You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2271 lines
68 KiB
2271 lines
68 KiB
#!/usr/bin/env python |
|
# |
|
# euclid graphics maths module |
|
# |
|
# Copyright (c) 2006 Alex Holkner |
|
# Alex.Holkner@mail.google.com |
|
# |
|
# This library is free software; you can redistribute it and/or modify it |
|
# under the terms of the GNU Lesser General Public License as published by the |
|
# Free Software Foundation; either version 2.1 of the License, or (at your |
|
# option) any later version. |
|
# |
|
# This library is distributed in the hope that it will be useful, but WITHOUT |
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License |
|
# for more details. |
|
# |
|
# You should have received a copy of the GNU Lesser General Public License |
|
# along with this library; if not, write to the Free Software Foundation, |
|
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
|
|
|
'''euclid graphics maths module |
|
|
|
Documentation and tests are included in the file "euclid.txt", or online |
|
at http://code.google.com/p/pyeuclid |
|
''' |
|
|
|
__docformat__ = 'restructuredtext' |
|
__version__ = '$Id$' |
|
__revision__ = '$Revision$' |
|
|
|
import math |
|
import operator |
|
import types |
|
|
|
# Some magic here. If _use_slots is True, the classes will derive from |
|
# object and will define a __slots__ class variable. If _use_slots is |
|
# False, classes will be old-style and will not define __slots__. |
|
# |
|
# _use_slots = True: Memory efficient, probably faster in future versions |
|
# of Python, "better". |
|
# _use_slots = False: Ordinary classes, much faster than slots in current |
|
# versions of Python (2.4 and 2.5). |
|
_use_slots = True |
|
|
|
# If True, allows components of Vector2 and Vector3 to be set via swizzling; |
|
# e.g. v.xyz = (1, 2, 3). This is much, much slower than the more verbose |
|
# v.x = 1; v.y = 2; v.z = 3, and slows down ordinary element setting as |
|
# well. Recommended setting is False. |
|
_enable_swizzle_set = False |
|
|
|
# Requires class to derive from object. |
|
if _enable_swizzle_set: |
|
_use_slots = True |
|
|
|
# Implement _use_slots magic. |
|
class _EuclidMetaclass(type): |
|
def __new__(cls, name, bases, dct): |
|
if '__slots__' in dct: |
|
dct['__getstate__'] = cls._create_getstate(dct['__slots__']) |
|
dct['__setstate__'] = cls._create_setstate(dct['__slots__']) |
|
if _use_slots: |
|
return type.__new__(cls, name, bases + (object,), dct) |
|
else: |
|
if '__slots__' in dct: |
|
del dct['__slots__'] |
|
return types.ClassType.__new__(types.ClassType, name, bases, dct) |
|
|
|
@classmethod |
|
def _create_getstate(cls, slots): |
|
def __getstate__(self): |
|
d = {} |
|
for slot in slots: |
|
d[slot] = getattr(self, slot) |
|
return d |
|
return __getstate__ |
|
|
|
@classmethod |
|
def _create_setstate(cls, slots): |
|
def __setstate__(self, state): |
|
for name, value in state.items(): |
|
setattr(self, name, value) |
|
return __setstate__ |
|
|
|
__metaclass__ = _EuclidMetaclass |
|
|
|
class Vector2: |
|
__slots__ = ['x', 'y'] |
|
__hash__ = None |
|
|
|
def __init__(self, x=0, y=0): |
|
self.x = x |
|
self.y = y |
|
|
|
def __copy__(self): |
|
return self.__class__(self.x, self.y) |
|
|
|
copy = __copy__ |
|
|
|
def __repr__(self): |
|
return 'Vector2(%.2f, %.2f)' % (self.x, self.y) |
|
|
|
def __eq__(self, other): |
|
if isinstance(other, Vector2): |
|
return self.x == other.x and \ |
|
self.y == other.y |
|
else: |
|
assert hasattr(other, '__len__') and len(other) == 2 |
|
return self.x == other[0] and \ |
|
self.y == other[1] |
|
|
|
def __ne__(self, other): |
|
return not self.__eq__(other) |
|
|
|
def __nonzero__(self): |
|
return self.x != 0 or self.y != 0 |
|
|
|
def __len__(self): |
|
return 2 |
|
|
|
def __getitem__(self, key): |
|
return (self.x, self.y)[key] |
|
|
|
def __setitem__(self, key, value): |
|
l = [self.x, self.y] |
|
l[key] = value |
|
self.x, self.y = l |
|
|
|
def __iter__(self): |
|
return iter((self.x, self.y)) |
|
|
|
def __getattr__(self, name): |
|
try: |
|
return tuple([(self.x, self.y)['xy'.index(c)] \ |
|
for c in name]) |
|
except ValueError: |
|
raise AttributeError, name |
|
|
|
if _enable_swizzle_set: |
|
# This has detrimental performance on ordinary setattr as well |
|
# if enabled |
|
def __setattr__(self, name, value): |
|
if len(name) == 1: |
|
object.__setattr__(self, name, value) |
|
else: |
|
try: |
|
l = [self.x, self.y] |
|
for c, v in map(None, name, value): |
|
l['xy'.index(c)] = v |
|
self.x, self.y = l |
|
except ValueError: |
|
raise AttributeError, name |
|
|
|
def __add__(self, other): |
|
if isinstance(other, Vector2): |
|
# Vector + Vector -> Vector |
|
# Vector + Point -> Point |
|
# Point + Point -> Vector |
|
if self.__class__ is other.__class__: |
|
_class = Vector2 |
|
else: |
|
_class = Point2 |
|
return _class(self.x + other.x, |
|
self.y + other.y) |
|
else: |
|
assert hasattr(other, '__len__') and len(other) == 2 |
|
return Vector2(self.x + other[0], |
|
self.y + other[1]) |
|
__radd__ = __add__ |
|
|
|
def __iadd__(self, other): |
|
if isinstance(other, Vector2): |
|
self.x += other.x |
|
self.y += other.y |
|
else: |
|
self.x += other[0] |
|
self.y += other[1] |
|
return self |
|
|
|
def __sub__(self, other): |
|
if isinstance(other, Vector2): |
|
# Vector - Vector -> Vector |
|
# Vector - Point -> Point |
|
# Point - Point -> Vector |
|
if self.__class__ is other.__class__: |
|
_class = Vector2 |
|
else: |
|
_class = Point2 |
|
return _class(self.x - other.x, |
|
self.y - other.y) |
|
else: |
|
assert hasattr(other, '__len__') and len(other) == 2 |
|
return Vector2(self.x - other[0], |
|
self.y - other[1]) |
|
|
|
|
|
def __rsub__(self, other): |
|
if isinstance(other, Vector2): |
|
return Vector2(other.x - self.x, |
|
other.y - self.y) |
|
else: |
|
assert hasattr(other, '__len__') and len(other) == 2 |
|
return Vector2(other.x - self[0], |
|
other.y - self[1]) |
|
|
|
def __mul__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector2(self.x * other, |
|
self.y * other) |
|
|
|
__rmul__ = __mul__ |
|
|
|
def __imul__(self, other): |
|
assert type(other) in (int, long, float) |
|
self.x *= other |
|
self.y *= other |
|
return self |
|
|
|
def __div__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector2(operator.div(self.x, other), |
|
operator.div(self.y, other)) |
|
|
|
|
|
def __rdiv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector2(operator.div(other, self.x), |
|
operator.div(other, self.y)) |
|
|
|
def __floordiv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector2(operator.floordiv(self.x, other), |
|
operator.floordiv(self.y, other)) |
|
|
|
|
|
def __rfloordiv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector2(operator.floordiv(other, self.x), |
|
operator.floordiv(other, self.y)) |
|
|
|
def __truediv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector2(operator.truediv(self.x, other), |
|
operator.truediv(self.y, other)) |
|
|
|
|
|
def __rtruediv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector2(operator.truediv(other, self.x), |
|
operator.truediv(other, self.y)) |
|
|
|
def __neg__(self): |
|
return Vector2(-self.x, |
|
-self.y) |
|
|
|
__pos__ = __copy__ |
|
|
|
def __abs__(self): |
|
return math.sqrt(self.x ** 2 + \ |
|
self.y ** 2) |
|
|
|
magnitude = __abs__ |
|
|
|
def magnitude_squared(self): |
|
return self.x ** 2 + \ |
|
self.y ** 2 |
|
|
|
def normalize(self): |
|
d = self.magnitude() |
|
if d: |
|
self.x /= d |
|
self.y /= d |
|
return self |
|
|
|
def normalized(self): |
|
d = self.magnitude() |
|
if d: |
|
return Vector2(self.x / d, |
|
self.y / d) |
|
return self.copy() |
|
|
|
def dot(self, other): |
|
assert isinstance(other, Vector2) |
|
return self.x * other.x + \ |
|
self.y * other.y |
|
|
|
def cross(self): |
|
return Vector2(self.y, -self.x) |
|
|
|
def reflect(self, normal): |
|
# assume normal is normalized |
|
assert isinstance(normal, Vector2) |
|
d = 2 * (self.x * normal.x + self.y * normal.y) |
|
return Vector2(self.x - d * normal.x, |
|
self.y - d * normal.y) |
|
|
|
class Vector3: |
|
__slots__ = ['x', 'y', 'z'] |
|
__hash__ = None |
|
|
|
def __init__(self, x=0, y=0, z=0): |
|
self.x = x |
|
self.y = y |
|
self.z = z |
|
|
|
def __copy__(self): |
|
return self.__class__(self.x, self.y, self.z) |
|
|
|
copy = __copy__ |
|
|
|
def __repr__(self): |
|
return 'Vector3(%.2f, %.2f, %.2f)' % (self.x, |
|
self.y, |
|
self.z) |
|
|
|
def __eq__(self, other): |
|
if isinstance(other, Vector3): |
|
return self.x == other.x and \ |
|
self.y == other.y and \ |
|
self.z == other.z |
|
else: |
|
assert hasattr(other, '__len__') and len(other) == 3 |
|
return self.x == other[0] and \ |
|
self.y == other[1] and \ |
|
self.z == other[2] |
|
|
|
def __ne__(self, other): |
|
return not self.__eq__(other) |
|
|
|
def __nonzero__(self): |
|
return self.x != 0 or self.y != 0 or self.z != 0 |
|
|
|
def __len__(self): |
|
return 3 |
|
|
|
def __getitem__(self, key): |
|
return (self.x, self.y, self.z)[key] |
|
|
|
def __setitem__(self, key, value): |
|
l = [self.x, self.y, self.z] |
|
l[key] = value |
|
self.x, self.y, self.z = l |
|
|
|
def __iter__(self): |
|
return iter((self.x, self.y, self.z)) |
|
|
|
def __getattr__(self, name): |
|
try: |
|
return tuple([(self.x, self.y, self.z)['xyz'.index(c)] \ |
|
for c in name]) |
|
except ValueError: |
|
raise AttributeError, name |
|
|
|
if _enable_swizzle_set: |
|
# This has detrimental performance on ordinary setattr as well |
|
# if enabled |
|
def __setattr__(self, name, value): |
|
if len(name) == 1: |
|
object.__setattr__(self, name, value) |
|
else: |
|
try: |
|
l = [self.x, self.y, self.z] |
|
for c, v in map(None, name, value): |
|
l['xyz'.index(c)] = v |
|
self.x, self.y, self.z = l |
|
except ValueError: |
|
raise AttributeError, name |
|
|
|
|
|
def __add__(self, other): |
|
if isinstance(other, Vector3): |
|
# Vector + Vector -> Vector |
|
# Vector + Point -> Point |
|
# Point + Point -> Vector |
|
if self.__class__ is other.__class__: |
|
_class = Vector3 |
|
else: |
|
_class = Point3 |
|
return _class(self.x + other.x, |
|
self.y + other.y, |
|
self.z + other.z) |
|
else: |
|
assert hasattr(other, '__len__') and len(other) == 3 |
|
return Vector3(self.x + other[0], |
|
self.y + other[1], |
|
self.z + other[2]) |
|
__radd__ = __add__ |
|
|
|
def __iadd__(self, other): |
|
if isinstance(other, Vector3): |
|
self.x += other.x |
|
self.y += other.y |
|
self.z += other.z |
|
else: |
|
self.x += other[0] |
|
self.y += other[1] |
|
self.z += other[2] |
|
return self |
|
|
|
def __sub__(self, other): |
|
if isinstance(other, Vector3): |
|
# Vector - Vector -> Vector |
|
# Vector - Point -> Point |
|
# Point - Point -> Vector |
|
if self.__class__ is other.__class__: |
|
_class = Vector3 |
|
else: |
|
_class = Point3 |
|
return Vector3(self.x - other.x, |
|
self.y - other.y, |
|
self.z - other.z) |
|
else: |
|
assert hasattr(other, '__len__') and len(other) == 3 |
|
return Vector3(self.x - other[0], |
|
self.y - other[1], |
|
self.z - other[2]) |
|
|
|
|
|
def __rsub__(self, other): |
|
if isinstance(other, Vector3): |
|
return Vector3(other.x - self.x, |
|
other.y - self.y, |
|
other.z - self.z) |
|
else: |
|
assert hasattr(other, '__len__') and len(other) == 3 |
|
return Vector3(other.x - self[0], |
|
other.y - self[1], |
|
other.z - self[2]) |
|
|
|
def __mul__(self, other): |
|
if isinstance(other, Vector3): |
|
# TODO component-wise mul/div in-place and on Vector2; docs. |
|
if self.__class__ is Point3 or other.__class__ is Point3: |
|
_class = Point3 |
|
else: |
|
_class = Vector3 |
|
return _class(self.x * other.x, |
|
self.y * other.y, |
|
self.z * other.z) |
|
else: |
|
assert type(other) in (int, long, float) |
|
return Vector3(self.x * other, |
|
self.y * other, |
|
self.z * other) |
|
|
|
__rmul__ = __mul__ |
|
|
|
def __imul__(self, other): |
|
assert type(other) in (int, long, float) |
|
self.x *= other |
|
self.y *= other |
|
self.z *= other |
|
return self |
|
|
|
def __div__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector3(operator.div(self.x, other), |
|
operator.div(self.y, other), |
|
operator.div(self.z, other)) |
|
|
|
|
|
def __rdiv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector3(operator.div(other, self.x), |
|
operator.div(other, self.y), |
|
operator.div(other, self.z)) |
|
|
|
def __floordiv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector3(operator.floordiv(self.x, other), |
|
operator.floordiv(self.y, other), |
|
operator.floordiv(self.z, other)) |
|
|
|
|
|
def __rfloordiv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector3(operator.floordiv(other, self.x), |
|
operator.floordiv(other, self.y), |
|
operator.floordiv(other, self.z)) |
|
|
|
def __truediv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector3(operator.truediv(self.x, other), |
|
operator.truediv(self.y, other), |
|
operator.truediv(self.z, other)) |
|
|
|
|
|
def __rtruediv__(self, other): |
|
assert type(other) in (int, long, float) |
|
return Vector3(operator.truediv(other, self.x), |
|
operator.truediv(other, self.y), |
|
operator.truediv(other, self.z)) |
|
|
|
def __neg__(self): |
|
return Vector3(-self.x, |
|
-self.y, |
|
-self.z) |
|
|
|
__pos__ = __copy__ |
|
|
|
def __abs__(self): |
|
return math.sqrt(self.x ** 2 + \ |
|
self.y ** 2 + \ |
|
self.z ** 2) |
|
|
|
magnitude = __abs__ |
|
|
|
def magnitude_squared(self): |
|
return self.x ** 2 + \ |
|
self.y ** 2 + \ |
|
self.z ** 2 |
|
|
|
def normalize(self): |
|
d = self.magnitude() |
|
if d: |
|
self.x /= d |
|
self.y /= d |
|
self.z /= d |
|
return self |
|
|
|
def normalized(self): |
|
d = self.magnitude() |
|
if d: |
|
return Vector3(self.x / d, |
|
self.y / d, |
|
self.z / d) |
|
return self.copy() |
|
|
|
def dot(self, other): |
|
assert isinstance(other, Vector3) |
|
return self.x * other.x + \ |
|
self.y * other.y + \ |
|
self.z * other.z |
|
|
|
def cross(self, other): |
|
assert isinstance(other, Vector3) |
|
return Vector3(self.y * other.z - self.z * other.y, |
|
-self.x * other.z + self.z * other.x, |
|
self.x * other.y - self.y * other.x) |
|
|
|
def reflect(self, normal): |
|
# assume normal is normalized |
|
assert isinstance(normal, Vector3) |
|
d = 2 * (self.x * normal.x + self.y * normal.y + self.z * normal.z) |
|
return Vector3(self.x - d * normal.x, |
|
self.y - d * normal.y, |
|
self.z - d * normal.z) |
|
|
|
# a b c |
|
# e f g |
|
# i j k |
|
|
|
class Matrix3: |
|
__slots__ = list('abcefgijk') |
|
|
|
def __init__(self): |
|
self.identity() |
|
|
|
def __copy__(self): |
|
M = Matrix3() |
|
M.a = self.a |
|
M.b = self.b |
|
M.c = self.c |
|
M.e = self.e |
|
M.f = self.f |
|
M.g = self.g |
|
M.i = self.i |
|
M.j = self.j |
|
M.k = self.k |
|
return M |
|
|
|
copy = __copy__ |
|
def __repr__(self): |
|
return ('Matrix3([% 8.2f % 8.2f % 8.2f\n' \ |
|
' % 8.2f % 8.2f % 8.2f\n' \ |
|
' % 8.2f % 8.2f % 8.2f])') \ |
|
% (self.a, self.b, self.c, |
|
self.e, self.f, self.g, |
|
self.i, self.j, self.k) |
|
|
|
def __getitem__(self, key): |
|
return [self.a, self.e, self.i, |
|
self.b, self.f, self.j, |
|
self.c, self.g, self.k][key] |
|
|
|
def __setitem__(self, key, value): |
|
L = self[:] |
|
L[key] = value |
|
(self.a, self.e, self.i, |
|
self.b, self.f, self.j, |
|
self.c, self.g, self.k) = L |
|
|
|
def __mul__(self, other): |
|
if isinstance(other, Matrix3): |
|
# Caching repeatedly accessed attributes in local variables |
|
# apparently increases performance by 20%. Attrib: Will McGugan. |
|
Aa = self.a |
|
Ab = self.b |
|
Ac = self.c |
|
Ae = self.e |
|
Af = self.f |
|
Ag = self.g |
|
Ai = self.i |
|
Aj = self.j |
|
Ak = self.k |
|
Ba = other.a |
|
Bb = other.b |
|
Bc = other.c |
|
Be = other.e |
|
Bf = other.f |
|
Bg = other.g |
|
Bi = other.i |
|
Bj = other.j |
|
Bk = other.k |
|
C = Matrix3() |
|
C.a = Aa * Ba + Ab * Be + Ac * Bi |
|
C.b = Aa * Bb + Ab * Bf + Ac * Bj |
|
C.c = Aa * Bc + Ab * Bg + Ac * Bk |
|
C.e = Ae * Ba + Af * Be + Ag * Bi |
|
C.f = Ae * Bb + Af * Bf + Ag * Bj |
|
C.g = Ae * Bc + Af * Bg + Ag * Bk |
|
C.i = Ai * Ba + Aj * Be + Ak * Bi |
|
C.j = Ai * Bb + Aj * Bf + Ak * Bj |
|
C.k = Ai * Bc + Aj * Bg + Ak * Bk |
|
return C |
|
elif isinstance(other, Point2): |
|
A = self |
|
B = other |
|
P = Point2(0, 0) |
|
P.x = A.a * B.x + A.b * B.y + A.c |
|
P.y = A.e * B.x + A.f * B.y + A.g |
|
return P |
|
elif isinstance(other, Vector2): |
|
A = self |
|
B = other |
|
V = Vector2(0, 0) |
|
V.x = A.a * B.x + A.b * B.y |
|
V.y = A.e * B.x + A.f * B.y |
|
return V |
|
else: |
|
other = other.copy() |
|
other._apply_transform(self) |
|
return other |
|
|
|
def __imul__(self, other): |
|
assert isinstance(other, Matrix3) |
|
# Cache attributes in local vars (see Matrix3.__mul__). |
|
Aa = self.a |
|
Ab = self.b |
|
Ac = self.c |
|
Ae = self.e |
|
Af = self.f |
|
Ag = self.g |
|
Ai = self.i |
|
Aj = self.j |
|
Ak = self.k |
|
Ba = other.a |
|
Bb = other.b |
|
Bc = other.c |
|
Be = other.e |
|
Bf = other.f |
|
Bg = other.g |
|
Bi = other.i |
|
Bj = other.j |
|
Bk = other.k |
|
self.a = Aa * Ba + Ab * Be + Ac * Bi |
|
self.b = Aa * Bb + Ab * Bf + Ac * Bj |
|
self.c = Aa * Bc + Ab * Bg + Ac * Bk |
|
self.e = Ae * Ba + Af * Be + Ag * Bi |
|
self.f = Ae * Bb + Af * Bf + Ag * Bj |
|
self.g = Ae * Bc + Af * Bg + Ag * Bk |
|
self.i = Ai * Ba + Aj * Be + Ak * Bi |
|
self.j = Ai * Bb + Aj * Bf + Ak * Bj |
|
self.k = Ai * Bc + Aj * Bg + Ak * Bk |
|
return self |
|
|
|
def identity(self): |
|
self.a = self.f = self.k = 1. |
|
self.b = self.c = self.e = self.g = self.i = self.j = 0 |
|
return self |
|
|
|
def scale(self, x, y): |
|
self *= Matrix3.new_scale(x, y) |
|
return self |
|
|
|
def translate(self, x, y): |
|
self *= Matrix3.new_translate(x, y) |
|
return self |
|
|
|
def rotate(self, angle): |
|
self *= Matrix3.new_rotate(angle) |
|
return self |
|
|
|
# Static constructors |
|
def new_identity(cls): |
|
self = cls() |
|
return self |
|
new_identity = classmethod(new_identity) |
|
|
|
def new_scale(cls, x, y): |
|
self = cls() |
|
self.a = x |
|
self.f = y |
|
return self |
|
new_scale = classmethod(new_scale) |
|
|
|
def new_translate(cls, x, y): |
|
self = cls() |
|
self.c = x |
|
self.g = y |
|
return self |
|
new_translate = classmethod(new_translate) |
|
|
|
def new_rotate(cls, angle): |
|
self = cls() |
|
s = math.sin(angle) |
|
c = math.cos(angle) |
|
self.a = self.f = c |
|
self.b = -s |
|
self.e = s |
|
return self |
|
new_rotate = classmethod(new_rotate) |
|
|
|
def determinant(self): |
|
return (self.a*self.f*self.k |
|
+ self.b*self.g*self.i |
|
+ self.c*self.e*self.j |
|
- self.a*self.g*self.j |
|
- self.b*self.e*self.k |
|
- self.c*self.f*self.i) |
|
|
|
def inverse(self): |
|
tmp = Matrix3() |
|
d = self.determinant() |
|
|
|
if abs(d) < 0.001: |
|
# No inverse, return identity |
|
return tmp |
|
else: |
|
d = 1.0 / d |
|
|
|
tmp.a = d * (self.f*self.k - self.g*self.j) |
|
tmp.b = d * (self.c*self.j - self.b*self.k) |
|
tmp.c = d * (self.b*self.g - self.c*self.f) |
|
tmp.e = d * (self.g*self.i - self.e*self.k) |
|
tmp.f = d * (self.a*self.k - self.c*self.i) |
|
tmp.g = d * (self.c*self.e - self.a*self.g) |
|
tmp.i = d * (self.e*self.j - self.f*self.i) |
|
tmp.j = d * (self.b*self.i - self.a*self.j) |
|
tmp.k = d * (self.a*self.f - self.b*self.e) |
|
|
|
return tmp |
|
|
|
# a b c d |
|
# e f g h |
|
# i j k l |
|
# m n o p |
|
|
|
class Matrix4: |
|
__slots__ = list('abcdefghijklmnop') |
|
|
|
def __init__(self): |
|
self.identity() |
|
|
|
def __copy__(self): |
|
M = Matrix4() |
|
M.a = self.a |
|
M.b = self.b |
|
M.c = self.c |
|
M.d = self.d |
|
M.e = self.e |
|
M.f = self.f |
|
M.g = self.g |
|
M.h = self.h |
|
M.i = self.i |
|
M.j = self.j |
|
M.k = self.k |
|
M.l = self.l |
|
M.m = self.m |
|
M.n = self.n |
|
M.o = self.o |
|
M.p = self.p |
|
return M |
|
|
|
copy = __copy__ |
|
|
|
|
|
def __repr__(self): |
|
return ('Matrix4([% 8.2f % 8.2f % 8.2f % 8.2f\n' \ |
|
' % 8.2f % 8.2f % 8.2f % 8.2f\n' \ |
|
' % 8.2f % 8.2f % 8.2f % 8.2f\n' \ |
|
' % 8.2f % 8.2f % 8.2f % 8.2f])') \ |
|
% (self.a, self.b, self.c, self.d, |
|
self.e, self.f, self.g, self.h, |
|
self.i, self.j, self.k, self.l, |
|
self.m, self.n, self.o, self.p) |
|
|
|
def __getitem__(self, key): |
|
return [self.a, self.e, self.i, self.m, |
|
self.b, self.f, self.j, self.n, |
|
self.c, self.g, self.k, self.o, |
|
self.d, self.h, self.l, self.p][key] |
|
|
|
def __setitem__(self, key, value): |
|
L = self[:] |
|
L[key] = value |
|
(self.a, self.e, self.i, self.m, |
|
self.b, self.f, self.j, self.n, |
|
self.c, self.g, self.k, self.o, |
|
self.d, self.h, self.l, self.p) = L |
|
|
|
def __mul__(self, other): |
|
if isinstance(other, Matrix4): |
|
# Cache attributes in local vars (see Matrix3.__mul__). |
|
Aa = self.a |
|
Ab = self.b |
|
Ac = self.c |
|
Ad = self.d |
|
Ae = self.e |
|
Af = self.f |
|
Ag = self.g |
|
Ah = self.h |
|
Ai = self.i |
|
Aj = self.j |
|
Ak = self.k |
|
Al = self.l |
|
Am = self.m |
|
An = self.n |
|
Ao = self.o |
|
Ap = self.p |
|
Ba = other.a |
|
Bb = other.b |
|
Bc = other.c |
|
Bd = other.d |
|
Be = other.e |
|
Bf = other.f |
|
Bg = other.g |
|
Bh = other.h |
|
Bi = other.i |
|
Bj = other.j |
|
Bk = other.k |
|
Bl = other.l |
|
Bm = other.m |
|
Bn = other.n |
|
Bo = other.o |
|
Bp = other.p |
|
C = Matrix4() |
|
C.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm |
|
C.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn |
|
C.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo |
|
C.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp |
|
C.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm |
|
C.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn |
|
C.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo |
|
C.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp |
|
C.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm |
|
C.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn |
|
C.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo |
|
C.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp |
|
C.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm |
|
C.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn |
|
C.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo |
|
C.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp |
|
return C |
|
elif isinstance(other, Point3): |
|
A = self |
|
B = other |
|
P = Point3(0, 0, 0) |
|
P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d |
|
P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h |
|
P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l |
|
return P |
|
elif isinstance(other, Vector3): |
|
A = self |
|
B = other |
|
V = Vector3(0, 0, 0) |
|
V.x = A.a * B.x + A.b * B.y + A.c * B.z |
|
V.y = A.e * B.x + A.f * B.y + A.g * B.z |
|
V.z = A.i * B.x + A.j * B.y + A.k * B.z |
|
return V |
|
else: |
|
other = other.copy() |
|
other._apply_transform(self) |
|
return other |
|
|
|
def __imul__(self, other): |
|
assert isinstance(other, Matrix4) |
|
# Cache attributes in local vars (see Matrix3.__mul__). |
|
Aa = self.a |
|
Ab = self.b |
|
Ac = self.c |
|
Ad = self.d |
|
Ae = self.e |
|
Af = self.f |
|
Ag = self.g |
|
Ah = self.h |
|
Ai = self.i |
|
Aj = self.j |
|
Ak = self.k |
|
Al = self.l |
|
Am = self.m |
|
An = self.n |
|
Ao = self.o |
|
Ap = self.p |
|
Ba = other.a |
|
Bb = other.b |
|
Bc = other.c |
|
Bd = other.d |
|
Be = other.e |
|
Bf = other.f |
|
Bg = other.g |
|
Bh = other.h |
|
Bi = other.i |
|
Bj = other.j |
|
Bk = other.k |
|
Bl = other.l |
|
Bm = other.m |
|
Bn = other.n |
|
Bo = other.o |
|
Bp = other.p |
|
self.a = Aa * Ba + Ab * Be + Ac * Bi + Ad * Bm |
|
self.b = Aa * Bb + Ab * Bf + Ac * Bj + Ad * Bn |
|
self.c = Aa * Bc + Ab * Bg + Ac * Bk + Ad * Bo |
|
self.d = Aa * Bd + Ab * Bh + Ac * Bl + Ad * Bp |
|
self.e = Ae * Ba + Af * Be + Ag * Bi + Ah * Bm |
|
self.f = Ae * Bb + Af * Bf + Ag * Bj + Ah * Bn |
|
self.g = Ae * Bc + Af * Bg + Ag * Bk + Ah * Bo |
|
self.h = Ae * Bd + Af * Bh + Ag * Bl + Ah * Bp |
|
self.i = Ai * Ba + Aj * Be + Ak * Bi + Al * Bm |
|
self.j = Ai * Bb + Aj * Bf + Ak * Bj + Al * Bn |
|
self.k = Ai * Bc + Aj * Bg + Ak * Bk + Al * Bo |
|
self.l = Ai * Bd + Aj * Bh + Ak * Bl + Al * Bp |
|
self.m = Am * Ba + An * Be + Ao * Bi + Ap * Bm |
|
self.n = Am * Bb + An * Bf + Ao * Bj + Ap * Bn |
|
self.o = Am * Bc + An * Bg + Ao * Bk + Ap * Bo |
|
self.p = Am * Bd + An * Bh + Ao * Bl + Ap * Bp |
|
return self |
|
|
|
def transform(self, other): |
|
A = self |
|
B = other |
|
P = Point3(0, 0, 0) |
|
P.x = A.a * B.x + A.b * B.y + A.c * B.z + A.d |
|
P.y = A.e * B.x + A.f * B.y + A.g * B.z + A.h |
|
P.z = A.i * B.x + A.j * B.y + A.k * B.z + A.l |
|
w = A.m * B.x + A.n * B.y + A.o * B.z + A.p |
|
if w != 0: |
|
P.x /= w |
|
P.y /= w |
|
P.z /= w |
|
return P |
|
|
|
def identity(self): |
|
self.a = self.f = self.k = self.p = 1. |
|
self.b = self.c = self.d = self.e = self.g = self.h = \ |
|
self.i = self.j = self.l = self.m = self.n = self.o = 0 |
|
return self |
|
|
|
def scale(self, x, y, z): |
|
self *= Matrix4.new_scale(x, y, z) |
|
return self |
|
|
|
def translate(self, x, y, z): |
|
self *= Matrix4.new_translate(x, y, z) |
|
return self |
|
|
|
def rotatex(self, angle): |
|
self *= Matrix4.new_rotatex(angle) |
|
return self |
|
|
|
def rotatey(self, angle): |
|
self *= Matrix4.new_rotatey(angle) |
|
return self |
|
|
|
def rotatez(self, angle): |
|
self *= Matrix4.new_rotatez(angle) |
|
return self |
|
|
|
def rotate_axis(self, angle, axis): |
|
self *= Matrix4.new_rotate_axis(angle, axis) |
|
return self |
|
|
|
def rotate_euler(self, heading, attitude, bank): |
|
self *= Matrix4.new_rotate_euler(heading, attitude, bank) |
|
return self |
|
|
|
def rotate_triple_axis(self, x, y, z): |
|
self *= Matrix4.new_rotate_triple_axis(x, y, z) |
|
return self |
|
|
|
def transpose(self): |
|
(self.a, self.e, self.i, self.m, |
|
self.b, self.f, self.j, self.n, |
|
self.c, self.g, self.k, self.o, |
|
self.d, self.h, self.l, self.p) = \ |
|
(self.a, self.b, self.c, self.d, |
|
self.e, self.f, self.g, self.h, |
|
self.i, self.j, self.k, self.l, |
|
self.m, self.n, self.o, self.p) |
|
|
|
def transposed(self): |
|
M = self.copy() |
|
M.transpose() |
|
return M |
|
|
|
# Static constructors |
|
def new(cls, *values): |
|
M = cls() |
|
M[:] = values |
|
return M |
|
new = classmethod(new) |
|
|
|
def new_identity(cls): |
|
self = cls() |
|
return self |
|
new_identity = classmethod(new_identity) |
|
|
|
def new_scale(cls, x, y, z): |
|
self = cls() |
|
self.a = x |
|
self.f = y |
|
self.k = z |
|
return self |
|
new_scale = classmethod(new_scale) |
|
|
|
def new_translate(cls, x, y, z): |
|
self = cls() |
|
self.d = x |
|
self.h = y |
|
self.l = z |
|
return self |
|
new_translate = classmethod(new_translate) |
|
|
|
def new_rotatex(cls, angle): |
|
self = cls() |
|
s = math.sin(angle) |
|
c = math.cos(angle) |
|
self.f = self.k = c |
|
self.g = -s |
|
self.j = s |
|
return self |
|
new_rotatex = classmethod(new_rotatex) |
|
|
|
def new_rotatey(cls, angle): |
|
self = cls() |
|
s = math.sin(angle) |
|
c = math.cos(angle) |
|
self.a = self.k = c |
|
self.c = s |
|
self.i = -s |
|
return self |
|
new_rotatey = classmethod(new_rotatey) |
|
|
|
def new_rotatez(cls, angle): |
|
self = cls() |
|
s = math.sin(angle) |
|
c = math.cos(angle) |
|
self.a = self.f = c |
|
self.b = -s |
|
self.e = s |
|
return self |
|
new_rotatez = classmethod(new_rotatez) |
|
|
|
def new_rotate_axis(cls, angle, axis): |
|
assert(isinstance(axis, Vector3)) |
|
vector = axis.normalized() |
|
x = vector.x |
|
y = vector.y |
|
z = vector.z |
|
|
|
self = cls() |
|
s = math.sin(angle) |
|
c = math.cos(angle) |
|
c1 = 1. - c |
|
|
|
# from the glRotate man page |
|
self.a = x * x * c1 + c |
|
self.b = x * y * c1 - z * s |
|
self.c = x * z * c1 + y * s |
|
self.e = y * x * c1 + z * s |
|
self.f = y * y * c1 + c |
|
self.g = y * z * c1 - x * s |
|
self.i = x * z * c1 - y * s |
|
self.j = y * z * c1 + x * s |
|
self.k = z * z * c1 + c |
|
return self |
|
new_rotate_axis = classmethod(new_rotate_axis) |
|
|
|
def new_rotate_euler(cls, heading, attitude, bank): |
|
# from http://www.euclideanspace.com/ |
|
ch = math.cos(heading) |
|
sh = math.sin(heading) |
|
ca = math.cos(attitude) |
|
sa = math.sin(attitude) |
|
cb = math.cos(bank) |
|
sb = math.sin(bank) |
|
|
|
self = cls() |
|
self.a = ch * ca |
|
self.b = sh * sb - ch * sa * cb |
|
self.c = ch * sa * sb + sh * cb |
|
self.e = sa |
|
self.f = ca * cb |
|
self.g = -ca * sb |
|
self.i = -sh * ca |
|
self.j = sh * sa * cb + ch * sb |
|
self.k = -sh * sa * sb + ch * cb |
|
return self |
|
new_rotate_euler = classmethod(new_rotate_euler) |
|
|
|
def new_rotate_triple_axis(cls, x, y, z): |
|
m = cls() |
|
|
|
m.a, m.b, m.c = x.x, y.x, z.x |
|
m.e, m.f, m.g = x.y, y.y, z.y |
|
m.i, m.j, m.k = x.z, y.z, z.z |
|
|
|
return m |
|
new_rotate_triple_axis = classmethod(new_rotate_triple_axis) |
|
|
|
def new_look_at(cls, eye, at, up): |
|
z = (eye - at).normalized() |
|
x = up.cross(z).normalized() |
|
y = z.cross(x) |
|
|
|
m = cls.new_rotate_triple_axis(x, y, z) |
|
m.d, m.h, m.l = eye.x, eye.y, eye.z |
|
return m |
|
new_look_at = classmethod(new_look_at) |
|
|
|
def new_perspective(cls, fov_y, aspect, near, far): |
|
# from the gluPerspective man page |
|
f = 1 / math.tan(fov_y / 2) |
|
self = cls() |
|
assert near != 0.0 and near != far |
|
self.a = f / aspect |
|
self.f = f |
|
self.k = (far + near) / (near - far) |
|
self.l = 2 * far * near / (near - far) |
|
self.o = -1 |
|
self.p = 0 |
|
return self |
|
new_perspective = classmethod(new_perspective) |
|
|
|
def determinant(self): |
|
return ((self.a * self.f - self.e * self.b) |
|
* (self.k * self.p - self.o * self.l) |
|
- (self.a * self.j - self.i * self.b) |
|
* (self.g * self.p - self.o * self.h) |
|
+ (self.a * self.n - self.m * self.b) |
|
* (self.g * self.l - self.k * self.h) |
|
+ (self.e * self.j - self.i * self.f) |
|
* (self.c * self.p - self.o * self.d) |
|
- (self.e * self.n - self.m * self.f) |
|
* (self.c * self.l - self.k * self.d) |
|
+ (self.i * self.n - self.m * self.j) |
|
* (self.c * self.h - self.g * self.d)) |
|
|
|
def inverse(self): |
|
tmp = Matrix4() |
|
d = self.determinant(); |
|
|
|
if abs(d) < 0.001: |
|
# No inverse, return identity |
|
return tmp |
|
else: |
|
d = 1.0 / d; |
|
|
|
tmp.a = d * (self.f * (self.k * self.p - self.o * self.l) + self.j * (self.o * self.h - self.g * self.p) + self.n * (self.g * self.l - self.k * self.h)); |
|
tmp.e = d * (self.g * (self.i * self.p - self.m * self.l) + self.k * (self.m * self.h - self.e * self.p) + self.o * (self.e * self.l - self.i * self.h)); |
|
tmp.i = d * (self.h * (self.i * self.n - self.m * self.j) + self.l * (self.m * self.f - self.e * self.n) + self.p * (self.e * self.j - self.i * self.f)); |
|
tmp.m = d * (self.e * (self.n * self.k - self.j * self.o) + self.i * (self.f * self.o - self.n * self.g) + self.m * (self.j * self.g - self.f * self.k)); |
|
|
|
tmp.b = d * (self.j * (self.c * self.p - self.o * self.d) + self.n * (self.k * self.d - self.c * self.l) + self.b * (self.o * self.l - self.k * self.p)); |
|
tmp.f = d * (self.k * (self.a * self.p - self.m * self.d) + self.o * (self.i * self.d - self.a * self.l) + self.c * (self.m * self.l - self.i * self.p)); |
|
tmp.j = d * (self.l * (self.a * self.n - self.m * self.b) + self.p * (self.i * self.b - self.a * self.j) + self.d * (self.m * self.j - self.i * self.n)); |
|
tmp.n = d * (self.i * (self.n * self.c - self.b * self.o) + self.m * (self.b * self.k - self.j * self.c) + self.a * (self.j * self.o - self.n * self.k)); |
|
|
|
tmp.c = d * (self.n * (self.c * self.h - self.g * self.d) + self.b * (self.g * self.p - self.o * self.h) + self.f * (self.o * self.d - self.c * self.p)); |
|
tmp.g = d * (self.o * (self.a * self.h - self.e * self.d) + self.c * (self.e * self.p - self.m * self.h) + self.g * (self.m * self.d - self.a * self.p)); |
|
tmp.k = d * (self.p * (self.a * self.f - self.e * self.b) + self.d * (self.e * self.n - self.m * self.f) + self.h * (self.m * self.b - self.a * self.n)); |
|
tmp.o = d * (self.m * (self.f * self.c - self.b * self.g) + self.a * (self.n * self.g - self.f * self.o) + self.e * (self.b * self.o - self.n * self.c)); |
|
|
|
tmp.d = d * (self.b * (self.k * self.h - self.g * self.l) + self.f * (self.c * self.l - self.k * self.d) + self.j * (self.g * self.d - self.c * self.h)); |
|
tmp.h = d * (self.c * (self.i * self.h - self.e * self.l) + self.g * (self.a * self.l - self.i * self.d) + self.k * (self.e * self.d - self.a * self.h)); |
|
tmp.l = d * (self.d * (self.i * self.f - self.e * self.j) + self.h * (self.a * self.j - self.i * self.b) + self.l * (self.e * self.b - self.a * self.f)); |
|
tmp.p = d * (self.a * (self.f * self.k - self.j * self.g) + self.e * (self.j * self.c - self.b * self.k) + self.i * (self.b * self.g - self.f * self.c)); |
|
|
|
return tmp; |
|
|
|
|
|
class Quaternion: |
|
# All methods and naming conventions based off |
|
# http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions |
|
|
|
# w is the real part, (x, y, z) are the imaginary parts |
|
__slots__ = ['w', 'x', 'y', 'z'] |
|
|
|
def __init__(self, w=1, x=0, y=0, z=0): |
|
self.w = w |
|
self.x = x |
|
self.y = y |
|
self.z = z |
|
|
|
def __copy__(self): |
|
Q = Quaternion() |
|
Q.w = self.w |
|
Q.x = self.x |
|
Q.y = self.y |
|
Q.z = self.z |
|
return Q |
|
|
|
copy = __copy__ |
|
|
|
def __repr__(self): |
|
return 'Quaternion(real=%.2f, imag=<%.2f, %.2f, %.2f>)' % \ |
|
(self.w, self.x, self.y, self.z) |
|
|
|
def __mul__(self, other): |
|
if isinstance(other, Quaternion): |
|
Ax = self.x |
|
Ay = self.y |
|
Az = self.z |
|
Aw = self.w |
|
Bx = other.x |
|
By = other.y |
|
Bz = other.z |
|
Bw = other.w |
|
Q = Quaternion() |
|
Q.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx |
|
Q.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By |
|
Q.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz |
|
Q.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw |
|
return Q |
|
elif isinstance(other, Vector3): |
|
w = self.w |
|
x = self.x |
|
y = self.y |
|
z = self.z |
|
Vx = other.x |
|
Vy = other.y |
|
Vz = other.z |
|
ww = w * w |
|
w2 = w * 2 |
|
wx2 = w2 * x |
|
wy2 = w2 * y |
|
wz2 = w2 * z |
|
xx = x * x |
|
x2 = x * 2 |
|
xy2 = x2 * y |
|
xz2 = x2 * z |
|
yy = y * y |
|
yz2 = 2 * y * z |
|
zz = z * z |
|
return other.__class__(\ |
|
ww * Vx + wy2 * Vz - wz2 * Vy + \ |
|
xx * Vx + xy2 * Vy + xz2 * Vz - \ |
|
zz * Vx - yy * Vx, |
|
xy2 * Vx + yy * Vy + yz2 * Vz + \ |
|
wz2 * Vx - zz * Vy + ww * Vy - \ |
|
wx2 * Vz - xx * Vy, |
|
xz2 * Vx + yz2 * Vy + \ |
|
zz * Vz - wy2 * Vx - yy * Vz + \ |
|
wx2 * Vy - xx * Vz + ww * Vz) |
|
else: |
|
other = other.copy() |
|
other._apply_transform(self) |
|
return other |
|
|
|
def __imul__(self, other): |
|
assert isinstance(other, Quaternion) |
|
Ax = self.x |
|
Ay = self.y |
|
Az = self.z |
|
Aw = self.w |
|
Bx = other.x |
|
By = other.y |
|
Bz = other.z |
|
Bw = other.w |
|
self.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx |
|
self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By |
|
self.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz |
|
self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw |
|
return self |
|
|
|
def __abs__(self): |
|
return math.sqrt(self.w ** 2 + \ |
|
self.x ** 2 + \ |
|
self.y ** 2 + \ |
|
self.z ** 2) |
|
|
|
magnitude = __abs__ |
|
|
|
def magnitude_squared(self): |
|
return self.w ** 2 + \ |
|
self.x ** 2 + \ |
|
self.y ** 2 + \ |
|
self.z ** 2 |
|
|
|
def identity(self): |
|
self.w = 1 |
|
self.x = 0 |
|
self.y = 0 |
|
self.z = 0 |
|
return self |
|
|
|
def rotate_axis(self, angle, axis): |
|
self *= Quaternion.new_rotate_axis(angle, axis) |
|
return self |
|
|
|
def rotate_euler(self, heading, attitude, bank): |
|
self *= Quaternion.new_rotate_euler(heading, attitude, bank) |
|
return self |
|
|
|
def rotate_matrix(self, m): |
|
self *= Quaternion.new_rotate_matrix(m) |
|
return self |
|
|
|
def conjugated(self): |
|
Q = Quaternion() |
|
Q.w = self.w |
|
Q.x = -self.x |
|
Q.y = -self.y |
|
Q.z = -self.z |
|
return Q |
|
|
|
def normalize(self): |
|
d = self.magnitude() |
|
if d != 0: |
|
self.w /= d |
|
self.x /= d |
|
self.y /= d |
|
self.z /= d |
|
return self |
|
|
|
def normalized(self): |
|
d = self.magnitude() |
|
if d != 0: |
|
Q = Quaternion() |
|
Q.w = self.w / d |
|
Q.x = self.x / d |
|
Q.y = self.y / d |
|
Q.z = self.z / d |
|
return Q |
|
else: |
|
return self.copy() |
|
|
|
def get_angle_axis(self): |
|
if self.w > 1: |
|
self = self.normalized() |
|
angle = 2 * math.acos(self.w) |
|
s = math.sqrt(1 - self.w ** 2) |
|
if s < 0.001: |
|
return angle, Vector3(1, 0, 0) |
|
else: |
|
return angle, Vector3(self.x / s, self.y / s, self.z / s) |
|
|
|
def get_euler(self): |
|
t = self.x * self.y + self.z * self.w |
|
if t > 0.4999: |
|
heading = 2 * math.atan2(self.x, self.w) |
|
attitude = math.pi / 2 |
|
bank = 0 |
|
elif t < -0.4999: |
|
heading = -2 * math.atan2(self.x, self.w) |
|
attitude = -math.pi / 2 |
|
bank = 0 |
|
else: |
|
sqx = self.x ** 2 |
|
sqy = self.y ** 2 |
|
sqz = self.z ** 2 |
|
heading = math.atan2(2 * self.y * self.w - 2 * self.x * self.z, |
|
1 - 2 * sqy - 2 * sqz) |
|
attitude = math.asin(2 * t) |
|
bank = math.atan2(2 * self.x * self.w - 2 * self.y * self.z, |
|
1 - 2 * sqx - 2 * sqz) |
|
return heading, attitude, bank |
|
|
|
def get_matrix(self): |
|
xx = self.x ** 2 |
|
xy = self.x * self.y |
|
xz = self.x * self.z |
|
xw = self.x * self.w |
|
yy = self.y ** 2 |
|
yz = self.y * self.z |
|
yw = self.y * self.w |
|
zz = self.z ** 2 |
|
zw = self.z * self.w |
|
M = Matrix4() |
|
M.a = 1 - 2 * (yy + zz) |
|
M.b = 2 * (xy - zw) |
|
M.c = 2 * (xz + yw) |
|
M.e = 2 * (xy + zw) |
|
M.f = 1 - 2 * (xx + zz) |
|
M.g = 2 * (yz - xw) |
|
M.i = 2 * (xz - yw) |
|
M.j = 2 * (yz + xw) |
|
M.k = 1 - 2 * (xx + yy) |
|
return M |
|
|
|
# Static constructors |
|
def new_identity(cls): |
|
return cls() |
|
new_identity = classmethod(new_identity) |
|
|
|
def new_rotate_axis(cls, angle, axis): |
|
assert(isinstance(axis, Vector3)) |
|
axis = axis.normalized() |
|
s = math.sin(angle / 2) |
|
Q = cls() |
|
Q.w = math.cos(angle / 2) |
|
Q.x = axis.x * s |
|
Q.y = axis.y * s |
|
Q.z = axis.z * s |
|
return Q |
|
new_rotate_axis = classmethod(new_rotate_axis) |
|
|
|
def new_rotate_euler(cls, heading, attitude, bank): |
|
Q = cls() |
|
c1 = math.cos(heading / 2) |
|
s1 = math.sin(heading / 2) |
|
c2 = math.cos(attitude / 2) |
|
s2 = math.sin(attitude / 2) |
|
c3 = math.cos(bank / 2) |
|
s3 = math.sin(bank / 2) |
|
|
|
Q.w = c1 * c2 * c3 - s1 * s2 * s3 |
|
Q.x = s1 * s2 * c3 + c1 * c2 * s3 |
|
Q.y = s1 * c2 * c3 + c1 * s2 * s3 |
|
Q.z = c1 * s2 * c3 - s1 * c2 * s3 |
|
return Q |
|
new_rotate_euler = classmethod(new_rotate_euler) |
|
|
|
def new_rotate_matrix(cls, m): |
|
if m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] > 0.00000001: |
|
t = m[0*4 + 0] + m[1*4 + 1] + m[2*4 + 2] + 1.0 |
|
s = 0.5/math.sqrt(t) |
|
|
|
return cls( |
|
s*t, |
|
(m[1*4 + 2] - m[2*4 + 1])*s, |
|
(m[2*4 + 0] - m[0*4 + 2])*s, |
|
(m[0*4 + 1] - m[1*4 + 0])*s |
|
) |
|
|
|
elif m[0*4 + 0] > m[1*4 + 1] and m[0*4 + 0] > m[2*4 + 2]: |
|
t = m[0*4 + 0] - m[1*4 + 1] - m[2*4 + 2] + 1.0 |
|
s = 0.5/math.sqrt(t) |
|
|
|
return cls( |
|
(m[1*4 + 2] - m[2*4 + 1])*s, |
|
s*t, |
|
(m[0*4 + 1] + m[1*4 + 0])*s, |
|
(m[2*4 + 0] + m[0*4 + 2])*s |
|
) |
|
|
|
elif m[1*4 + 1] > m[2*4 + 2]: |
|
t = -m[0*4 + 0] + m[1*4 + 1] - m[2*4 + 2] + 1.0 |
|
s = 0.5/math.sqrt(t) |
|
|
|
return cls( |
|
(m[2*4 + 0] - m[0*4 + 2])*s, |
|
(m[0*4 + 1] + m[1*4 + 0])*s, |
|
s*t, |
|
(m[1*4 + 2] + m[2*4 + 1])*s |
|
) |
|
|
|
else: |
|
t = -m[0*4 + 0] - m[1*4 + 1] + m[2*4 + 2] + 1.0 |
|
s = 0.5/math.sqrt(t) |
|
|
|
return cls( |
|
(m[0*4 + 1] - m[1*4 + 0])*s, |
|
(m[2*4 + 0] + m[0*4 + 2])*s, |
|
(m[1*4 + 2] + m[2*4 + 1])*s, |
|
s*t |
|
) |
|
new_rotate_matrix = classmethod(new_rotate_matrix) |
|
|
|
def new_interpolate(cls, q1, q2, t): |
|
assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion) |
|
Q = cls() |
|
|
|
costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z |
|
if costheta < 0.: |
|
costheta = -costheta |
|
q1 = q1.conjugated() |
|
elif costheta > 1: |
|
costheta = 1 |
|
|
|
theta = math.acos(costheta) |
|
if abs(theta) < 0.01: |
|
Q.w = q2.w |
|
Q.x = q2.x |
|
Q.y = q2.y |
|
Q.z = q2.z |
|
return Q |
|
|
|
sintheta = math.sqrt(1.0 - costheta * costheta) |
|
if abs(sintheta) < 0.01: |
|
Q.w = (q1.w + q2.w) * 0.5 |
|
Q.x = (q1.x + q2.x) * 0.5 |
|
Q.y = (q1.y + q2.y) * 0.5 |
|
Q.z = (q1.z + q2.z) * 0.5 |
|
return Q |
|
|
|
ratio1 = math.sin((1 - t) * theta) / sintheta |
|
ratio2 = math.sin(t * theta) / sintheta |
|
|
|
Q.w = q1.w * ratio1 + q2.w * ratio2 |
|
Q.x = q1.x * ratio1 + q2.x * ratio2 |
|
Q.y = q1.y * ratio1 + q2.y * ratio2 |
|
Q.z = q1.z * ratio1 + q2.z * ratio2 |
|
return Q |
|
new_interpolate = classmethod(new_interpolate) |
|
|
|
# Geometry |
|
# Much maths thanks to Paul Bourke, http://astronomy.swin.edu.au/~pbourke |
|
# --------------------------------------------------------------------------- |
|
|
|
class Geometry: |
|
def _connect_unimplemented(self, other): |
|
raise AttributeError, 'Cannot connect %s to %s' % \ |
|
(self.__class__, other.__class__) |
|
|
|
def _intersect_unimplemented(self, other): |
|
raise AttributeError, 'Cannot intersect %s and %s' % \ |
|
(self.__class__, other.__class__) |
|
|
|
_intersect_point2 = _intersect_unimplemented |
|
_intersect_line2 = _intersect_unimplemented |
|
_intersect_circle = _intersect_unimplemented |
|
_connect_point2 = _connect_unimplemented |
|
_connect_line2 = _connect_unimplemented |
|
_connect_circle = _connect_unimplemented |
|
|
|
_intersect_point3 = _intersect_unimplemented |
|
_intersect_line3 = _intersect_unimplemented |
|
_intersect_sphere = _intersect_unimplemented |
|
_intersect_plane = _intersect_unimplemented |
|
_connect_point3 = _connect_unimplemented |
|
_connect_line3 = _connect_unimplemented |
|
_connect_sphere = _connect_unimplemented |
|
_connect_plane = _connect_unimplemented |
|
|
|
def intersect(self, other): |
|
raise NotImplementedError |
|
|
|
def connect(self, other): |
|
raise NotImplementedError |
|
|
|
def distance(self, other): |
|
c = self.connect(other) |
|
if c: |
|
return c.length |
|
return 0.0 |
|
|
|
def _intersect_point2_circle(P, C): |
|
return abs(P - C.c) <= C.r |
|
|
|
def _intersect_line2_line2(A, B): |
|
d = B.v.y * A.v.x - B.v.x * A.v.y |
|
if d == 0: |
|
return None |
|
|
|
dy = A.p.y - B.p.y |
|
dx = A.p.x - B.p.x |
|
ua = (B.v.x * dy - B.v.y * dx) / d |
|
if not A._u_in(ua): |
|
return None |
|
ub = (A.v.x * dy - A.v.y * dx) / d |
|
if not B._u_in(ub): |
|
return None |
|
|
|
return Point2(A.p.x + ua * A.v.x, |
|
A.p.y + ua * A.v.y) |
|
|
|
def _intersect_line2_circle(L, C): |
|
a = L.v.magnitude_squared() |
|
b = 2 * (L.v.x * (L.p.x - C.c.x) + \ |
|
L.v.y * (L.p.y - C.c.y)) |
|
c = C.c.magnitude_squared() + \ |
|
L.p.magnitude_squared() - \ |
|
2 * C.c.dot(L.p) - \ |
|
C.r ** 2 |
|
det = b ** 2 - 4 * a * c |
|
if det < 0: |
|
return None |
|
sq = math.sqrt(det) |
|
u1 = (-b + sq) / (2 * a) |
|
u2 = (-b - sq) / (2 * a) |
|
if not L._u_in(u1): |
|
u1 = max(min(u1, 1.0), 0.0) |
|
if not L._u_in(u2): |
|
u2 = max(min(u2, 1.0), 0.0) |
|
|
|
# Tangent |
|
if u1 == u2: |
|
return Point2(L.p.x + u1 * L.v.x, |
|
L.p.y + u1 * L.v.y) |
|
|
|
return LineSegment2(Point2(L.p.x + u1 * L.v.x, |
|
L.p.y + u1 * L.v.y), |
|
Point2(L.p.x + u2 * L.v.x, |
|
L.p.y + u2 * L.v.y)) |
|
|
|
def _connect_point2_line2(P, L): |
|
d = L.v.magnitude_squared() |
|
assert d != 0 |
|
u = ((P.x - L.p.x) * L.v.x + \ |
|
(P.y - L.p.y) * L.v.y) / d |
|
if not L._u_in(u): |
|
u = max(min(u, 1.0), 0.0) |
|
return LineSegment2(P, |
|
Point2(L.p.x + u * L.v.x, |
|
L.p.y + u * L.v.y)) |
|
|
|
def _connect_point2_circle(P, C): |
|
v = P - C.c |
|
v.normalize() |
|
v *= C.r |
|
return LineSegment2(P, Point2(C.c.x + v.x, C.c.y + v.y)) |
|
|
|
def _connect_line2_line2(A, B): |
|
d = B.v.y * A.v.x - B.v.x * A.v.y |
|
if d == 0: |
|
# Parallel, connect an endpoint with a line |
|
if isinstance(B, Ray2) or isinstance(B, LineSegment2): |
|
p1, p2 = _connect_point2_line2(B.p, A) |
|
return p2, p1 |
|
# No endpoint (or endpoint is on A), possibly choose arbitrary point |
|
# on line. |
|
return _connect_point2_line2(A.p, B) |
|
|
|
dy = A.p.y - B.p.y |
|
dx = A.p.x - B.p.x |
|
ua = (B.v.x * dy - B.v.y * dx) / d |
|
if not A._u_in(ua): |
|
ua = max(min(ua, 1.0), 0.0) |
|
ub = (A.v.x * dy - A.v.y * dx) / d |
|
if not B._u_in(ub): |
|
ub = max(min(ub, 1.0), 0.0) |
|
|
|
return LineSegment2(Point2(A.p.x + ua * A.v.x, A.p.y + ua * A.v.y), |
|
Point2(B.p.x + ub * B.v.x, B.p.y + ub * B.v.y)) |
|
|
|
def _connect_circle_line2(C, L): |
|
d = L.v.magnitude_squared() |
|
assert d != 0 |
|
u = ((C.c.x - L.p.x) * L.v.x + (C.c.y - L.p.y) * L.v.y) / d |
|
if not L._u_in(u): |
|
u = max(min(u, 1.0), 0.0) |
|
point = Point2(L.p.x + u * L.v.x, L.p.y + u * L.v.y) |
|
v = (point - C.c) |
|
v.normalize() |
|
v *= C.r |
|
return LineSegment2(Point2(C.c.x + v.x, C.c.y + v.y), point) |
|
|
|
def _connect_circle_circle(A, B): |
|
v = B.c - A.c |
|
v.normalize() |
|
return LineSegment2(Point2(A.c.x + v.x * A.r, A.c.y + v.y * A.r), |
|
Point2(B.c.x - v.x * B.r, B.c.y - v.y * B.r)) |
|
|
|
|
|
class Point2(Vector2, Geometry): |
|
def __repr__(self): |
|
return 'Point2(%.2f, %.2f)' % (self.x, self.y) |
|
|
|
def intersect(self, other): |
|
return other._intersect_point2(self) |
|
|
|
def _intersect_circle(self, other): |
|
return _intersect_point2_circle(self, other) |
|
|
|
def connect(self, other): |
|
return other._connect_point2(self) |
|
|
|
def _connect_point2(self, other): |
|
return LineSegment2(other, self) |
|
|
|
def _connect_line2(self, other): |
|
c = _connect_point2_line2(self, other) |
|
if c: |
|
return c._swap() |
|
|
|
def _connect_circle(self, other): |
|
c = _connect_point2_circle(self, other) |
|
if c: |
|
return c._swap() |
|
|
|
class Line2(Geometry): |
|
__slots__ = ['p', 'v'] |
|
|
|
def __init__(self, *args): |
|
if len(args) == 3: |
|
assert isinstance(args[0], Point2) and \ |
|
isinstance(args[1], Vector2) and \ |
|
type(args[2]) == float |
|
self.p = args[0].copy() |
|
self.v = args[1] * args[2] / abs(args[1]) |
|
elif len(args) == 2: |
|
if isinstance(args[0], Point2) and isinstance(args[1], Point2): |
|
self.p = args[0].copy() |
|
self.v = args[1] - args[0] |
|
elif isinstance(args[0], Point2) and isinstance(args[1], Vector2): |
|
self.p = args[0].copy() |
|
self.v = args[1].copy() |
|
else: |
|
raise AttributeError, '%r' % (args,) |
|
elif len(args) == 1: |
|
if isinstance(args[0], Line2): |
|
self.p = args[0].p.copy() |
|
self.v = args[0].v.copy() |
|
else: |
|
raise AttributeError, '%r' % (args,) |
|
else: |
|
raise AttributeError, '%r' % (args,) |
|
|
|
if not self.v: |
|
raise AttributeError, 'Line has zero-length vector' |
|
|
|
def __copy__(self): |
|
return self.__class__(self.p, self.v) |
|
|
|
copy = __copy__ |
|
|
|
def __repr__(self): |
|
return 'Line2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \ |
|
(self.p.x, self.p.y, self.v.x, self.v.y) |
|
|
|
p1 = property(lambda self: self.p) |
|
p2 = property(lambda self: Point2(self.p.x + self.v.x, |
|
self.p.y + self.v.y)) |
|
|
|
def _apply_transform(self, t): |
|
self.p = t * self.p |
|
self.v = t * self.v |
|
|
|
def _u_in(self, u): |
|
return True |
|
|
|
def intersect(self, other): |
|
return other._intersect_line2(self) |
|
|
|
def _intersect_line2(self, other): |
|
return _intersect_line2_line2(self, other) |
|
|
|
def _intersect_circle(self, other): |
|
return _intersect_line2_circle(self, other) |
|
|
|
def connect(self, other): |
|
return other._connect_line2(self) |
|
|
|
def _connect_point2(self, other): |
|
return _connect_point2_line2(other, self) |
|
|
|
def _connect_line2(self, other): |
|
return _connect_line2_line2(other, self) |
|
|
|
def _connect_circle(self, other): |
|
return _connect_circle_line2(other, self) |
|
|
|
class Ray2(Line2): |
|
def __repr__(self): |
|
return 'Ray2(<%.2f, %.2f> + u<%.2f, %.2f>)' % \ |
|
(self.p.x, self.p.y, self.v.x, self.v.y) |
|
|
|
def _u_in(self, u): |
|
return u >= 0.0 |
|
|
|
class LineSegment2(Line2): |
|
def __repr__(self): |
|
return 'LineSegment2(<%.2f, %.2f> to <%.2f, %.2f>)' % \ |
|
(self.p.x, self.p.y, self.p.x + self.v.x, self.p.y + self.v.y) |
|
|
|
def _u_in(self, u): |
|
return u >= 0.0 and u <= 1.0 |
|
|
|
def __abs__(self): |
|
return abs(self.v) |
|
|
|
def magnitude_squared(self): |
|
return self.v.magnitude_squared() |
|
|
|
def _swap(self): |
|
# used by connect methods to switch order of points |
|
self.p = self.p2 |
|
self.v *= -1 |
|
return self |
|
|
|
length = property(lambda self: abs(self.v)) |
|
|
|
class Circle(Geometry): |
|
__slots__ = ['c', 'r'] |
|
|
|
def __init__(self, center, radius): |
|
assert isinstance(center, Vector2) and type(radius) == float |
|
self.c = center.copy() |
|
self.r = radius |
|
|
|
def __copy__(self): |
|
return self.__class__(self.c, self.r) |
|
|
|
copy = __copy__ |
|
|
|
def __repr__(self): |
|
return 'Circle(<%.2f, %.2f>, radius=%.2f)' % \ |
|
(self.c.x, self.c.y, self.r) |
|
|
|
def _apply_transform(self, t): |
|
self.c = t * self.c |
|
|
|
def intersect(self, other): |
|
return other._intersect_circle(self) |
|
|
|
def _intersect_point2(self, other): |
|
return _intersect_point2_circle(other, self) |
|
|
|
def _intersect_line2(self, other): |
|
return _intersect_line2_circle(other, self) |
|
|
|
def connect(self, other): |
|
return other._connect_circle(self) |
|
|
|
def _connect_point2(self, other): |
|
return _connect_point2_circle(other, self) |
|
|
|
def _connect_line2(self, other): |
|
c = _connect_circle_line2(self, other) |
|
if c: |
|
return c._swap() |
|
|
|
def _connect_circle(self, other): |
|
return _connect_circle_circle(other, self) |
|
|
|
# 3D Geometry |
|
# ------------------------------------------------------------------------- |
|
|
|
def _connect_point3_line3(P, L): |
|
d = L.v.magnitude_squared() |
|
assert d != 0 |
|
u = ((P.x - L.p.x) * L.v.x + \ |
|
(P.y - L.p.y) * L.v.y + \ |
|
(P.z - L.p.z) * L.v.z) / d |
|
if not L._u_in(u): |
|
u = max(min(u, 1.0), 0.0) |
|
return LineSegment3(P, Point3(L.p.x + u * L.v.x, |
|
L.p.y + u * L.v.y, |
|
L.p.z + u * L.v.z)) |
|
|
|
def _connect_point3_sphere(P, S): |
|
v = P - S.c |
|
v.normalize() |
|
v *= S.r |
|
return LineSegment3(P, Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z)) |
|
|
|
def _connect_point3_plane(p, plane): |
|
n = plane.n.normalized() |
|
d = p.dot(plane.n) - plane.k |
|
return LineSegment3(p, Point3(p.x - n.x * d, p.y - n.y * d, p.z - n.z * d)) |
|
|
|
def _connect_line3_line3(A, B): |
|
assert A.v and B.v |
|
p13 = A.p - B.p |
|
d1343 = p13.dot(B.v) |
|
d4321 = B.v.dot(A.v) |
|
d1321 = p13.dot(A.v) |
|
d4343 = B.v.magnitude_squared() |
|
denom = A.v.magnitude_squared() * d4343 - d4321 ** 2 |
|
if denom == 0: |
|
# Parallel, connect an endpoint with a line |
|
if isinstance(B, Ray3) or isinstance(B, LineSegment3): |
|
return _connect_point3_line3(B.p, A)._swap() |
|
# No endpoint (or endpoint is on A), possibly choose arbitrary |
|
# point on line. |
|
return _connect_point3_line3(A.p, B) |
|
|
|
ua = (d1343 * d4321 - d1321 * d4343) / denom |
|
if not A._u_in(ua): |
|
ua = max(min(ua, 1.0), 0.0) |
|
ub = (d1343 + d4321 * ua) / d4343 |
|
if not B._u_in(ub): |
|
ub = max(min(ub, 1.0), 0.0) |
|
return LineSegment3(Point3(A.p.x + ua * A.v.x, |
|
A.p.y + ua * A.v.y, |
|
A.p.z + ua * A.v.z), |
|
Point3(B.p.x + ub * B.v.x, |
|
B.p.y + ub * B.v.y, |
|
B.p.z + ub * B.v.z)) |
|
|
|
def _connect_line3_plane(L, P): |
|
d = P.n.dot(L.v) |
|
if not d: |
|
# Parallel, choose an endpoint |
|
return _connect_point3_plane(L.p, P) |
|
u = (P.k - P.n.dot(L.p)) / d |
|
if not L._u_in(u): |
|
# intersects out of range, choose nearest endpoint |
|
u = max(min(u, 1.0), 0.0) |
|
return _connect_point3_plane(Point3(L.p.x + u * L.v.x, |
|
L.p.y + u * L.v.y, |
|
L.p.z + u * L.v.z), P) |
|
# Intersection |
|
return None |
|
|
|
def _connect_sphere_line3(S, L): |
|
d = L.v.magnitude_squared() |
|
assert d != 0 |
|
u = ((S.c.x - L.p.x) * L.v.x + \ |
|
(S.c.y - L.p.y) * L.v.y + \ |
|
(S.c.z - L.p.z) * L.v.z) / d |
|
if not L._u_in(u): |
|
u = max(min(u, 1.0), 0.0) |
|
point = Point3(L.p.x + u * L.v.x, L.p.y + u * L.v.y, L.p.z + u * L.v.z) |
|
v = (point - S.c) |
|
v.normalize() |
|
v *= S.r |
|
return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z), |
|
point) |
|
|
|
def _connect_sphere_sphere(A, B): |
|
v = B.c - A.c |
|
v.normalize() |
|
return LineSegment3(Point3(A.c.x + v.x * A.r, |
|
A.c.y + v.y * A.r, |
|
A.c.x + v.z * A.r), |
|
Point3(B.c.x + v.x * B.r, |
|
B.c.y + v.y * B.r, |
|
B.c.x + v.z * B.r)) |
|
|
|
def _connect_sphere_plane(S, P): |
|
c = _connect_point3_plane(S.c, P) |
|
if not c: |
|
return None |
|
p2 = c.p2 |
|
v = p2 - S.c |
|
v.normalize() |
|
v *= S.r |
|
return LineSegment3(Point3(S.c.x + v.x, S.c.y + v.y, S.c.z + v.z), |
|
p2) |
|
|
|
def _connect_plane_plane(A, B): |
|
if A.n.cross(B.n): |
|
# Planes intersect |
|
return None |
|
else: |
|
# Planes are parallel, connect to arbitrary point |
|
return _connect_point3_plane(A._get_point(), B) |
|
|
|
def _intersect_point3_sphere(P, S): |
|
return abs(P - S.c) <= S.r |
|
|
|
def _intersect_line3_sphere(L, S): |
|
a = L.v.magnitude_squared() |
|
b = 2 * (L.v.x * (L.p.x - S.c.x) + \ |
|
L.v.y * (L.p.y - S.c.y) + \ |
|
L.v.z * (L.p.z - S.c.z)) |
|
c = S.c.magnitude_squared() + \ |
|
L.p.magnitude_squared() - \ |
|
2 * S.c.dot(L.p) - \ |
|
S.r ** 2 |
|
det = b ** 2 - 4 * a * c |
|
if det < 0: |
|
return None |
|
sq = math.sqrt(det) |
|
u1 = (-b + sq) / (2 * a) |
|
u2 = (-b - sq) / (2 * a) |
|
if not L._u_in(u1): |
|
u1 = max(min(u1, 1.0), 0.0) |
|
if not L._u_in(u2): |
|
u2 = max(min(u2, 1.0), 0.0) |
|
return LineSegment3(Point3(L.p.x + u1 * L.v.x, |
|
L.p.y + u1 * L.v.y, |
|
L.p.z + u1 * L.v.z), |
|
Point3(L.p.x + u2 * L.v.x, |
|
L.p.y + u2 * L.v.y, |
|
L.p.z + u2 * L.v.z)) |
|
|
|
def _intersect_line3_plane(L, P): |
|
d = P.n.dot(L.v) |
|
if not d: |
|
# Parallel |
|
return None |
|
u = (P.k - P.n.dot(L.p)) / d |
|
if not L._u_in(u): |
|
return None |
|
return Point3(L.p.x + u * L.v.x, |
|
L.p.y + u * L.v.y, |
|
L.p.z + u * L.v.z) |
|
|
|
def _intersect_plane_plane(A, B): |
|
n1_m = A.n.magnitude_squared() |
|
n2_m = B.n.magnitude_squared() |
|
n1d2 = A.n.dot(B.n) |
|
det = n1_m * n2_m - n1d2 ** 2 |
|
if det == 0: |
|
# Parallel |
|
return None |
|
c1 = (A.k * n2_m - B.k * n1d2) / det |
|
c2 = (B.k * n1_m - A.k * n1d2) / det |
|
return Line3(Point3(c1 * A.n.x + c2 * B.n.x, |
|
c1 * A.n.y + c2 * B.n.y, |
|
c1 * A.n.z + c2 * B.n.z), |
|
A.n.cross(B.n)) |
|
|
|
class Point3(Vector3, Geometry): |
|
def __repr__(self): |
|
return 'Point3(%.2f, %.2f, %.2f)' % (self.x, self.y, self.z) |
|
|
|
def intersect(self, other): |
|
return other._intersect_point3(self) |
|
|
|
def _intersect_sphere(self, other): |
|
return _intersect_point3_sphere(self, other) |
|
|
|
def connect(self, other): |
|
return other._connect_point3(self) |
|
|
|
def _connect_point3(self, other): |
|
if self != other: |
|
return LineSegment3(other, self) |
|
return None |
|
|
|
def _connect_line3(self, other): |
|
c = _connect_point3_line3(self, other) |
|
if c: |
|
return c._swap() |
|
|
|
def _connect_sphere(self, other): |
|
c = _connect_point3_sphere(self, other) |
|
if c: |
|
return c._swap() |
|
|
|
def _connect_plane(self, other): |
|
c = _connect_point3_plane(self, other) |
|
if c: |
|
return c._swap() |
|
|
|
class Line3: |
|
__slots__ = ['p', 'v'] |
|
|
|
def __init__(self, *args): |
|
if len(args) == 3: |
|
assert isinstance(args[0], Point3) and \ |
|
isinstance(args[1], Vector3) and \ |
|
type(args[2]) == float |
|
self.p = args[0].copy() |
|
self.v = args[1] * args[2] / abs(args[1]) |
|
elif len(args) == 2: |
|
if isinstance(args[0], Point3) and isinstance(args[1], Point3): |
|
self.p = args[0].copy() |
|
self.v = args[1] - args[0] |
|
elif isinstance(args[0], Point3) and isinstance(args[1], Vector3): |
|
self.p = args[0].copy() |
|
self.v = args[1].copy() |
|
else: |
|
raise AttributeError, '%r' % (args,) |
|
elif len(args) == 1: |
|
if isinstance(args[0], Line3): |
|
self.p = args[0].p.copy() |
|
self.v = args[0].v.copy() |
|
else: |
|
raise AttributeError, '%r' % (args,) |
|
else: |
|
raise AttributeError, '%r' % (args,) |
|
|
|
# XXX This is annoying. |
|
#if not self.v: |
|
# raise AttributeError, 'Line has zero-length vector' |
|
|
|
def __copy__(self): |
|
return self.__class__(self.p, self.v) |
|
|
|
copy = __copy__ |
|
|
|
def __repr__(self): |
|
return 'Line3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \ |
|
(self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z) |
|
|
|
p1 = property(lambda self: self.p) |
|
p2 = property(lambda self: Point3(self.p.x + self.v.x, |
|
self.p.y + self.v.y, |
|
self.p.z + self.v.z)) |
|
|
|
def _apply_transform(self, t): |
|
self.p = t * self.p |
|
self.v = t * self.v |
|
|
|
def _u_in(self, u): |
|
return True |
|
|
|
def intersect(self, other): |
|
return other._intersect_line3(self) |
|
|
|
def _intersect_sphere(self, other): |
|
return _intersect_line3_sphere(self, other) |
|
|
|
def _intersect_plane(self, other): |
|
return _intersect_line3_plane(self, other) |
|
|
|
def connect(self, other): |
|
return other._connect_line3(self) |
|
|
|
def _connect_point3(self, other): |
|
return _connect_point3_line3(other, self) |
|
|
|
def _connect_line3(self, other): |
|
return _connect_line3_line3(other, self) |
|
|
|
def _connect_sphere(self, other): |
|
return _connect_sphere_line3(other, self) |
|
|
|
def _connect_plane(self, other): |
|
c = _connect_line3_plane(self, other) |
|
if c: |
|
return c |
|
|
|
class Ray3(Line3): |
|
def __repr__(self): |
|
return 'Ray3(<%.2f, %.2f, %.2f> + u<%.2f, %.2f, %.2f>)' % \ |
|
(self.p.x, self.p.y, self.p.z, self.v.x, self.v.y, self.v.z) |
|
|
|
def _u_in(self, u): |
|
return u >= 0.0 |
|
|
|
class LineSegment3(Line3): |
|
def __repr__(self): |
|
return 'LineSegment3(<%.2f, %.2f, %.2f> to <%.2f, %.2f, %.2f>)' % \ |
|
(self.p.x, self.p.y, self.p.z, |
|
self.p.x + self.v.x, self.p.y + self.v.y, self.p.z + self.v.z) |
|
|
|
def _u_in(self, u): |
|
return u >= 0.0 and u <= 1.0 |
|
|
|
def __abs__(self): |
|
return abs(self.v) |
|
|
|
def magnitude_squared(self): |
|
return self.v.magnitude_squared() |
|
|
|
def _swap(self): |
|
# used by connect methods to switch order of points |
|
self.p = self.p2 |
|
self.v *= -1 |
|
return self |
|
|
|
length = property(lambda self: abs(self.v)) |
|
|
|
class Sphere: |
|
__slots__ = ['c', 'r'] |
|
|
|
def __init__(self, center, radius): |
|
assert isinstance(center, Vector3) and type(radius) == float |
|
self.c = center.copy() |
|
self.r = radius |
|
|
|
def __copy__(self): |
|
return self.__class__(self.c, self.r) |
|
|
|
copy = __copy__ |
|
|
|
def __repr__(self): |
|
return 'Sphere(<%.2f, %.2f, %.2f>, radius=%.2f)' % \ |
|
(self.c.x, self.c.y, self.c.z, self.r) |
|
|
|
def _apply_transform(self, t): |
|
self.c = t * self.c |
|
|
|
def intersect(self, other): |
|
return other._intersect_sphere(self) |
|
|
|
def _intersect_point3(self, other): |
|
return _intersect_point3_sphere(other, self) |
|
|
|
def _intersect_line3(self, other): |
|
return _intersect_line3_sphere(other, self) |
|
|
|
def connect(self, other): |
|
return other._connect_sphere(self) |
|
|
|
def _connect_point3(self, other): |
|
return _connect_point3_sphere(other, self) |
|
|
|
def _connect_line3(self, other): |
|
c = _connect_sphere_line3(self, other) |
|
if c: |
|
return c._swap() |
|
|
|
def _connect_sphere(self, other): |
|
return _connect_sphere_sphere(other, self) |
|
|
|
def _connect_plane(self, other): |
|
c = _connect_sphere_plane(self, other) |
|
if c: |
|
return c |
|
|
|
class Plane: |
|
# n.p = k, where n is normal, p is point on plane, k is constant scalar |
|
__slots__ = ['n', 'k'] |
|
|
|
def __init__(self, *args): |
|
if len(args) == 3: |
|
assert isinstance(args[0], Point3) and \ |
|
isinstance(args[1], Point3) and \ |
|
isinstance(args[2], Point3) |
|
self.n = (args[1] - args[0]).cross(args[2] - args[0]) |
|
self.n.normalize() |
|
self.k = self.n.dot(args[0]) |
|
elif len(args) == 2: |
|
if isinstance(args[0], Point3) and isinstance(args[1], Vector3): |
|
self.n = args[1].normalized() |
|
self.k = self.n.dot(args[0]) |
|
elif isinstance(args[0], Vector3) and type(args[1]) == float: |
|
self.n = args[0].normalized() |
|
self.k = args[1] |
|
else: |
|
raise AttributeError, '%r' % (args,) |
|
|
|
else: |
|
raise AttributeError, '%r' % (args,) |
|
|
|
if not self.n: |
|
raise AttributeError, 'Points on plane are colinear' |
|
|
|
def __copy__(self): |
|
return self.__class__(self.n, self.k) |
|
|
|
copy = __copy__ |
|
|
|
def __repr__(self): |
|
return 'Plane(<%.2f, %.2f, %.2f>.p = %.2f)' % \ |
|
(self.n.x, self.n.y, self.n.z, self.k) |
|
|
|
def _get_point(self): |
|
# Return an arbitrary point on the plane |
|
if self.n.z: |
|
return Point3(0., 0., self.k / self.n.z) |
|
elif self.n.y: |
|
return Point3(0., self.k / self.n.y, 0.) |
|
else: |
|
return Point3(self.k / self.n.x, 0., 0.) |
|
|
|
def _apply_transform(self, t): |
|
p = t * self._get_point() |
|
self.n = t * self.n |
|
self.k = self.n.dot(p) |
|
|
|
def intersect(self, other): |
|
return other._intersect_plane(self) |
|
|
|
def _intersect_line3(self, other): |
|
return _intersect_line3_plane(other, self) |
|
|
|
def _intersect_plane(self, other): |
|
return _intersect_plane_plane(self, other) |
|
|
|
def connect(self, other): |
|
return other._connect_plane(self) |
|
|
|
def _connect_point3(self, other): |
|
return _connect_point3_plane(other, self) |
|
|
|
def _connect_line3(self, other): |
|
return _connect_line3_plane(other, self) |
|
|
|
def _connect_sphere(self, other): |
|
return _connect_sphere_plane(other, self) |
|
|
|
def _connect_plane(self, other): |
|
return _connect_plane_plane(other, self)
|
|
|