You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1621 lines
56 KiB
1621 lines
56 KiB
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- |
|
|
|
#define THISFIRMWARE "ArduCopter V3.2-rc2" |
|
/* |
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
|
|
You should have received a copy of the GNU General Public License |
|
along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
*/ |
|
/* |
|
* ArduCopter Version 3.0 |
|
* Creator: Jason Short |
|
* Lead Developer: Randy Mackay |
|
* Lead Tester: Marco Robustini |
|
* Based on code and ideas from the Arducopter team: Leonard Hall, Andrew Tridgell, Robert Lefebvre, Pat Hickey, Michael Oborne, Jani Hirvinen, |
|
Olivier Adler, Kevin Hester, Arthur Benemann, Jonathan Challinger, John Arne Birkeland, |
|
Jean-Louis Naudin, Mike Smith, and more |
|
* Thanks to: Chris Anderson, Jordi Munoz, Jason Short, Doug Weibel, Jose Julio |
|
* |
|
* Special Thanks to contributors (in alphabetical order by first name): |
|
* |
|
* Adam M Rivera :Auto Compass Declination |
|
* Amilcar Lucas :Camera mount library |
|
* Andrew Tridgell :General development, Mavlink Support |
|
* Angel Fernandez :Alpha testing |
|
* AndreasAntonopoulous:GeoFence |
|
* Arthur Benemann :DroidPlanner GCS |
|
* Benjamin Pelletier :Libraries |
|
* Bill King :Single Copter |
|
* Christof Schmid :Alpha testing |
|
* Craig Elder :Release Management, Support |
|
* Dani Saez :V Octo Support |
|
* Doug Weibel :DCM, Libraries, Control law advice |
|
* Emile Castelnuovo :VRBrain port, bug fixes |
|
* Gregory Fletcher :Camera mount orientation math |
|
* Guntars :Arming safety suggestion |
|
* HappyKillmore :Mavlink GCS |
|
* Hein Hollander :Octo Support, Heli Testing |
|
* Igor van Airde :Control Law optimization |
|
* Jack Dunkle :Alpha testing |
|
* James Goppert :Mavlink Support |
|
* Jani Hiriven :Testing feedback |
|
* Jean-Louis Naudin :Auto Landing |
|
* John Arne Birkeland :PPM Encoder |
|
* Jose Julio :Stabilization Control laws, MPU6k driver |
|
* Julien Dubois :Hybrid flight mode |
|
* Julian Oes :Pixhawk |
|
* Jonathan Challinger :Inertial Navigation, CompassMot, Spin-When-Armed |
|
* Kevin Hester :Andropilot GCS |
|
* Max Levine :Tri Support, Graphics |
|
* Leonard Hall :Flight Dynamics, Throttle, Loiter and Navigation Controllers |
|
* Marco Robustini :Lead tester |
|
* Michael Oborne :Mission Planner GCS |
|
* Mike Smith :Pixhawk driver, coding support |
|
* Olivier Adler :PPM Encoder, piezo buzzer |
|
* Pat Hickey :Hardware Abstraction Layer (HAL) |
|
* Robert Lefebvre :Heli Support, Copter LEDs |
|
* Roberto Navoni :Library testing, Porting to VRBrain |
|
* Sandro Benigno :Camera support, MinimOSD |
|
* Sandro Tognana :Hybrid flight mode |
|
* ..and many more. |
|
* |
|
* Code commit statistics can be found here: https://github.com/diydrones/ardupilot/graphs/contributors |
|
* Wiki: http://copter.ardupilot.com/ |
|
* Requires modified version of Arduino, which can be found here: http://ardupilot.com/downloads/?category=6 |
|
* |
|
*/ |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Header includes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdarg.h> |
|
|
|
// Common dependencies |
|
#include <AP_Common.h> |
|
#include <AP_Progmem.h> |
|
#include <AP_Menu.h> |
|
#include <AP_Param.h> |
|
// AP_HAL |
|
#include <AP_HAL.h> |
|
#include <AP_HAL_AVR.h> |
|
#include <AP_HAL_AVR_SITL.h> |
|
#include <AP_HAL_PX4.h> |
|
#include <AP_HAL_VRBRAIN.h> |
|
#include <AP_HAL_FLYMAPLE.h> |
|
#include <AP_HAL_Linux.h> |
|
#include <AP_HAL_Empty.h> |
|
|
|
// Application dependencies |
|
#include <GCS.h> |
|
#include <GCS_MAVLink.h> // MAVLink GCS definitions |
|
#include <AP_GPS.h> // ArduPilot GPS library |
|
#include <AP_GPS_Glitch.h> // GPS glitch protection library |
|
#include <DataFlash.h> // ArduPilot Mega Flash Memory Library |
|
#include <AP_ADC.h> // ArduPilot Mega Analog to Digital Converter Library |
|
#include <AP_ADC_AnalogSource.h> |
|
#include <AP_Baro.h> |
|
#include <AP_Compass.h> // ArduPilot Mega Magnetometer Library |
|
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library |
|
#include <AP_Curve.h> // Curve used to linearlise throttle pwm to thrust |
|
#include <AP_InertialSensor.h> // ArduPilot Mega Inertial Sensor (accel & gyro) Library |
|
#include <AP_AHRS.h> |
|
#include <AP_NavEKF.h> |
|
#include <AP_Mission.h> // Mission command library |
|
#include <AP_Rally.h> // Rally point library |
|
#include <AC_PID.h> // PID library |
|
#include <AC_HELI_PID.h> // Heli specific Rate PID library |
|
#include <AC_P.h> // P library |
|
#include <AC_AttitudeControl.h> // Attitude control library |
|
#include <AC_AttitudeControl_Heli.h> // Attitude control library for traditional helicopter |
|
#include <AC_PosControl.h> // Position control library |
|
#include <RC_Channel.h> // RC Channel Library |
|
#include <AP_Motors.h> // AP Motors library |
|
#include <AP_RangeFinder.h> // Range finder library |
|
#include <AP_OpticalFlow.h> // Optical Flow library |
|
#include <Filter.h> // Filter library |
|
#include <AP_Buffer.h> // APM FIFO Buffer |
|
#include <AP_Relay.h> // APM relay |
|
#include <AP_ServoRelayEvents.h> |
|
#include <AP_Camera.h> // Photo or video camera |
|
#include <AP_Mount.h> // Camera/Antenna mount |
|
#include <AP_Airspeed.h> // needed for AHRS build |
|
#include <AP_Vehicle.h> // needed for AHRS build |
|
#include <AP_InertialNav.h> // ArduPilot Mega inertial navigation library |
|
#include <AC_WPNav.h> // ArduCopter waypoint navigation library |
|
#include <AC_Circle.h> // circle navigation library |
|
#include <AP_Declination.h> // ArduPilot Mega Declination Helper Library |
|
#include <AC_Fence.h> // Arducopter Fence library |
|
#include <SITL.h> // software in the loop support |
|
#include <AP_Scheduler.h> // main loop scheduler |
|
#include <AP_RCMapper.h> // RC input mapping library |
|
#include <AP_Notify.h> // Notify library |
|
#include <AP_BattMonitor.h> // Battery monitor library |
|
#include <AP_BoardConfig.h> // board configuration library |
|
#if SPRAYER == ENABLED |
|
#include <AC_Sprayer.h> // crop sprayer library |
|
#endif |
|
#if EPM_ENABLED == ENABLED |
|
#include <AP_EPM.h> // EPM cargo gripper stuff |
|
#endif |
|
#if PARACHUTE == ENABLED |
|
#include <AP_Parachute.h> // Parachute release library |
|
#endif |
|
|
|
// AP_HAL to Arduino compatibility layer |
|
#include "compat.h" |
|
// Configuration |
|
#include "defines.h" |
|
#include "config.h" |
|
#include "config_channels.h" |
|
|
|
// key aircraft parameters passed to multiple libraries |
|
static AP_Vehicle::MultiCopter aparm; |
|
|
|
// Local modules |
|
#include "Parameters.h" |
|
|
|
// Heli modules |
|
#include "heli.h" |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// cliSerial |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// cliSerial isn't strictly necessary - it is an alias for hal.console. It may |
|
// be deprecated in favor of hal.console in later releases. |
|
static AP_HAL::BetterStream* cliSerial; |
|
|
|
// N.B. we need to keep a static declaration which isn't guarded by macros |
|
// at the top to cooperate with the prototype mangler. |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// AP_HAL instance |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Parameters |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Global parameters are all contained within the 'g' class. |
|
// |
|
static Parameters g; |
|
|
|
// main loop scheduler |
|
static AP_Scheduler scheduler; |
|
|
|
// AP_Notify instance |
|
static AP_Notify notify; |
|
|
|
// used to detect MAVLink acks from GCS to stop compassmot |
|
static uint8_t command_ack_counter; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// prototypes |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static void update_events(void); |
|
static void print_flight_mode(AP_HAL::BetterStream *port, uint8_t mode); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Dataflash |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if CONFIG_HAL_BOARD == HAL_BOARD_APM2 |
|
static DataFlash_APM2 DataFlash; |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_APM1 |
|
static DataFlash_APM1 DataFlash; |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL |
|
static DataFlash_File DataFlash("logs"); |
|
//static DataFlash_SITL DataFlash; |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
static DataFlash_File DataFlash("/fs/microsd/APM/LOGS"); |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX |
|
static DataFlash_File DataFlash("logs"); |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
static DataFlash_File DataFlash("/fs/microsd/APM/LOGS"); |
|
#else |
|
static DataFlash_Empty DataFlash; |
|
#endif |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// the rate we run the main loop at |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if MAIN_LOOP_RATE == 400 |
|
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_400HZ; |
|
#else |
|
static const AP_InertialSensor::Sample_rate ins_sample_rate = AP_InertialSensor::RATE_100HZ; |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// There are three basic options related to flight sensor selection. |
|
// |
|
// - Normal flight mode. Real sensors are used. |
|
// - HIL Attitude mode. Most sensors are disabled, as the HIL |
|
// protocol supplies attitude information directly. |
|
// - HIL Sensors mode. Synthetic sensors are configured that |
|
// supply data from the simulation. |
|
// |
|
|
|
static AP_GPS gps; |
|
|
|
static GPS_Glitch gps_glitch(gps); |
|
|
|
// flight modes convenience array |
|
static AP_Int8 *flight_modes = &g.flight_mode1; |
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
|
|
#if CONFIG_ADC == ENABLED |
|
static AP_ADC_ADS7844 adc; |
|
#endif |
|
|
|
#if CONFIG_IMU_TYPE == CONFIG_IMU_MPU6000 |
|
static AP_InertialSensor_MPU6000 ins; |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_OILPAN |
|
static AP_InertialSensor_Oilpan ins(&adc); |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_SITL |
|
static AP_InertialSensor_HIL ins; |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_PX4 |
|
static AP_InertialSensor_PX4 ins; |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_VRBRAIN |
|
static AP_InertialSensor_VRBRAIN ins; |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_FLYMAPLE |
|
AP_InertialSensor_Flymaple ins; |
|
#elif CONFIG_IMU_TYPE == CONFIG_IMU_L3G4200D |
|
AP_InertialSensor_L3G4200D ins; |
|
#endif |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL |
|
// When building for SITL we use the HIL barometer and compass drivers |
|
static AP_Baro_HIL barometer; |
|
static AP_Compass_HIL compass; |
|
static SITL sitl; |
|
#else |
|
// Otherwise, instantiate a real barometer and compass driver |
|
#if CONFIG_BARO == AP_BARO_BMP085 |
|
static AP_Baro_BMP085 barometer; |
|
#elif CONFIG_BARO == AP_BARO_PX4 |
|
static AP_Baro_PX4 barometer; |
|
#elif CONFIG_BARO == AP_BARO_VRBRAIN |
|
static AP_Baro_VRBRAIN barometer; |
|
#elif CONFIG_BARO == AP_BARO_MS5611 |
|
#if CONFIG_MS5611_SERIAL == AP_BARO_MS5611_SPI |
|
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::spi); |
|
#elif CONFIG_MS5611_SERIAL == AP_BARO_MS5611_I2C |
|
static AP_Baro_MS5611 barometer(&AP_Baro_MS5611::i2c); |
|
#else |
|
#error Unrecognized CONFIG_MS5611_SERIAL setting. |
|
#endif |
|
#endif |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 |
|
static AP_Compass_PX4 compass; |
|
#elif CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN |
|
static AP_Compass_VRBRAIN compass; |
|
#else |
|
static AP_Compass_HMC5843 compass; |
|
#endif |
|
#endif |
|
|
|
#elif HIL_MODE != HIL_MODE_DISABLED |
|
// sensor emulators |
|
static AP_ADC_HIL adc; |
|
static AP_Baro_HIL barometer; |
|
static AP_Compass_HIL compass; |
|
static AP_InertialSensor_HIL ins; |
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_AVR_SITL |
|
// When building for SITL we use the HIL barometer and compass drivers |
|
static SITL sitl; |
|
#endif |
|
|
|
#else |
|
#error Unrecognised HIL_MODE setting. |
|
#endif // HIL MODE |
|
|
|
// Inertial Navigation EKF |
|
#if AP_AHRS_NAVEKF_AVAILABLE |
|
AP_AHRS_NavEKF ahrs(ins, barometer, gps); |
|
#else |
|
AP_AHRS_DCM ahrs(ins, barometer, gps); |
|
#endif |
|
|
|
// Mission library |
|
// forward declaration to keep compiler happy |
|
static bool start_command(const AP_Mission::Mission_Command& cmd); |
|
static bool verify_command(const AP_Mission::Mission_Command& cmd); |
|
static void exit_mission(); |
|
AP_Mission mission(ahrs, &start_command, &verify_command, &exit_mission, MISSION_START_BYTE, MISSION_END_BYTE); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Optical flow sensor |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if OPTFLOW == ENABLED |
|
static AP_OpticalFlow_ADNS3080 optflow; |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GCS selection |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static const uint8_t num_gcs = MAVLINK_COMM_NUM_BUFFERS; |
|
static GCS_MAVLINK gcs[MAVLINK_COMM_NUM_BUFFERS]; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// SONAR |
|
#if CONFIG_SONAR == ENABLED |
|
static RangeFinder sonar; |
|
static bool sonar_enabled = true; // enable user switch for sonar |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// User variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#ifdef USERHOOK_VARIABLES |
|
#include USERHOOK_VARIABLES |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Global variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
/* Radio values |
|
* Channel assignments |
|
* 1 Ailerons (rudder if no ailerons) |
|
* 2 Elevator |
|
* 3 Throttle |
|
* 4 Rudder (if we have ailerons) |
|
* 5 Mode - 3 position switch |
|
* 6 User assignable |
|
* 7 trainer switch - sets throttle nominal (toggle switch), sets accels to Level (hold > 1 second) |
|
* 8 TBD |
|
* Each Aux channel can be configured to have any of the available auxiliary functions assigned to it. |
|
* See libraries/RC_Channel/RC_Channel_aux.h for more information |
|
*/ |
|
|
|
//Documentation of GLobals: |
|
static union { |
|
struct { |
|
uint8_t home_is_set : 1; // 0 |
|
uint8_t simple_mode : 2; // 1,2 // This is the state of simple mode : 0 = disabled ; 1 = SIMPLE ; 2 = SUPERSIMPLE |
|
uint8_t pre_arm_rc_check : 1; // 3 // true if rc input pre-arm checks have been completed successfully |
|
uint8_t pre_arm_check : 1; // 4 // true if all pre-arm checks (rc, accel calibration, gps lock) have been performed |
|
uint8_t auto_armed : 1; // 5 // stops auto missions from beginning until throttle is raised |
|
uint8_t logging_started : 1; // 6 // true if dataflash logging has started |
|
uint8_t land_complete : 1; // 7 // true if we have detected a landing |
|
uint8_t new_radio_frame : 1; // 8 // Set true if we have new PWM data to act on from the Radio |
|
uint8_t CH7_flag : 2; // 9,10 // ch7 aux switch : 0 is low or false, 1 is center or true, 2 is high |
|
uint8_t CH8_flag : 2; // 11,12 // ch8 aux switch : 0 is low or false, 1 is center or true, 2 is high |
|
uint8_t usb_connected : 1; // 13 // true if APM is powered from USB connection |
|
uint8_t rc_receiver_present : 1; // 14 // true if we have an rc receiver present (i.e. if we've ever received an update |
|
uint8_t compass_mot : 1; // 15 // true if we are currently performing compassmot calibration |
|
uint8_t motor_test : 1; // 16 // true if we are currently performing the motors test |
|
}; |
|
uint32_t value; |
|
} ap; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Radio |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is the state of the flight control system |
|
// There are multiple states defined such as STABILIZE, ACRO, |
|
static int8_t control_mode = STABILIZE; |
|
// Used to maintain the state of the previous control switch position |
|
// This is set to -1 when we need to re-read the switch |
|
static uint8_t oldSwitchPosition; |
|
static RCMapper rcmap; |
|
|
|
// board specific config |
|
static AP_BoardConfig BoardConfig; |
|
|
|
// receiver RSSI |
|
static uint8_t receiver_rssi; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Failsafe |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static struct { |
|
uint8_t rc_override_active : 1; // 0 // true if rc control are overwritten by ground station |
|
uint8_t radio : 1; // 1 // A status flag for the radio failsafe |
|
uint8_t battery : 1; // 2 // A status flag for the battery failsafe |
|
uint8_t gps : 1; // 3 // A status flag for the gps failsafe |
|
uint8_t gcs : 1; // 4 // A status flag for the ground station failsafe |
|
|
|
int8_t radio_counter; // number of iterations with throttle below throttle_fs_value |
|
|
|
uint32_t last_heartbeat_ms; // the time when the last HEARTBEAT message arrived from a GCS - used for triggering gcs failsafe |
|
} failsafe; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Motor Output |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if FRAME_CONFIG == QUAD_FRAME |
|
#define MOTOR_CLASS AP_MotorsQuad |
|
#elif FRAME_CONFIG == TRI_FRAME |
|
#define MOTOR_CLASS AP_MotorsTri |
|
#elif FRAME_CONFIG == HEXA_FRAME |
|
#define MOTOR_CLASS AP_MotorsHexa |
|
#elif FRAME_CONFIG == Y6_FRAME |
|
#define MOTOR_CLASS AP_MotorsY6 |
|
#elif FRAME_CONFIG == OCTA_FRAME |
|
#define MOTOR_CLASS AP_MotorsOcta |
|
#elif FRAME_CONFIG == OCTA_QUAD_FRAME |
|
#define MOTOR_CLASS AP_MotorsOctaQuad |
|
#elif FRAME_CONFIG == HELI_FRAME |
|
#define MOTOR_CLASS AP_MotorsHeli |
|
#elif FRAME_CONFIG == SINGLE_FRAME |
|
#define MOTOR_CLASS AP_MotorsSingle |
|
#elif FRAME_CONFIG == COAX_FRAME |
|
#define MOTOR_CLASS AP_MotorsCoax |
|
#else |
|
#error Unrecognised frame type |
|
#endif |
|
|
|
#if FRAME_CONFIG == HELI_FRAME // helicopter constructor requires more arguments |
|
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4, g.rc_7, g.rc_8, g.heli_servo_1, g.heli_servo_2, g.heli_servo_3, g.heli_servo_4); |
|
#elif FRAME_CONFIG == TRI_FRAME // tri constructor requires additional rc_7 argument to allow tail servo reversing |
|
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4, g.rc_7); |
|
#elif FRAME_CONFIG == SINGLE_FRAME // single constructor requires extra servos for flaps |
|
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4, g.single_servo_1, g.single_servo_2, g.single_servo_3, g.single_servo_4); |
|
#elif FRAME_CONFIG == COAX_FRAME // single constructor requires extra servos for flaps |
|
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4, g.single_servo_1, g.single_servo_2); |
|
#else |
|
static MOTOR_CLASS motors(g.rc_1, g.rc_2, g.rc_3, g.rc_4); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// PIDs |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is used to hold radio tuning values for in-flight CH6 tuning |
|
float tuning_value; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// GPS variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// We use atan2 and other trig techniques to calaculate angles |
|
// We need to scale the longitude up to make these calcs work |
|
// to account for decreasing distance between lines of longitude away from the equator |
|
static float scaleLongUp = 1; |
|
// Sometimes we need to remove the scaling for distance calcs |
|
static float scaleLongDown = 1; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Location & Navigation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is the angle from the copter to the next waypoint in centi-degrees |
|
static int32_t wp_bearing; |
|
// The location of home in relation to the copter in centi-degrees |
|
static int32_t home_bearing; |
|
// distance between plane and home in cm |
|
static int32_t home_distance; |
|
// distance between plane and next waypoint in cm. |
|
static uint32_t wp_distance; |
|
static uint8_t land_state; // records state of land (flying to location, descending) |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Auto |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static AutoMode auto_mode; // controls which auto controller is run |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Guided |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static GuidedMode guided_mode; // controls which controller is run (pos or vel) |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// RTL |
|
//////////////////////////////////////////////////////////////////////////////// |
|
RTLState rtl_state; // records state of rtl (initial climb, returning home, etc) |
|
bool rtl_state_complete; // set to true if the current state is completed |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Circle |
|
//////////////////////////////////////////////////////////////////////////////// |
|
bool circle_pilot_yaw_override; // true if pilot is overriding yaw |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// SIMPLE Mode |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Used to track the orientation of the copter for Simple mode. This value is reset at each arming |
|
// or in SuperSimple mode when the copter leaves a 20m radius from home. |
|
static float simple_cos_yaw = 1.0; |
|
static float simple_sin_yaw; |
|
static int32_t super_simple_last_bearing; |
|
static float super_simple_cos_yaw = 1.0; |
|
static float super_simple_sin_yaw; |
|
|
|
|
|
// Stores initial bearing when armed - initial simple bearing is modified in super simple mode so not suitable |
|
static int32_t initial_armed_bearing; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Throttle variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static float throttle_avg; // g.throttle_cruise as a float |
|
static int16_t desired_climb_rate; // pilot desired climb rate - for logging purposes only |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// ACRO Mode |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static float acro_level_mix; // scales back roll, pitch and yaw inversely proportional to input from pilot |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Loiter control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static uint16_t loiter_time_max; // How long we should stay in Loiter Mode for mission scripting (time in seconds) |
|
static uint32_t loiter_time; // How long have we been loitering - The start time in millis |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Flip |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static Vector3f flip_orig_attitude; // original copter attitude before flip |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Battery Sensors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static AP_BattMonitor battery; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Altitude |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The cm/s we are moving up or down based on filtered data - Positive = UP |
|
static int16_t climb_rate; |
|
// The altitude as reported by Sonar in cm - Values are 20 to 700 generally. |
|
static int16_t sonar_alt; |
|
static uint8_t sonar_alt_health; // true if we can trust the altitude from the sonar |
|
static float target_sonar_alt; // desired altitude in cm above the ground |
|
// The altitude as reported by Baro in cm - Values can be quite high |
|
static int32_t baro_alt; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// 3D Location vectors |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Current location of the copter |
|
static struct Location current_loc; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation Roll/Pitch functions |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// The Commanded ROll from the autopilot based on optical flow sensor. |
|
static int32_t of_roll; |
|
// The Commanded pitch from the autopilot based on optical flow sensor. negative Pitch means go forward. |
|
static int32_t of_pitch; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Throttle integrator |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// This is a simple counter to track the amount of throttle used during flight |
|
// This could be useful later in determining and debuging current usage and predicting battery life |
|
static uint32_t throttle_integrator; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Navigation Yaw control |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// auto flight mode's yaw mode |
|
static uint8_t auto_yaw_mode = AUTO_YAW_LOOK_AT_NEXT_WP; |
|
// Yaw will point at this location if auto_yaw_mode is set to AUTO_YAW_ROI |
|
static Vector3f roi_WP; |
|
// bearing from current location to the yaw_look_at_WP |
|
static float yaw_look_at_WP_bearing; |
|
// yaw used for YAW_LOOK_AT_HEADING yaw_mode |
|
static int32_t yaw_look_at_heading; |
|
// Deg/s we should turn |
|
static int16_t yaw_look_at_heading_slew; |
|
// heading when in yaw_look_ahead_bearing |
|
static float yaw_look_ahead_bearing; |
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Delay Mission Scripting Command |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static int32_t condition_value; // used in condition commands (eg delay, change alt, etc.) |
|
static uint32_t condition_start; |
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// IMU variables |
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Integration time (in seconds) for the gyros (DCM algorithm) |
|
// Updated with the fast loop |
|
static float G_Dt = 0.02; |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Inertial Navigation |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if AP_AHRS_NAVEKF_AVAILABLE |
|
static AP_InertialNav_NavEKF inertial_nav(ahrs, barometer, gps_glitch); |
|
#else |
|
static AP_InertialNav inertial_nav(ahrs, barometer, gps_glitch); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Attitude, Position and Waypoint navigation objects |
|
// To-Do: move inertial nav up or other navigation variables down here |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if FRAME_CONFIG == HELI_FRAME |
|
AC_AttitudeControl_Heli attitude_control(ahrs, ins, aparm, motors, g.p_stabilize_roll, g.p_stabilize_pitch, g.p_stabilize_yaw, |
|
g.pid_rate_roll, g.pid_rate_pitch, g.pid_rate_yaw); |
|
#else |
|
AC_AttitudeControl attitude_control(ahrs, ins, aparm, motors, g.p_stabilize_roll, g.p_stabilize_pitch, g.p_stabilize_yaw, |
|
g.pid_rate_roll, g.pid_rate_pitch, g.pid_rate_yaw); |
|
#endif |
|
AC_PosControl pos_control(ahrs, inertial_nav, motors, attitude_control, |
|
g.p_alt_hold, g.p_throttle_rate, g.pid_throttle_accel, |
|
g.p_loiter_pos, g.pid_loiter_rate_lat, g.pid_loiter_rate_lon); |
|
static AC_WPNav wp_nav(inertial_nav, ahrs, pos_control); |
|
static AC_Circle circle_nav(inertial_nav, ahrs, pos_control); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Performance monitoring |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static int16_t pmTest1; |
|
|
|
// System Timers |
|
// -------------- |
|
// Time in microseconds of main control loop |
|
static uint32_t fast_loopTimer; |
|
// Counter of main loop executions. Used for performance monitoring and failsafe processing |
|
static uint16_t mainLoop_count; |
|
// Loiter timer - Records how long we have been in loiter |
|
static uint32_t rtl_loiter_start_time; |
|
|
|
// Used to exit the roll and pitch auto trim function |
|
static uint8_t auto_trim_counter; |
|
|
|
// Reference to the relay object (APM1 -> PORTL 2) (APM2 -> PORTB 7) |
|
static AP_Relay relay; |
|
|
|
// handle repeated servo and relay events |
|
static AP_ServoRelayEvents ServoRelayEvents(relay); |
|
|
|
//Reference to the camera object (it uses the relay object inside it) |
|
#if CAMERA == ENABLED |
|
static AP_Camera camera(&relay); |
|
#endif |
|
|
|
// a pin for reading the receiver RSSI voltage. |
|
static AP_HAL::AnalogSource* rssi_analog_source; |
|
|
|
#if CLI_ENABLED == ENABLED |
|
static int8_t setup_show (uint8_t argc, const Menu::arg *argv); |
|
#endif |
|
|
|
// Camera/Antenna mount tracking and stabilisation stuff |
|
// -------------------------------------- |
|
#if MOUNT == ENABLED |
|
// current_loc uses the baro/gps soloution for altitude rather than gps only. |
|
static AP_Mount camera_mount(¤t_loc, ahrs, 0); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
// current_loc uses the baro/gps soloution for altitude rather than gps only. |
|
static AP_Mount camera_mount2(¤t_loc, ahrs, 1); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// AC_Fence library to reduce fly-aways |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if AC_FENCE == ENABLED |
|
AC_Fence fence(&inertial_nav); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Rally library |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if AC_RALLY == ENABLED |
|
AP_Rally rally(ahrs, MAX_RALLYPOINTS, RALLY_START_BYTE); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Crop Sprayer |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if SPRAYER == ENABLED |
|
static AC_Sprayer sprayer(&inertial_nav); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// EPM Cargo Griper |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if EPM_ENABLED == ENABLED |
|
static AP_EPM epm; |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Parachute release |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if PARACHUTE == ENABLED |
|
static AP_Parachute parachute(relay); |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Nav Guided - allows external computer to control the vehicle during missions |
|
//////////////////////////////////////////////////////////////////////////////// |
|
#if NAV_GUIDED == ENABLED |
|
static struct { |
|
uint32_t start_time; // system time in milliseconds that control was handed to the external computer |
|
Vector3f start_position; // vehicle position when control was ahnded to the external computer |
|
} nav_guided; |
|
#endif |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// function definitions to keep compiler from complaining about undeclared functions |
|
//////////////////////////////////////////////////////////////////////////////// |
|
static void pre_arm_checks(bool display_failure); |
|
|
|
//////////////////////////////////////////////////////////////////////////////// |
|
// Top-level logic |
|
//////////////////////////////////////////////////////////////////////////////// |
|
|
|
// setup the var_info table |
|
AP_Param param_loader(var_info, MISSION_START_BYTE); |
|
|
|
#if MAIN_LOOP_RATE == 400 |
|
/* |
|
scheduler table for fast CPUs - all regular tasks apart from the fast_loop() |
|
should be listed here, along with how often they should be called |
|
(in 2.5ms units) and the maximum time they are expected to take (in |
|
microseconds) |
|
1 = 400hz |
|
2 = 200hz |
|
4 = 100hz |
|
8 = 50hz |
|
20 = 20hz |
|
40 = 10hz |
|
133 = 3hz |
|
400 = 1hz |
|
4000 = 0.1hz |
|
|
|
*/ |
|
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = { |
|
{ rc_loop, 4, 10 }, |
|
{ throttle_loop, 8, 45 }, |
|
{ update_GPS, 8, 90 }, |
|
{ update_batt_compass, 40, 72 }, |
|
{ read_aux_switches, 40, 5 }, |
|
{ arm_motors_check, 40, 1 }, |
|
{ auto_trim, 40, 14 }, |
|
{ update_altitude, 40, 100 }, |
|
{ run_nav_updates, 40, 80 }, |
|
{ update_thr_cruise, 40, 10 }, |
|
{ three_hz_loop, 133, 9 }, |
|
{ compass_accumulate, 8, 42 }, |
|
{ barometer_accumulate, 8, 25 }, |
|
#if FRAME_CONFIG == HELI_FRAME |
|
{ check_dynamic_flight, 8, 10 }, |
|
#endif |
|
{ update_notify, 8, 10 }, |
|
{ one_hz_loop, 400, 42 }, |
|
{ crash_check, 40, 2 }, |
|
{ gcs_check_input, 8, 550 }, |
|
{ gcs_send_heartbeat, 400, 150 }, |
|
{ gcs_send_deferred, 8, 720 }, |
|
{ gcs_data_stream_send, 8, 950 }, |
|
#if COPTER_LEDS == ENABLED |
|
{ update_copter_leds, 40, 5 }, |
|
#endif |
|
{ update_mount, 8, 45 }, |
|
{ ten_hz_logging_loop, 40, 30 }, |
|
{ fifty_hz_logging_loop, 8, 22 }, |
|
{ perf_update, 4000, 20 }, |
|
{ read_receiver_rssi, 40, 5 }, |
|
#ifdef USERHOOK_FASTLOOP |
|
{ userhook_FastLoop, 4, 10 }, |
|
#endif |
|
#ifdef USERHOOK_50HZLOOP |
|
{ userhook_50Hz, 8, 10 }, |
|
#endif |
|
#ifdef USERHOOK_MEDIUMLOOP |
|
{ userhook_MediumLoop, 40, 10 }, |
|
#endif |
|
#ifdef USERHOOK_SLOWLOOP |
|
{ userhook_SlowLoop, 120, 10 }, |
|
#endif |
|
#ifdef USERHOOK_SUPERSLOWLOOP |
|
{ userhook_SuperSlowLoop,400, 10 }, |
|
#endif |
|
}; |
|
#else |
|
/* |
|
scheduler table - all regular tasks apart from the fast_loop() |
|
should be listed here, along with how often they should be called |
|
(in 10ms units) and the maximum time they are expected to take (in |
|
microseconds) |
|
1 = 100hz |
|
2 = 50hz |
|
4 = 25hz |
|
10 = 10hz |
|
20 = 5hz |
|
33 = 3hz |
|
50 = 2hz |
|
100 = 1hz |
|
1000 = 0.1hz |
|
*/ |
|
static const AP_Scheduler::Task scheduler_tasks[] PROGMEM = { |
|
{ rc_loop, 1, 100 }, |
|
{ throttle_loop, 2, 450 }, |
|
{ update_GPS, 2, 900 }, |
|
{ update_batt_compass, 10, 720 }, |
|
{ read_aux_switches, 10, 50 }, |
|
{ arm_motors_check, 10, 10 }, |
|
{ auto_trim, 10, 140 }, |
|
{ update_altitude, 10, 1000 }, |
|
{ run_nav_updates, 10, 800 }, |
|
{ update_thr_cruise, 1, 50 }, |
|
{ three_hz_loop, 33, 90 }, |
|
{ compass_accumulate, 2, 420 }, |
|
{ barometer_accumulate, 2, 250 }, |
|
#if FRAME_CONFIG == HELI_FRAME |
|
{ check_dynamic_flight, 2, 100 }, |
|
#endif |
|
{ update_notify, 2, 100 }, |
|
{ one_hz_loop, 100, 420 }, |
|
{ crash_check, 10, 20 }, |
|
{ gcs_check_input, 2, 550 }, |
|
{ gcs_send_heartbeat, 100, 150 }, |
|
{ gcs_send_deferred, 2, 720 }, |
|
{ gcs_data_stream_send, 2, 950 }, |
|
{ update_mount, 2, 450 }, |
|
{ ten_hz_logging_loop, 10, 300 }, |
|
{ fifty_hz_logging_loop, 2, 220 }, |
|
{ perf_update, 1000, 200 }, |
|
{ read_receiver_rssi, 10, 50 }, |
|
#ifdef USERHOOK_FASTLOOP |
|
{ userhook_FastLoop, 1, 100 }, |
|
#endif |
|
#ifdef USERHOOK_50HZLOOP |
|
{ userhook_50Hz, 2, 100 }, |
|
#endif |
|
#ifdef USERHOOK_MEDIUMLOOP |
|
{ userhook_MediumLoop, 10, 100 }, |
|
#endif |
|
#ifdef USERHOOK_SLOWLOOP |
|
{ userhook_SlowLoop, 30, 100 }, |
|
#endif |
|
#ifdef USERHOOK_SUPERSLOWLOOP |
|
{ userhook_SuperSlowLoop,100, 100 }, |
|
#endif |
|
}; |
|
#endif |
|
|
|
|
|
void setup() |
|
{ |
|
cliSerial = hal.console; |
|
|
|
// Load the default values of variables listed in var_info[]s |
|
AP_Param::setup_sketch_defaults(); |
|
|
|
init_ardupilot(); |
|
|
|
// initialise the main loop scheduler |
|
scheduler.init(&scheduler_tasks[0], sizeof(scheduler_tasks)/sizeof(scheduler_tasks[0])); |
|
} |
|
|
|
/* |
|
if the compass is enabled then try to accumulate a reading |
|
*/ |
|
static void compass_accumulate(void) |
|
{ |
|
if (g.compass_enabled) { |
|
compass.accumulate(); |
|
} |
|
} |
|
|
|
/* |
|
try to accumulate a baro reading |
|
*/ |
|
static void barometer_accumulate(void) |
|
{ |
|
barometer.accumulate(); |
|
} |
|
|
|
static void perf_update(void) |
|
{ |
|
if (g.log_bitmask & MASK_LOG_PM) |
|
Log_Write_Performance(); |
|
if (scheduler.debug()) { |
|
cliSerial->printf_P(PSTR("PERF: %u/%u %lu\n"), |
|
(unsigned)perf_info_get_num_long_running(), |
|
(unsigned)perf_info_get_num_loops(), |
|
(unsigned long)perf_info_get_max_time()); |
|
} |
|
perf_info_reset(); |
|
pmTest1 = 0; |
|
} |
|
|
|
void loop() |
|
{ |
|
// wait for an INS sample |
|
if (!ins.wait_for_sample(1000)) { |
|
Log_Write_Error(ERROR_SUBSYSTEM_MAIN, ERROR_CODE_MAIN_INS_DELAY); |
|
return; |
|
} |
|
uint32_t timer = micros(); |
|
|
|
// check loop time |
|
perf_info_check_loop_time(timer - fast_loopTimer); |
|
|
|
// used by PI Loops |
|
G_Dt = (float)(timer - fast_loopTimer) / 1000000.f; |
|
fast_loopTimer = timer; |
|
|
|
// for mainloop failure monitoring |
|
mainLoop_count++; |
|
|
|
// Execute the fast loop |
|
// --------------------- |
|
fast_loop(); |
|
|
|
// tell the scheduler one tick has passed |
|
scheduler.tick(); |
|
|
|
// run all the tasks that are due to run. Note that we only |
|
// have to call this once per loop, as the tasks are scheduled |
|
// in multiples of the main loop tick. So if they don't run on |
|
// the first call to the scheduler they won't run on a later |
|
// call until scheduler.tick() is called again |
|
uint32_t time_available = (timer + MAIN_LOOP_MICROS) - micros(); |
|
scheduler.run(time_available); |
|
} |
|
|
|
|
|
// Main loop - 100hz |
|
static void fast_loop() |
|
{ |
|
|
|
// IMU DCM Algorithm |
|
// -------------------- |
|
read_AHRS(); |
|
|
|
// run low level rate controllers that only require IMU data |
|
attitude_control.rate_controller_run(); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
update_heli_control_dynamics(); |
|
#endif //HELI_FRAME |
|
|
|
// write out the servo PWM values |
|
// ------------------------------ |
|
set_servos_4(); |
|
|
|
// Inertial Nav |
|
// -------------------- |
|
read_inertia(); |
|
|
|
// run the attitude controllers |
|
update_flight_mode(); |
|
|
|
// optical flow |
|
// -------------------- |
|
#if OPTFLOW == ENABLED |
|
if(g.optflow_enabled) { |
|
update_optical_flow(); |
|
} |
|
#endif // OPTFLOW == ENABLED |
|
|
|
} |
|
|
|
// rc_loops - reads user input from transmitter/receiver |
|
// called at 100hz |
|
static void rc_loop() |
|
{ |
|
// Read radio and 3-position switch on radio |
|
// ----------------------------------------- |
|
read_radio(); |
|
read_control_switch(); |
|
} |
|
|
|
// throttle_loop - should be run at 50 hz |
|
// --------------------------- |
|
static void throttle_loop() |
|
{ |
|
// get altitude and climb rate from inertial lib |
|
read_inertial_altitude(); |
|
|
|
// check if we've landed |
|
update_land_detector(); |
|
|
|
// check auto_armed status |
|
update_auto_armed(); |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
// update rotor speed |
|
heli_update_rotor_speed_targets(); |
|
|
|
// update trad heli swash plate movement |
|
heli_update_landing_swash(); |
|
#endif |
|
} |
|
|
|
// update_mount - update camera mount position |
|
// should be run at 50hz |
|
static void update_mount() |
|
{ |
|
#if MOUNT == ENABLED |
|
// update camera mount's position |
|
camera_mount.update_mount_position(); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
// update camera mount's position |
|
camera_mount2.update_mount_position(); |
|
#endif |
|
|
|
#if CAMERA == ENABLED |
|
camera.trigger_pic_cleanup(); |
|
#endif |
|
} |
|
|
|
// update_batt_compass - read battery and compass |
|
// should be called at 10hz |
|
static void update_batt_compass(void) |
|
{ |
|
// read battery before compass because it may be used for motor interference compensation |
|
read_battery(); |
|
|
|
if(g.compass_enabled) { |
|
// update compass with throttle value - used for compassmot |
|
compass.set_throttle((float)g.rc_3.servo_out/1000.0f); |
|
if (compass.read()) { |
|
compass.learn_offsets(); |
|
} |
|
// log compass information |
|
if (g.log_bitmask & MASK_LOG_COMPASS) { |
|
Log_Write_Compass(); |
|
} |
|
} |
|
|
|
// record throttle output |
|
throttle_integrator += g.rc_3.servo_out; |
|
} |
|
|
|
// ten_hz_logging_loop |
|
// should be run at 10hz |
|
static void ten_hz_logging_loop() |
|
{ |
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) { |
|
Log_Write_Attitude(); |
|
} |
|
if (g.log_bitmask & MASK_LOG_RCIN) { |
|
DataFlash.Log_Write_RCIN(); |
|
} |
|
if (g.log_bitmask & MASK_LOG_RCOUT) { |
|
DataFlash.Log_Write_RCOUT(); |
|
} |
|
if (g.log_bitmask & MASK_LOG_NTUN && mode_requires_GPS(control_mode)) { |
|
Log_Write_Nav_Tuning(); |
|
} |
|
} |
|
|
|
// fifty_hz_logging_loop |
|
// should be run at 50hz |
|
static void fifty_hz_logging_loop() |
|
{ |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
// HIL for a copter needs very fast update of the servo values |
|
gcs_send_message(MSG_RADIO_OUT); |
|
#endif |
|
|
|
#if HIL_MODE == HIL_MODE_DISABLED |
|
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) { |
|
Log_Write_Attitude(); |
|
} |
|
|
|
if (g.log_bitmask & MASK_LOG_IMU) { |
|
DataFlash.Log_Write_IMU(ins); |
|
} |
|
#endif |
|
} |
|
|
|
// three_hz_loop - 3.3hz loop |
|
static void three_hz_loop() |
|
{ |
|
// check if we've lost contact with the ground station |
|
failsafe_gcs_check(); |
|
|
|
#if AC_FENCE == ENABLED |
|
// check if we have breached a fence |
|
fence_check(); |
|
#endif // AC_FENCE_ENABLED |
|
|
|
#if SPRAYER == ENABLED |
|
sprayer.update(); |
|
#endif |
|
|
|
update_events(); |
|
|
|
if(g.radio_tuning > 0) |
|
tuning(); |
|
} |
|
|
|
// one_hz_loop - runs at 1Hz |
|
static void one_hz_loop() |
|
{ |
|
if (g.log_bitmask != 0) { |
|
Log_Write_Data(DATA_AP_STATE, ap.value); |
|
} |
|
|
|
// log battery info to the dataflash |
|
if (g.log_bitmask & MASK_LOG_CURRENT) { |
|
Log_Write_Current(); |
|
} |
|
|
|
// perform pre-arm checks & display failures every 30 seconds |
|
static uint8_t pre_arm_display_counter = 15; |
|
pre_arm_display_counter++; |
|
if (pre_arm_display_counter >= 30) { |
|
pre_arm_checks(true); |
|
pre_arm_display_counter = 0; |
|
}else{ |
|
pre_arm_checks(false); |
|
} |
|
|
|
// auto disarm checks |
|
auto_disarm_check(); |
|
|
|
if (!motors.armed()) { |
|
// make it possible to change ahrs orientation at runtime during initial config |
|
ahrs.set_orientation(); |
|
|
|
// check the user hasn't updated the frame orientation |
|
motors.set_frame_orientation(g.frame_orientation); |
|
} |
|
|
|
// update assigned functions and enable auxiliar servos |
|
RC_Channel_aux::enable_aux_servos(); |
|
|
|
#if MOUNT == ENABLED |
|
camera_mount.update_mount_type(); |
|
#endif |
|
|
|
#if MOUNT2 == ENABLED |
|
camera_mount2.update_mount_type(); |
|
#endif |
|
|
|
check_usb_mux(); |
|
} |
|
|
|
// called at 100hz but data from sensor only arrives at 20 Hz |
|
#if OPTFLOW == ENABLED |
|
static void update_optical_flow(void) |
|
{ |
|
static uint32_t last_of_update = 0; |
|
static uint8_t of_log_counter = 0; |
|
|
|
// if new data has arrived, process it |
|
if( optflow.last_update != last_of_update ) { |
|
last_of_update = optflow.last_update; |
|
optflow.update_position(ahrs.roll, ahrs.pitch, ahrs.sin_yaw(), ahrs.cos_yaw(), current_loc.alt); // updates internal lon and lat with estimation based on optical flow |
|
|
|
// write to log at 5hz |
|
of_log_counter++; |
|
if( of_log_counter >= 4 ) { |
|
of_log_counter = 0; |
|
if (g.log_bitmask & MASK_LOG_OPTFLOW) { |
|
Log_Write_Optflow(); |
|
} |
|
} |
|
} |
|
} |
|
#endif // OPTFLOW == ENABLED |
|
|
|
// called at 50hz |
|
static void update_GPS(void) |
|
{ |
|
static uint32_t last_gps_reading[GPS_MAX_INSTANCES]; // time of last gps message |
|
static uint8_t ground_start_count = 10; // counter used to grab at least 10 reads before commiting the Home location |
|
bool report_gps_glitch; |
|
bool gps_updated = false; |
|
|
|
gps.update(); |
|
|
|
// logging and glitch protection run after every gps message |
|
for (uint8_t i=0; i<gps.num_sensors(); i++) { |
|
if (gps.last_message_time_ms(i) != last_gps_reading[i]) { |
|
last_gps_reading[i] = gps.last_message_time_ms(i); |
|
|
|
// log GPS message |
|
if (g.log_bitmask & MASK_LOG_GPS) { |
|
DataFlash.Log_Write_GPS(gps, i, current_loc.alt); |
|
} |
|
|
|
gps_updated = true; |
|
} |
|
} |
|
|
|
if (gps_updated) { |
|
// run glitch protection and update AP_Notify if home has been initialised |
|
if (ap.home_is_set) { |
|
gps_glitch.check_position(); |
|
report_gps_glitch = (gps_glitch.glitching() && !ap.usb_connected && hal.util->safety_switch_state() != AP_HAL::Util::SAFETY_DISARMED); |
|
if (AP_Notify::flags.gps_glitching != report_gps_glitch) { |
|
if (gps_glitch.glitching()) { |
|
Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_GPS_GLITCH); |
|
}else{ |
|
Log_Write_Error(ERROR_SUBSYSTEM_GPS, ERROR_CODE_ERROR_RESOLVED); |
|
} |
|
AP_Notify::flags.gps_glitching = report_gps_glitch; |
|
} |
|
} |
|
|
|
// checks to initialise home and take location based pictures |
|
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) { |
|
|
|
// check if we can initialise home yet |
|
if (!ap.home_is_set) { |
|
// if we have a 3d lock and valid location |
|
if(gps.status() >= AP_GPS::GPS_OK_FIX_3D && gps.location().lat != 0) { |
|
if (ground_start_count > 0 ) { |
|
ground_start_count--; |
|
} else { |
|
// after 10 successful reads store home location |
|
// ap.home_is_set will be true so this will only happen once |
|
ground_start_count = 0; |
|
init_home(); |
|
|
|
// set system clock for log timestamps |
|
hal.util->set_system_clock(gps.time_epoch_usec()); |
|
|
|
if (g.compass_enabled) { |
|
// Set compass declination automatically |
|
compass.set_initial_location(gps.location().lat, gps.location().lng); |
|
} |
|
} |
|
} else { |
|
// start again if we lose 3d lock |
|
ground_start_count = 10; |
|
} |
|
} |
|
|
|
//If we are not currently armed, and we're ready to |
|
//enter RTK mode, then capture current state as home, |
|
//and enter RTK fixes! |
|
if (!motors.armed() && gps.can_calculate_base_pos()) { |
|
|
|
gps.calculate_base_pos(); |
|
|
|
} |
|
|
|
#if CAMERA == ENABLED |
|
if (camera.update_location(current_loc) == true) { |
|
do_take_picture(); |
|
} |
|
#endif |
|
} |
|
} |
|
|
|
// check for loss of gps |
|
failsafe_gps_check(); |
|
} |
|
|
|
static void |
|
init_simple_bearing() |
|
{ |
|
// capture current cos_yaw and sin_yaw values |
|
simple_cos_yaw = ahrs.cos_yaw(); |
|
simple_sin_yaw = ahrs.sin_yaw(); |
|
|
|
// initialise super simple heading (i.e. heading towards home) to be 180 deg from simple mode heading |
|
super_simple_last_bearing = wrap_360_cd(ahrs.yaw_sensor+18000); |
|
super_simple_cos_yaw = simple_cos_yaw; |
|
super_simple_sin_yaw = simple_sin_yaw; |
|
|
|
// log the simple bearing to dataflash |
|
if (g.log_bitmask != 0) { |
|
Log_Write_Data(DATA_INIT_SIMPLE_BEARING, ahrs.yaw_sensor); |
|
} |
|
} |
|
|
|
// update_simple_mode - rotates pilot input if we are in simple mode |
|
void update_simple_mode(void) |
|
{ |
|
float rollx, pitchx; |
|
|
|
// exit immediately if no new radio frame or not in simple mode |
|
if (ap.simple_mode == 0 || !ap.new_radio_frame) { |
|
return; |
|
} |
|
|
|
// mark radio frame as consumed |
|
ap.new_radio_frame = false; |
|
|
|
if (ap.simple_mode == 1) { |
|
// rotate roll, pitch input by -initial simple heading (i.e. north facing) |
|
rollx = g.rc_1.control_in*simple_cos_yaw - g.rc_2.control_in*simple_sin_yaw; |
|
pitchx = g.rc_1.control_in*simple_sin_yaw + g.rc_2.control_in*simple_cos_yaw; |
|
}else{ |
|
// rotate roll, pitch input by -super simple heading (reverse of heading to home) |
|
rollx = g.rc_1.control_in*super_simple_cos_yaw - g.rc_2.control_in*super_simple_sin_yaw; |
|
pitchx = g.rc_1.control_in*super_simple_sin_yaw + g.rc_2.control_in*super_simple_cos_yaw; |
|
} |
|
|
|
// rotate roll, pitch input from north facing to vehicle's perspective |
|
g.rc_1.control_in = rollx*ahrs.cos_yaw() + pitchx*ahrs.sin_yaw(); |
|
g.rc_2.control_in = -rollx*ahrs.sin_yaw() + pitchx*ahrs.cos_yaw(); |
|
} |
|
|
|
// update_super_simple_bearing - adjusts simple bearing based on location |
|
// should be called after home_bearing has been updated |
|
void update_super_simple_bearing(bool force_update) |
|
{ |
|
// check if we are in super simple mode and at least 10m from home |
|
if(force_update || (ap.simple_mode == 2 && home_distance > SUPER_SIMPLE_RADIUS)) { |
|
// check the bearing to home has changed by at least 5 degrees |
|
if (labs(super_simple_last_bearing - home_bearing) > 500) { |
|
super_simple_last_bearing = home_bearing; |
|
float angle_rad = radians((super_simple_last_bearing+18000)/100); |
|
super_simple_cos_yaw = cosf(angle_rad); |
|
super_simple_sin_yaw = sinf(angle_rad); |
|
} |
|
} |
|
} |
|
|
|
static void read_AHRS(void) |
|
{ |
|
// Perform IMU calculations and get attitude info |
|
//----------------------------------------------- |
|
#if HIL_MODE != HIL_MODE_DISABLED |
|
// update hil before ahrs update |
|
gcs_check_input(); |
|
#endif |
|
|
|
ahrs.update(); |
|
} |
|
|
|
// read baro and sonar altitude at 20hz |
|
static void update_altitude() |
|
{ |
|
// read in baro altitude |
|
baro_alt = read_barometer(); |
|
|
|
// read in sonar altitude |
|
sonar_alt = read_sonar(); |
|
|
|
// write altitude info to dataflash logs |
|
if (g.log_bitmask & MASK_LOG_CTUN) { |
|
Log_Write_Control_Tuning(); |
|
} |
|
} |
|
|
|
static void tuning(){ |
|
|
|
// exit immediately when radio failsafe is invoked so tuning values are not set to zero |
|
if (failsafe.radio || failsafe.radio_counter != 0) { |
|
return; |
|
} |
|
|
|
tuning_value = (float)g.rc_6.control_in / 1000.0f; |
|
g.rc_6.set_range(g.radio_tuning_low,g.radio_tuning_high); // 0 to 1 |
|
|
|
switch(g.radio_tuning) { |
|
|
|
// Roll, Pitch tuning |
|
case CH6_STABILIZE_ROLL_PITCH_KP: |
|
g.p_stabilize_roll.kP(tuning_value); |
|
g.p_stabilize_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_ROLL_PITCH_KP: |
|
g.pid_rate_roll.kP(tuning_value); |
|
g.pid_rate_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_ROLL_PITCH_KI: |
|
g.pid_rate_roll.kI(tuning_value); |
|
g.pid_rate_pitch.kI(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_ROLL_PITCH_KD: |
|
g.pid_rate_roll.kD(tuning_value); |
|
g.pid_rate_pitch.kD(tuning_value); |
|
break; |
|
|
|
// Yaw tuning |
|
case CH6_STABILIZE_YAW_KP: |
|
g.p_stabilize_yaw.kP(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_RATE_KP: |
|
g.pid_rate_yaw.kP(tuning_value); |
|
break; |
|
|
|
case CH6_YAW_RATE_KD: |
|
g.pid_rate_yaw.kD(tuning_value); |
|
break; |
|
|
|
// Altitude and throttle tuning |
|
case CH6_ALTITUDE_HOLD_KP: |
|
g.p_alt_hold.kP(tuning_value); |
|
break; |
|
|
|
case CH6_THROTTLE_RATE_KP: |
|
g.p_throttle_rate.kP(tuning_value); |
|
break; |
|
|
|
case CH6_THROTTLE_ACCEL_KP: |
|
g.pid_throttle_accel.kP(tuning_value); |
|
break; |
|
|
|
case CH6_THROTTLE_ACCEL_KI: |
|
g.pid_throttle_accel.kI(tuning_value); |
|
break; |
|
|
|
case CH6_THROTTLE_ACCEL_KD: |
|
g.pid_throttle_accel.kD(tuning_value); |
|
break; |
|
|
|
// Loiter and navigation tuning |
|
case CH6_LOITER_POSITION_KP: |
|
g.p_loiter_pos.kP(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KP: |
|
g.pid_loiter_rate_lon.kP(tuning_value); |
|
g.pid_loiter_rate_lat.kP(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KI: |
|
g.pid_loiter_rate_lon.kI(tuning_value); |
|
g.pid_loiter_rate_lat.kI(tuning_value); |
|
break; |
|
|
|
case CH6_LOITER_RATE_KD: |
|
g.pid_loiter_rate_lon.kD(tuning_value); |
|
g.pid_loiter_rate_lat.kD(tuning_value); |
|
break; |
|
|
|
case CH6_WP_SPEED: |
|
// set waypoint navigation horizontal speed to 0 ~ 1000 cm/s |
|
wp_nav.set_speed_xy(g.rc_6.control_in); |
|
break; |
|
|
|
// Acro roll pitch gain |
|
case CH6_ACRO_RP_KP: |
|
g.acro_rp_p = tuning_value; |
|
break; |
|
|
|
// Acro yaw gain |
|
case CH6_ACRO_YAW_KP: |
|
g.acro_yaw_p = tuning_value; |
|
break; |
|
|
|
case CH6_RELAY: |
|
if (g.rc_6.control_in > 525) relay.on(0); |
|
if (g.rc_6.control_in < 475) relay.off(0); |
|
break; |
|
|
|
#if FRAME_CONFIG == HELI_FRAME |
|
case CH6_HELI_EXTERNAL_GYRO: |
|
motors.ext_gyro_gain(g.rc_6.control_in); |
|
break; |
|
|
|
case CH6_RATE_PITCH_FF: |
|
g.pid_rate_pitch.ff(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_ROLL_FF: |
|
g.pid_rate_roll.ff(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_YAW_FF: |
|
g.pid_rate_yaw.ff(tuning_value); |
|
break; |
|
#endif |
|
|
|
case CH6_OPTFLOW_KP: |
|
g.pid_optflow_roll.kP(tuning_value); |
|
g.pid_optflow_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_OPTFLOW_KI: |
|
g.pid_optflow_roll.kI(tuning_value); |
|
g.pid_optflow_pitch.kI(tuning_value); |
|
break; |
|
|
|
case CH6_OPTFLOW_KD: |
|
g.pid_optflow_roll.kD(tuning_value); |
|
g.pid_optflow_pitch.kD(tuning_value); |
|
break; |
|
|
|
case CH6_AHRS_YAW_KP: |
|
ahrs._kp_yaw.set(tuning_value); |
|
break; |
|
|
|
case CH6_AHRS_KP: |
|
ahrs._kp.set(tuning_value); |
|
break; |
|
|
|
case CH6_INAV_TC: |
|
// To-Do: allowing tuning TC for xy and z separately |
|
inertial_nav.set_time_constant_xy(tuning_value); |
|
inertial_nav.set_time_constant_z(tuning_value); |
|
break; |
|
|
|
case CH6_DECLINATION: |
|
// set declination to +-20degrees |
|
compass.set_declination(ToRad((2.0f * g.rc_6.control_in - g.radio_tuning_high)/100.0f), false); // 2nd parameter is false because we do not want to save to eeprom because this would have a performance impact |
|
break; |
|
|
|
case CH6_CIRCLE_RATE: |
|
// set circle rate |
|
circle_nav.set_rate(g.rc_6.control_in/25-20); // allow approximately 45 degree turn rate in either direction |
|
break; |
|
|
|
case CH6_SONAR_GAIN: |
|
// set sonar gain |
|
g.sonar_gain.set(tuning_value); |
|
break; |
|
|
|
#if 0 |
|
// disabled for now - we need accessor functions |
|
case CH6_EKF_VERTICAL_POS: |
|
// EKF's baro vs accel (higher rely on accels more, baro impact is reduced) |
|
ahrs.get_NavEKF()._gpsVertPosNoise = tuning_value; |
|
break; |
|
|
|
case CH6_EKF_HORIZONTAL_POS: |
|
// EKF's gps vs accel (higher rely on accels more, gps impact is reduced) |
|
ahrs.get_NavEKF()._gpsHorizPosNoise = tuning_value; |
|
break; |
|
|
|
case CH6_EKF_ACCEL_NOISE: |
|
// EKF's accel noise (lower means trust accels more, gps & baro less) |
|
ahrs.get_NavEKF()._accNoise = tuning_value; |
|
break; |
|
#endif |
|
|
|
case CH6_RC_FEEL_RP: |
|
// roll-pitch input smoothing |
|
g.rc_feel_rp = g.rc_6.control_in / 10; |
|
break; |
|
|
|
case CH6_RATE_PITCH_KP: |
|
g.pid_rate_pitch.kP(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_PITCH_KI: |
|
g.pid_rate_pitch.kI(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_PITCH_KD: |
|
g.pid_rate_pitch.kD(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_ROLL_KP: |
|
g.pid_rate_roll.kP(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_ROLL_KI: |
|
g.pid_rate_roll.kI(tuning_value); |
|
break; |
|
|
|
case CH6_RATE_ROLL_KD: |
|
g.pid_rate_roll.kD(tuning_value); |
|
break; |
|
} |
|
} |
|
|
|
AP_HAL_MAIN(); |
|
|
|
|