In full resoution mode, the scale factor need not change |
|
hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_DATA_FORMAT, 0x08); |
|
hal.scheduler->delay(5); |
|
|
|
// Normal power, 800Hz Output Data Rate, 400Hz bandwidth: |
|
hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, ADXL345_ACCELEROMETER_ADXLREG_BW_RATE, 0x0d); |
|
hal.scheduler->delay(5); |
|
|
|
// enable FIFO in stream mode. This will allow us to read the accelerometers much less frequently |
|
hal.i2c->writeRegister(ADXL345_ACCELEROMETER_ADDRESS, |
|
ADXL345_ACCELEROMETER_ADXLREG_FIFO_CTL, |
|
ADXL345_ACCELEROMETER_ADXLREG_FIFO_CTL_STREAM); |
|
|
|
// Init the Gyro |
|
// Expect to read the right 'WHO_AM_I' value |
|
hal.i2c->readRegister(L3G4200D_I2C_ADDRESS, L3G4200D_REG_WHO_AM_I, &data); |
|
if (data != L3G4200D_REG_WHO_AM_I_VALUE) |
|
hal.scheduler->panic(PSTR("AP_InertialSensor_L3G4200D: could not find L3G4200D gyro sensor")); |
|
|
|
// setup for 800Hz sampling with 110Hz filter |
|
hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, |
|
L3G4200D_REG_CTRL_REG1, |
|
L3G4200D_REG_CTRL_REG1_DRBW_800_110 | |
|
L3G4200D_REG_CTRL_REG1_PD | |
|
L3G4200D_REG_CTRL_REG1_XYZ_ENABLE); |
|
hal.scheduler->delay(1); |
|
|
|
hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, |
|
L3G4200D_REG_CTRL_REG1, |
|
L3G4200D_REG_CTRL_REG1_DRBW_800_110 | |
|
L3G4200D_REG_CTRL_REG1_PD | |
|
L3G4200D_REG_CTRL_REG1_XYZ_ENABLE); |
|
hal.scheduler->delay(1); |
|
|
|
hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, |
|
L3G4200D_REG_CTRL_REG1, |
|
L3G4200D_REG_CTRL_REG1_DRBW_800_110 | |
|
L3G4200D_REG_CTRL_REG1_PD | |
|
L3G4200D_REG_CTRL_REG1_XYZ_ENABLE); |
|
hal.scheduler->delay(1); |
|
|
|
// setup for 2000 degrees/sec full range |
|
hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, |
|
L3G4200D_REG_CTRL_REG4, |
|
L3G4200D_REG_CTRL_REG4_FS_2000); |
|
hal.scheduler->delay(1); |
|
|
|
// enable FIFO |
|
hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, |
|
L3G4200D_REG_CTRL_REG5, |
|
L3G4200D_REG_CTRL_REG5_FIFO_EN); |
|
hal.scheduler->delay(1); |
|
|
|
// enable FIFO in stream mode. This will allow us to read the gyros much less frequently |
|
hal.i2c->writeRegister(L3G4200D_I2C_ADDRESS, |
|
L3G4200D_REG_FIFO_CTL, |
|
L3G4200D_REG_FIFO_CTL_STREAM); |
|
hal.scheduler->delay(1); |
|
|
|
|
|
// Set up the filter desired |
|
_set_filter_frequency(_mpu6000_filter); |
|
|
|
// give back i2c semaphore |
|
i2c_sem->give(); |
|
|
|
// start the timer process to read samples |
|
hal.scheduler->register_timer_process(AP_HAL_MEMBERPROC(&AP_InertialSensor_L3G4200D::_accumulate)); |
|
|
|
clock_gettime(CLOCK_MONOTONIC, &_next_sample_ts); |
|
|
|
_next_sample_ts.tv_nsec += _sample_period_usec * 1000UL; |
|
if (_next_sample_ts.tv_nsec >= 1.0e9) { |
|
_next_sample_ts.tv_nsec -= 1.0e9; |
|
_next_sample_ts.tv_sec++; |
|
} |
|
|
|
return AP_PRODUCT_ID_L3G4200D; |
|
} |
|
|
|
/* |
|
set the filter frequency |
|
*/ |
|
void AP_InertialSensor_L3G4200D::_set_filter_frequency(uint8_t filter_hz) |
|
{ |
|
if (filter_hz == 0) |
|
filter_hz = _default_filter_hz; |
|
|
|
_accel_filter_x.set_cutoff_frequency(800, filter_hz); |
|
_accel_filter_y.set_cutoff_frequency(800, filter_hz); |
|
_accel_filter_z.set_cutoff_frequency(800, filter_hz); |
|
_gyro_filter_x.set_cutoff_frequency(800, filter_hz); |
|
_gyro_filter_y.set_cutoff_frequency(800, filter_hz); |
|
_gyro_filter_z.set_cutoff_frequency(800, filter_hz); |
|
} |
|
|
|
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */ |
|
|
|
bool AP_InertialSensor_L3G4200D::update(void) |
|
{ |
|
Vector3f accel_scale = _accel_scale[0].get(); |
|
|
|
_previous_accel[0] = _accel[0]; |
|
|
|
hal.scheduler->suspend_timer_procs(); |
|
_accel[0] = _accel_filtered; |
|
_gyro[0] = _gyro_filtered; |
|
_delta_time = _gyro_samples_available * (1.0f/800); |
|
_gyro_samples_available = 0; |
|
hal.scheduler->resume_timer_procs(); |
|
|
|
// add offsets and rotation |
|
_accel[0].rotate(_board_orientation); |
|
|
|
// Adjust for chip scaling to get m/s/s |
|
_accel[0] *= ADXL345_ACCELEROMETER_SCALE_M_S; |
|
|
|
// Now the calibration scale factor |
|
_accel[0].x *= accel_scale.x; |
|
_accel[0].y *= accel_scale.y; |
|
_accel[0].z *= accel_scale.z; |
|
_accel[0] -= _accel_offset[0]; |
|
|
|
_gyro[0].rotate(_board_orientation); |
|
|
|
// Adjust for chip scaling to get radians/sec |
|
_gyro[0] *= L3G4200D_GYRO_SCALE_R_S; |
|
_gyro[0] -= _gyro_offset[0]; |
|
|
|
if (_last_filter_hz != _mpu6000_filter) { |
|
_set_filter_frequency(_mpu6000_filter); |
|
_last_filter_hz = _mpu6000_filter; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
float AP_InertialSensor_L3G4200D::get_delta_time(void) const |
|
{ |
|
return _delta_time; |
|
} |
|
|
|
float AP_InertialSensor_L3G4200D::get_gyro_drift_rate(void) |
|
{ |
|
// 0.5 degrees/second/minute (a guess) |
|
return ToRad(0.5/60); |
|
} |
|
|
|
// Accumulate values from accels and gyros |
|
void AP_InertialSensor_L3G4200D::_accumulate(void) |
|
{ |
|
// get pointer to i2c bus semaphore |
|
AP_HAL::Semaphore* i2c_sem = hal.i2c->get_semaphore(); |
|
|
|
// take i2c bus sempahore |
|
if (!i2c_sem->take_nonblocking()) |
|
return; |
|
|
|
uint8_t num_samples_available; |
|
uint8_t fifo_status = 0; |
|
|
|
// Read gyro FIFO status |
|
fifo_status = 0; |
|
hal.i2c->readRegister(L3G4200D_I2C_ADDRESS, |
|
L3G4200D_REG_FIFO_SRC, |
|
&fifo_status); |
|
if (fifo_status & L3G4200D_REG_FIFO_SRC_OVERRUN) { |
|
// FIFO is full |
|
num_samples_available = 32; |
|
} else if (fifo_status & L3G4200D_REG_FIFO_SRC_EMPTY) { |
|
// FIFO is empty |
|
num_samples_available = 0; |
|
} else { |
|
// FIFO is partly full |
|
num_samples_available = fifo_status & L3G4200D_REG_FIFO_SRC_ENTRIES_MASK; |
|
} |
|
|
|
if (num_samples_available > 0) { |
|
// read all the entries in one go, using AUTO_INCREMENT. This saves a lot of time on I2C setup |
|
int16_t buffer[num_samples_available][3]; |
|
if (hal.i2c->readRegisters(L3G4200D_I2C_ADDRESS, L3G4200D_REG_XL | L3G4200D_REG_AUTO_INCREMENT, |
|
sizeof(buffer), (uint8_t *)&buffer[0][0]) == 0) { |
|
for (uint8_t i=0; i<num_samples_available; i++) { |
|
_gyro_filtered = Vector3f(_gyro_filter_x.apply(buffer[i][0]), |
|
_gyro_filter_y.apply(-buffer[i][1]), |
|
_gyro_filter_z.apply(-buffer[i][2])); |
|
_gyro_samples_available++; |
|
} |
|
} |
|
} |
|
|
|
|
|
// Read accelerometer FIFO to find out how many samples are available |
|
hal.i2c->readRegister(ADXL345_ACCELEROMETER_ADDRESS, |
|
ADXL345_ACCELEROMETER_ADXLREG_FIFO_STATUS, |
|
&fifo_status); |
|
num_samples_available = fifo_status & 0x3F; |
|
|
|
#if 1 |
|
// read the samples and apply the filter |
|
if (num_samples_available > 0) { |
|
int16_t buffer[num_samples_available][3]; |
|
if (hal.i2c->readRegistersMultiple(ADXL345_ACCELEROMETER_ADDRESS, |
|
ADXL345_ACCELEROMETER_ADXLREG_DATAX0, |
|
sizeof(buffer[0]), num_samples_available, |
|
(uint8_t *)&buffer[0][0]) == 0) { |
|
for (uint8_t i=0; i<num_samples_available; i++) { |
|
_accel_filtered = Vector3f(_accel_filter_x.apply(buffer[i][0]), |
|
_accel_filter_y.apply(-buffer[i][1]), |
|
_accel_filter_z.apply(-buffer[i][2])); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
// give back i2c semaphore |
|
i2c_sem->give(); |
|
} |
|
|
|
bool AP_InertialSensor_L3G4200D::_sample_available(void) |
|
{ |
|
return (_gyro_samples_available >= _gyro_samples_needed); |
|
} |
|
|
|
bool AP_InertialSensor_L3G4200D::wait_for_sample(uint16_t timeout_ms) |
|
{ |
|
uint32_t start_us = hal.scheduler->micros(); |
|
while (clock_nanosleep(CLOCK_MONOTONIC, |
|
TIMER_ABSTIME, &_next_sample_ts, NULL) == -1 && errno == EINTR) ; |
|
_next_sample_ts.tv_nsec += _sample_period_usec * 1000UL; |
|
if (_next_sample_ts.tv_nsec >= 1.0e9) { |
|
_next_sample_ts.tv_nsec -= 1.0e9; |
|
_next_sample_ts.tv_sec++; |
|
|
|
} |
|
//_accumulate(); |
|
return true; |
|
|
|
} |
|
|
|
#endif // CONFIG_HAL_BOARD |
|
|
|
|