You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
199 lines
7.1 KiB
199 lines
7.1 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
|
|
/* |
|
* AP_OpticalFlow_Linux.cpp - ardupilot library for the PX4Flow sensor. |
|
* inspired by the PX4Firmware code. |
|
* |
|
* @author: Víctor Mayoral Vilches |
|
* |
|
*/ |
|
|
|
#include <AP_HAL.h> |
|
#include "OpticalFlow.h" |
|
|
|
#define DEBUG 1 |
|
#define RAW_READ 0 |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX |
|
extern const AP_HAL::HAL& hal; |
|
|
|
AP_OpticalFlow_Linux::AP_OpticalFlow_Linux(OpticalFlow &_frontend) : |
|
OpticalFlow_backend(_frontend) |
|
{} |
|
|
|
|
|
void AP_OpticalFlow_Linux::init(void) |
|
{ |
|
uint8_t buff[22]; |
|
|
|
// get pointer to i2c bus semaphore |
|
AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); |
|
|
|
// take i2c bus sempahore |
|
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { |
|
hal.scheduler->panic(PSTR("PX4FLOW: unable to get semaphore")); |
|
} |
|
|
|
// to be sure this is not a ll40ls Lidar (which can also be on |
|
// 0x42) we check if a I2C_FRAME_SIZE byte transfer works from address |
|
// 0. The ll40ls gives an error for that, whereas the flow |
|
// happily returns some data |
|
uint8_t val[I2C_FRAME_SIZE]; |
|
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, 0, I2C_FRAME_SIZE, val)) |
|
hal.scheduler->panic(PSTR("ll40ls Lidar")); |
|
|
|
i2c_sem->give(); |
|
|
|
} |
|
|
|
int AP_OpticalFlow_Linux::read(optical_flow_s* report) |
|
{ |
|
// get pointer to i2c bus semaphore |
|
AP_HAL::Semaphore *i2c_sem = hal.i2c->get_semaphore(); |
|
|
|
// take i2c bus sempahore |
|
if (!i2c_sem->take(HAL_SEMAPHORE_BLOCK_FOREVER)) { |
|
hal.scheduler->panic(PSTR("PX4FLOW: unable to get semaphore")); |
|
} |
|
|
|
|
|
uint8_t val[I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE] = { 0 }; |
|
|
|
#if RAW_READ |
|
hal.console->printf_P(PSTR("PX4FLOW: RAW_READ")); |
|
// Send the command to begin a measurement |
|
uint8_t cmd = PX4FLOW_REG; |
|
if (hal.i2c->write(I2C_FLOW_ADDRESS, 1, &cmd)){ |
|
hal.console->printf_P(PSTR("PX4FLOW: Error while beginning a measurement")); |
|
i2c_sem->give(); |
|
return 0; |
|
} |
|
|
|
// Perform the reading |
|
if (PX4FLOW_REG == 0x00) { |
|
if (hal.i2c->read(I2C_FLOW_ADDRESS, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val)){ |
|
hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); |
|
i2c_sem->give(); |
|
return 0; |
|
} |
|
} |
|
|
|
if (PX4FLOW_REG == 0x16) { |
|
if (hal.i2c->read(I2C_FLOW_ADDRESS, I2C_INTEGRAL_FRAME_SIZE, val)){ |
|
hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); |
|
i2c_sem->give(); |
|
return 0; |
|
} |
|
} |
|
|
|
#else |
|
// Perform the writing and reading in a single command |
|
if (PX4FLOW_REG == 0x00) { |
|
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, PX4FLOW_REG, I2C_FRAME_SIZE + I2C_INTEGRAL_FRAME_SIZE, val)){ |
|
hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); |
|
i2c_sem->give(); |
|
return 0; |
|
} |
|
} |
|
|
|
if (PX4FLOW_REG == 0x16) { |
|
if (hal.i2c->readRegisters(I2C_FLOW_ADDRESS, PX4FLOW_REG, I2C_INTEGRAL_FRAME_SIZE, val)){ |
|
hal.console->printf_P(PSTR("PX4FLOW: Error while reading")); |
|
i2c_sem->give(); |
|
return 0; |
|
} |
|
} |
|
#endif |
|
|
|
|
|
if (PX4FLOW_REG == 0) { |
|
memcpy(&f, val, I2C_FRAME_SIZE); |
|
memcpy(&f_integral, &(val[I2C_FRAME_SIZE]), I2C_INTEGRAL_FRAME_SIZE); |
|
} |
|
|
|
if (PX4FLOW_REG == 0x16) { |
|
memcpy(&f_integral, val, I2C_INTEGRAL_FRAME_SIZE); |
|
} |
|
|
|
// report->timestamp = hrt_absolute_time(); |
|
report->pixel_flow_x_integral = static_cast<float>(f_integral.pixel_flow_x_integral) / 10000.0f;//convert to radians |
|
report->pixel_flow_y_integral = static_cast<float>(f_integral.pixel_flow_y_integral) / 10000.0f;//convert to radians |
|
report->frame_count_since_last_readout = f_integral.frame_count_since_last_readout; |
|
report->ground_distance_m = static_cast<float>(f_integral.ground_distance) / 1000.0f;//convert to meters |
|
report->quality = f_integral.qual; //0:bad ; 255 max quality |
|
report->gyro_x_rate_integral = static_cast<float>(f_integral.gyro_x_rate_integral) / 10000.0f; //convert to radians |
|
report->gyro_y_rate_integral = static_cast<float>(f_integral.gyro_y_rate_integral) / 10000.0f; //convert to radians |
|
report->gyro_z_rate_integral = static_cast<float>(f_integral.gyro_z_rate_integral) / 10000.0f; //convert to radians |
|
report->integration_timespan = f_integral.integration_timespan; //microseconds |
|
report->time_since_last_sonar_update = f_integral.sonar_timestamp;//microseconds |
|
report->gyro_temperature = f_integral.gyro_temperature;//Temperature * 100 in centi-degrees Celsius |
|
|
|
report->sensor_id = 0; |
|
|
|
hal.console->printf_P(PSTR("PX4FLOW measurement: ground_distance_m: %f\n"), report->ground_distance_m); |
|
|
|
/* |
|
// rotate measurements according to parameter |
|
float zeroval = 0.0f; |
|
rotate_3f(_sensor_rotation, report.pixel_flow_x_integral, report.pixel_flow_y_integral, zeroval); |
|
*/ |
|
|
|
i2c_sem->give(); |
|
return 1; |
|
|
|
} |
|
|
|
// update - read latest values from sensor and fill in x,y and totals. |
|
void AP_OpticalFlow_Linux::update(void) |
|
{ |
|
struct optical_flow_s report; |
|
|
|
// read the report from the sensor |
|
read(&report); |
|
|
|
// process |
|
struct OpticalFlow::OpticalFlow_state state; |
|
state.device_id = report.sensor_id; |
|
state.surface_quality = report.quality; |
|
if (report.integration_timespan > 0) { |
|
const Vector2f flowScaler = _flowScaler(); |
|
float flowScaleFactorX = 1.0f + 0.001f * flowScaler.x; |
|
float flowScaleFactorY = 1.0f + 0.001f * flowScaler.y; |
|
float integralToRate = 1e6f / float(report.integration_timespan); |
|
state.flowRate.x = flowScaleFactorX * integralToRate * float(report.pixel_flow_x_integral); // rad/sec measured optically about the X sensor axis |
|
state.flowRate.y = flowScaleFactorY * integralToRate * float(report.pixel_flow_y_integral); // rad/sec measured optically about the Y sensor axis |
|
state.bodyRate.x = integralToRate * float(report.gyro_x_rate_integral); // rad/sec measured inertially about the X sensor axis |
|
state.bodyRate.y = integralToRate * float(report.gyro_y_rate_integral); // rad/sec measured inertially about the Y sensor axis |
|
} else { |
|
state.flowRate.zero(); |
|
state.bodyRate.zero(); |
|
} |
|
|
|
#if DEBUG |
|
hal.console->printf_P(PSTR("PX4FLOW print: sensor_id: %d\n"), state.device_id); |
|
hal.console->printf_P(PSTR("PX4FLOW print: surface_quality: %d\n"), state.surface_quality); |
|
hal.console->printf_P(PSTR("PX4FLOW print: flowRate.x: %d\n"), state.flowRate.x); |
|
hal.console->printf_P(PSTR("PX4FLOW print: flowRate.y: %d\n"), state.flowRate.y); |
|
hal.console->printf_P(PSTR("PX4FLOW print: bodyRate.x: %d\n"), state.bodyRate.x); |
|
hal.console->printf_P(PSTR("PX4FLOW print: bodyRate.y: %d\n"), state.bodyRate.y); |
|
#endif |
|
_update_frontend(state); |
|
} |
|
|
|
|
|
|
|
#endif // CONFIG_HAL_BOARD == HAL_BOARD_LINUX
|
|
|