|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* Copyright (c) 2015-2020 Estimation and Control Library (ECL). All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* 3. Neither the name ECL nor the names of its contributors may be
|
|
|
|
* used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file control.cpp
|
|
|
|
* Control functions for ekf attitude and position estimator.
|
|
|
|
*
|
|
|
|
* @author Paul Riseborough <p_riseborough@live.com.au>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "../ecl.h"
|
|
|
|
#include "ekf.h"
|
|
|
|
#include <mathlib/mathlib.h>
|
|
|
|
|
|
|
|
void Ekf::controlFusionModes()
|
|
|
|
{
|
|
|
|
// Store the status to enable change detection
|
|
|
|
_control_status_prev.value = _control_status.value;
|
|
|
|
|
|
|
|
// monitor the tilt alignment
|
|
|
|
if (!_control_status.flags.tilt_align) {
|
|
|
|
// whilst we are aligning the tilt, monitor the variances
|
|
|
|
const Vector3f angle_err_var_vec = calcRotVecVariances();
|
|
|
|
|
|
|
|
// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
|
|
|
|
// and declare the tilt alignment complete
|
|
|
|
if ((angle_err_var_vec(0) + angle_err_var_vec(1)) < sq(math::radians(3.0f))) {
|
|
|
|
_control_status.flags.tilt_align = true;
|
|
|
|
_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState()); // TODO: is this needed?
|
|
|
|
|
|
|
|
// send alignment status message to the console
|
|
|
|
const char* height_source = nullptr;
|
|
|
|
if (_control_status.flags.baro_hgt) {
|
|
|
|
height_source = "baro";
|
|
|
|
|
|
|
|
} else if (_control_status.flags.ev_hgt) {
|
|
|
|
height_source = "ev";
|
|
|
|
|
|
|
|
} else if (_control_status.flags.gps_hgt) {
|
|
|
|
height_source = "gps";
|
|
|
|
|
|
|
|
} else if (_control_status.flags.rng_hgt) {
|
|
|
|
height_source = "rng";
|
|
|
|
|
|
|
|
} else {
|
|
|
|
height_source = "unknown";
|
|
|
|
|
|
|
|
}
|
|
|
|
if (height_source){
|
|
|
|
ECL_INFO("%llu: EKF aligned, (%s hgt, IMU buf: %i, OBS buf: %i)",
|
|
|
|
(unsigned long long)_imu_sample_delayed.time_us, height_source, (int)_imu_buffer_length, (int)_obs_buffer_length);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// check for intermittent data (before pop_first_older_than)
|
|
|
|
const baroSample &baro_init = _baro_buffer.get_newest();
|
|
|
|
_baro_hgt_faulty = !isRecent(baro_init.time_us, 2 * BARO_MAX_INTERVAL);
|
|
|
|
|
|
|
|
const gpsSample &gps_init = _gps_buffer.get_newest();
|
|
|
|
_gps_hgt_intermittent = !isRecent(gps_init.time_us, 2 * GPS_MAX_INTERVAL);
|
|
|
|
|
|
|
|
// check for arrival of new sensor data at the fusion time horizon
|
|
|
|
_time_prev_gps_us = _gps_sample_delayed.time_us;
|
|
|
|
_gps_data_ready = _gps_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_gps_sample_delayed);
|
|
|
|
_mag_data_ready = _mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed);
|
|
|
|
|
|
|
|
if (_mag_data_ready) {
|
|
|
|
_mag_lpf.update(_mag_sample_delayed.mag);
|
|
|
|
|
|
|
|
// if enabled, use knowledge of theoretical magnetic field vector to calculate a synthetic magnetomter Z component value.
|
|
|
|
// this is useful if there is a lot of interference on the sensor measurement.
|
|
|
|
if (_params.synthesize_mag_z && (_params.mag_declination_source & MASK_USE_GEO_DECL) && (_NED_origin_initialised || ISFINITE(_mag_declination_gps))) {
|
|
|
|
const Vector3f mag_earth_pred = Dcmf(Eulerf(0, -_mag_inclination_gps, _mag_declination_gps)) * Vector3f(_mag_strength_gps, 0, 0);
|
|
|
|
_mag_sample_delayed.mag(2) = calculate_synthetic_mag_z_measurement(_mag_sample_delayed.mag, mag_earth_pred);
|
|
|
|
_control_status.flags.synthetic_mag_z = true;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
_control_status.flags.synthetic_mag_z = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_delta_time_baro_us = _baro_sample_delayed.time_us;
|
|
|
|
_baro_data_ready = _baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed);
|
|
|
|
|
|
|
|
// if we have a new baro sample save the delta time between this sample and the last sample which is
|
|
|
|
// used below for baro offset calculations
|
|
|
|
if (_baro_data_ready) {
|
|
|
|
_delta_time_baro_us = _baro_sample_delayed.time_us - _delta_time_baro_us;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
// Get range data from buffer and check validity
|
|
|
|
const bool is_rng_data_ready = _range_buffer.pop_first_older_than(_imu_sample_delayed.time_us, _range_sensor.getSampleAddress());
|
|
|
|
_range_sensor.setDataReadiness(is_rng_data_ready);
|
|
|
|
|
|
|
|
// update range sensor angle parameters in case they have changed
|
|
|
|
_range_sensor.setPitchOffset(_params.rng_sens_pitch);
|
|
|
|
_range_sensor.setCosMaxTilt(_params.range_cos_max_tilt);
|
|
|
|
_range_sensor.setQualityHysteresis(_params.range_valid_quality_s);
|
|
|
|
|
|
|
|
_range_sensor.runChecks(_imu_sample_delayed.time_us, _R_to_earth);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_range_sensor.isDataHealthy()) {
|
|
|
|
// correct the range data for position offset relative to the IMU
|
|
|
|
const Vector3f pos_offset_body = _params.rng_pos_body - _params.imu_pos_body;
|
|
|
|
const Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
|
|
|
|
_range_sensor.setRange(_range_sensor.getRange() + pos_offset_earth(2) / _range_sensor.getCosTilt());
|
|
|
|
}
|
|
|
|
|
|
|
|
// We don't fuse flow data immediately because we have to wait for the mid integration point to fall behind the fusion time horizon.
|
|
|
|
// This means we stop looking for new data until the old data has been fused, unless we are not fusing optical flow,
|
|
|
|
// in this case we need to empty the buffer
|
|
|
|
if (!_flow_data_ready || !_control_status.flags.opt_flow) {
|
|
|
|
_flow_data_ready = _flow_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_flow_sample_delayed);
|
|
|
|
}
|
|
|
|
|
|
|
|
// check if we should fuse flow data for terrain estimation
|
|
|
|
if (!_flow_for_terrain_data_ready && _flow_data_ready && _control_status.flags.in_air) {
|
|
|
|
// TODO: WARNING, _flow_data_ready can be modified in controlOpticalFlowFusion
|
|
|
|
// due to some checks failing
|
|
|
|
// only fuse flow for terrain if range data hasn't been fused for 5 seconds
|
|
|
|
_flow_for_terrain_data_ready = isTimedOut(_time_last_hagl_fuse, (uint64_t)5E6);
|
|
|
|
// only fuse flow for terrain if the main filter is not fusing flow and we are using gps
|
|
|
|
_flow_for_terrain_data_ready &= (!_control_status.flags.opt_flow && _control_status.flags.gps);
|
|
|
|
}
|
|
|
|
|
|
|
|
_ev_data_ready = _ext_vision_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_ev_sample_delayed);
|
|
|
|
_tas_data_ready = _airspeed_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_airspeed_sample_delayed);
|
|
|
|
|
|
|
|
// check for height sensor timeouts and reset and change sensor if necessary
|
|
|
|
controlHeightSensorTimeouts();
|
|
|
|
|
|
|
|
// control use of observations for aiding
|
|
|
|
controlMagFusion();
|
|
|
|
controlOpticalFlowFusion();
|
|
|
|
controlGpsFusion();
|
|
|
|
controlAirDataFusion();
|
|
|
|
controlBetaFusion();
|
|
|
|
controlDragFusion();
|
|
|
|
controlHeightFusion();
|
|
|
|
|
|
|
|
// Additional data odoemtery data from an external estimator can be fused.
|
|
|
|
controlExternalVisionFusion();
|
|
|
|
|
|
|
|
// Additional horizontal velocity data from an auxiliary sensor can be fused
|
|
|
|
controlAuxVelFusion();
|
|
|
|
|
|
|
|
// Fake position measurement for constraining drift when no other velocity or position measurements
|
|
|
|
controlFakePosFusion();
|
|
|
|
|
|
|
|
// check if we are no longer fusing measurements that directly constrain velocity drift
|
|
|
|
update_deadreckoning_status();
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlExternalVisionFusion()
|
|
|
|
{
|
|
|
|
// Check for new external vision data
|
|
|
|
if (_ev_data_ready) {
|
|
|
|
|
|
|
|
// if the ev data is not in a NED reference frame, then the transformation between EV and EKF navigation frames
|
|
|
|
// needs to be calculated and the observations rotated into the EKF frame of reference
|
|
|
|
if ((_params.fusion_mode & MASK_ROTATE_EV) && ((_params.fusion_mode & MASK_USE_EVPOS) || (_params.fusion_mode & MASK_USE_EVVEL)) && !_control_status.flags.ev_yaw) {
|
|
|
|
// rotate EV measurements into the EKF Navigation frame
|
|
|
|
calcExtVisRotMat();
|
|
|
|
}
|
|
|
|
|
|
|
|
// external vision aiding selection logic
|
|
|
|
if (_control_status.flags.tilt_align && _control_status.flags.yaw_align) {
|
|
|
|
|
|
|
|
// check for a external vision measurement that has fallen behind the fusion time horizon
|
|
|
|
if (isRecent(_time_last_ext_vision, 2 * EV_MAX_INTERVAL)) {
|
|
|
|
// turn on use of external vision measurements for position
|
|
|
|
if (_params.fusion_mode & MASK_USE_EVPOS && !_control_status.flags.ev_pos) {
|
|
|
|
startEvPosFusion();
|
|
|
|
}
|
|
|
|
|
|
|
|
// turn on use of external vision measurements for velocity
|
|
|
|
if (_params.fusion_mode & MASK_USE_EVVEL && !_control_status.flags.ev_vel) {
|
|
|
|
startEvVelFusion();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// external vision yaw aiding selection logic
|
|
|
|
if (!_control_status.flags.gps && (_params.fusion_mode & MASK_USE_EVYAW) && !_control_status.flags.ev_yaw && _control_status.flags.tilt_align) {
|
|
|
|
// don't start using EV data unless data is arriving frequently
|
|
|
|
if (isRecent(_time_last_ext_vision, 2 * EV_MAX_INTERVAL)) {
|
|
|
|
startEvYawFusion();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// determine if we should use the horizontal position observations
|
|
|
|
if (_control_status.flags.ev_pos) {
|
|
|
|
|
|
|
|
Vector3f ev_pos_obs_var;
|
|
|
|
Vector2f ev_pos_innov_gates;
|
|
|
|
|
|
|
|
// correct position and height for offset relative to IMU
|
|
|
|
const Vector3f pos_offset_body = _params.ev_pos_body - _params.imu_pos_body;
|
|
|
|
const Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
|
|
|
|
_ev_sample_delayed.pos -= pos_offset_earth;
|
|
|
|
|
|
|
|
// Use an incremental position fusion method for EV position data if GPS is also used
|
|
|
|
if (_params.fusion_mode & MASK_USE_GPS) {
|
|
|
|
_fuse_hpos_as_odom = true;
|
|
|
|
} else {
|
|
|
|
_fuse_hpos_as_odom = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_fuse_hpos_as_odom) {
|
|
|
|
if (!_hpos_prev_available) {
|
|
|
|
// no previous observation available to calculate position change
|
|
|
|
_hpos_prev_available = true;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// calculate the change in position since the last measurement
|
|
|
|
Vector3f ev_delta_pos = _ev_sample_delayed.pos - _pos_meas_prev;
|
|
|
|
|
|
|
|
// rotate measurement into body frame is required when fusing with GPS
|
|
|
|
ev_delta_pos = _R_ev_to_ekf * ev_delta_pos;
|
|
|
|
|
|
|
|
// use the change in position since the last measurement
|
|
|
|
_ev_pos_innov(0) = _state.pos(0) - _hpos_pred_prev(0) - ev_delta_pos(0);
|
|
|
|
_ev_pos_innov(1) = _state.pos(1) - _hpos_pred_prev(1) - ev_delta_pos(1);
|
|
|
|
|
|
|
|
// observation 1-STD error, incremental pos observation is expected to have more uncertainty
|
|
|
|
Matrix3f ev_pos_var = matrix::diag(_ev_sample_delayed.posVar);
|
|
|
|
ev_pos_var = _R_ev_to_ekf * ev_pos_var * _R_ev_to_ekf.transpose();
|
|
|
|
ev_pos_obs_var(0) = fmaxf(ev_pos_var(0, 0), sq(0.5f));
|
|
|
|
ev_pos_obs_var(1) = fmaxf(ev_pos_var(1, 1), sq(0.5f));
|
|
|
|
}
|
|
|
|
|
|
|
|
// record observation and estimate for use next time
|
|
|
|
_pos_meas_prev = _ev_sample_delayed.pos;
|
|
|
|
_hpos_pred_prev = _state.pos.xy();
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// use the absolute position
|
|
|
|
Vector3f ev_pos_meas = _ev_sample_delayed.pos;
|
|
|
|
Matrix3f ev_pos_var = matrix::diag(_ev_sample_delayed.posVar);
|
|
|
|
if (_params.fusion_mode & MASK_ROTATE_EV) {
|
|
|
|
ev_pos_meas = _R_ev_to_ekf * ev_pos_meas;
|
|
|
|
ev_pos_var = _R_ev_to_ekf * ev_pos_var * _R_ev_to_ekf.transpose();
|
|
|
|
}
|
|
|
|
_ev_pos_innov(0) = _state.pos(0) - ev_pos_meas(0);
|
|
|
|
_ev_pos_innov(1) = _state.pos(1) - ev_pos_meas(1);
|
|
|
|
|
|
|
|
ev_pos_obs_var(0) = fmaxf(ev_pos_var(0, 0), sq(0.01f));
|
|
|
|
ev_pos_obs_var(1) = fmaxf(ev_pos_var(1, 1), sq(0.01f));
|
|
|
|
|
|
|
|
// check if we have been deadreckoning too long
|
|
|
|
if (isTimedOut(_time_last_hor_pos_fuse, _params.reset_timeout_max)) {
|
|
|
|
// only reset velocity if we have no another source of aiding constraining it
|
|
|
|
if (isTimedOut(_time_last_of_fuse, (uint64_t)1E6) &&
|
|
|
|
isTimedOut(_time_last_hor_vel_fuse, (uint64_t)1E6)) {
|
|
|
|
resetVelocity();
|
|
|
|
}
|
|
|
|
|
|
|
|
resetHorizontalPosition();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// innovation gate size
|
|
|
|
ev_pos_innov_gates(0) = fmaxf(_params.ev_pos_innov_gate, 1.0f);
|
|
|
|
|
|
|
|
fuseHorizontalPosition(_ev_pos_innov, ev_pos_innov_gates, ev_pos_obs_var, _ev_pos_innov_var, _ev_pos_test_ratio);
|
|
|
|
}
|
|
|
|
|
|
|
|
// determine if we should use the velocity observations
|
|
|
|
if (_control_status.flags.ev_vel) {
|
|
|
|
|
|
|
|
Vector2f ev_vel_innov_gates;
|
|
|
|
|
|
|
|
_last_vel_obs = getVisionVelocityInEkfFrame();
|
|
|
|
_ev_vel_innov = _state.vel - _last_vel_obs;
|
|
|
|
|
|
|
|
// check if we have been deadreckoning too long
|
|
|
|
if (isTimedOut(_time_last_hor_vel_fuse, _params.reset_timeout_max)) {
|
|
|
|
// only reset velocity if we have no another source of aiding constraining it
|
|
|
|
if (isTimedOut(_time_last_of_fuse, (uint64_t)1E6) &&
|
|
|
|
isTimedOut(_time_last_hor_pos_fuse, (uint64_t)1E6)) {
|
|
|
|
resetVelocity();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
_last_vel_obs_var = matrix::max(getVisionVelocityVarianceInEkfFrame(), sq(0.05f));
|
|
|
|
|
|
|
|
ev_vel_innov_gates.setAll(fmaxf(_params.ev_vel_innov_gate, 1.0f));
|
|
|
|
|
|
|
|
fuseHorizontalVelocity(_ev_vel_innov, ev_vel_innov_gates,_last_vel_obs_var, _ev_vel_innov_var, _ev_vel_test_ratio);
|
|
|
|
fuseVerticalVelocity(_ev_vel_innov, ev_vel_innov_gates, _last_vel_obs_var, _ev_vel_innov_var, _ev_vel_test_ratio);
|
|
|
|
}
|
|
|
|
|
|
|
|
// determine if we should use the yaw observation
|
|
|
|
if (_control_status.flags.ev_yaw) {
|
|
|
|
fuseHeading();
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if ((_control_status.flags.ev_pos || _control_status.flags.ev_vel || _control_status.flags.ev_yaw)
|
|
|
|
&& isTimedOut(_time_last_ext_vision, (uint64_t)_params.reset_timeout_max)) {
|
|
|
|
|
|
|
|
// Turn off EV fusion mode if no data has been received
|
|
|
|
stopEvFusion();
|
|
|
|
ECL_INFO_TIMESTAMPED("vision data stopped");
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlOpticalFlowFusion()
|
|
|
|
{
|
|
|
|
// Check if on ground motion is un-suitable for use of optical flow
|
|
|
|
if (!_control_status.flags.in_air) {
|
|
|
|
updateOnGroundMotionForOpticalFlowChecks();
|
|
|
|
|
|
|
|
} else {
|
|
|
|
resetOnGroundMotionForOpticalFlowChecks();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Accumulate autopilot gyro data across the same time interval as the flow sensor
|
|
|
|
_imu_del_ang_of += _imu_sample_delayed.delta_ang - _state.delta_ang_bias;
|
|
|
|
_delta_time_of += _imu_sample_delayed.delta_ang_dt;
|
|
|
|
|
|
|
|
if (_flow_data_ready) {
|
|
|
|
const bool is_quality_good = (_flow_sample_delayed.quality >= _params.flow_qual_min);
|
|
|
|
const bool is_magnitude_good = !_flow_sample_delayed.flow_xy_rad.longerThan(_flow_sample_delayed.dt * _flow_max_rate);
|
|
|
|
const bool is_tilt_good = (_R_to_earth(2, 2) > _params.range_cos_max_tilt);
|
|
|
|
|
|
|
|
const float delta_time_min = fmaxf(0.8f * _delta_time_of, 0.001f);
|
|
|
|
const float delta_time_max = fminf(1.2f * _delta_time_of, 0.2f);
|
|
|
|
const bool is_delta_time_good = _flow_sample_delayed.dt >= delta_time_min
|
|
|
|
&& _flow_sample_delayed.dt <= delta_time_max;
|
|
|
|
const bool is_body_rate_comp_available = calcOptFlowBodyRateComp();
|
|
|
|
|
|
|
|
if (is_quality_good
|
|
|
|
&& is_magnitude_good
|
|
|
|
&& is_tilt_good
|
|
|
|
&& is_body_rate_comp_available
|
|
|
|
&& is_delta_time_good) {
|
|
|
|
// compensate for body motion to give a LOS rate
|
|
|
|
_flow_compensated_XY_rad = _flow_sample_delayed.flow_xy_rad - _flow_sample_delayed.gyro_xyz.xy();
|
|
|
|
|
|
|
|
} else if (!_control_status.flags.in_air && is_body_rate_comp_available) {
|
|
|
|
|
|
|
|
if (!is_delta_time_good) {
|
|
|
|
// handle special case of SITL and PX4Flow where dt is forced to
|
|
|
|
// zero when the quaity is 0
|
|
|
|
_flow_sample_delayed.dt = delta_time_min;
|
|
|
|
}
|
|
|
|
|
|
|
|
// when on the ground with poor flow quality,
|
|
|
|
// assume zero ground relative velocity and LOS rate
|
|
|
|
_flow_compensated_XY_rad.setZero();
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// don't use this flow data and wait for the next data to arrive
|
|
|
|
_flow_data_ready = false;
|
|
|
|
_flow_for_terrain_data_ready = false; // TODO: find a better place
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// New optical flow data is available and is ready to be fused when the midpoint of the sample falls behind the fusion time horizon
|
|
|
|
if (_flow_data_ready) {
|
|
|
|
// Inhibit flow use if motion is un-suitable or we have good quality GPS
|
|
|
|
// Apply hysteresis to prevent rapid mode switching
|
|
|
|
const float gps_err_norm_lim = _control_status.flags.opt_flow ? 0.7f : 1.0f;
|
|
|
|
|
|
|
|
// Check if we are in-air and require optical flow to control position drift
|
|
|
|
const bool is_flow_required = _control_status.flags.in_air
|
|
|
|
&& (_is_dead_reckoning // is doing inertial dead-reckoning so must constrain drift urgently
|
|
|
|
|| isOnlyActiveSourceOfHorizontalAiding(_control_status.flags.opt_flow)
|
|
|
|
|| (_control_status.flags.gps && (_gps_error_norm > gps_err_norm_lim))); // is using GPS, but GPS is bad
|
|
|
|
|
|
|
|
|
|
|
|
// inhibit use of optical flow if motion is unsuitable and we are not reliant on it for flight navigation
|
|
|
|
const bool preflight_motion_not_ok = !_control_status.flags.in_air
|
|
|
|
&& ((_imu_sample_delayed.time_us > (_time_good_motion_us + (uint64_t)1E5))
|
|
|
|
|| (_imu_sample_delayed.time_us < (_time_bad_motion_us + (uint64_t)5E6)));
|
|
|
|
const bool flight_condition_not_ok = _control_status.flags.in_air && !isTerrainEstimateValid();
|
|
|
|
|
|
|
|
_inhibit_flow_use = ((preflight_motion_not_ok || flight_condition_not_ok) && !is_flow_required)
|
|
|
|
|| !_control_status.flags.tilt_align;
|
|
|
|
|
|
|
|
// Handle cases where we are using optical flow but we should not use it anymore
|
|
|
|
if (_control_status.flags.opt_flow) {
|
|
|
|
if (!(_params.fusion_mode & MASK_USE_OF)
|
|
|
|
|| _inhibit_flow_use) {
|
|
|
|
|
|
|
|
stopFlowFusion();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// optical flow fusion mode selection logic
|
|
|
|
if ((_params.fusion_mode & MASK_USE_OF) // optical flow has been selected by the user
|
|
|
|
&& !_control_status.flags.opt_flow // we are not yet using flow data
|
|
|
|
&& !_inhibit_flow_use)
|
|
|
|
{
|
|
|
|
// If the heading is not aligned, reset the yaw and magnetic field states
|
|
|
|
// TODO: ekf2 should always try to align itself if not already aligned
|
|
|
|
if (!_control_status.flags.yaw_align) {
|
|
|
|
_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState());
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the heading is valid and use is not inhibited , start using optical flow aiding
|
|
|
|
if (_control_status.flags.yaw_align) {
|
|
|
|
// set the flag and reset the fusion timeout
|
|
|
|
_control_status.flags.opt_flow = true;
|
|
|
|
_time_last_of_fuse = _time_last_imu;
|
|
|
|
|
|
|
|
// if we are not using GPS or external vision aiding, then the velocity and position states and covariances need to be set
|
|
|
|
const bool flow_aid_only = !isOtherSourceOfHorizontalAidingThan(_control_status.flags.opt_flow);
|
|
|
|
|
|
|
|
if (flow_aid_only) {
|
|
|
|
resetVelocity();
|
|
|
|
resetHorizontalPosition();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_control_status.flags.opt_flow) {
|
|
|
|
// Wait until the midpoint of the flow sample has fallen behind the fusion time horizon
|
|
|
|
if (_imu_sample_delayed.time_us > (_flow_sample_delayed.time_us - uint32_t(1e6f * _flow_sample_delayed.dt) / 2)) {
|
|
|
|
// Fuse optical flow LOS rate observations into the main filter only if height above ground has been updated recently
|
|
|
|
// but use a relaxed time criteria to enable it to coast through bad range finder data
|
|
|
|
if (isRecent(_time_last_hagl_fuse, (uint64_t)10e6)) {
|
|
|
|
fuseOptFlow();
|
|
|
|
_last_known_posNE = _state.pos.xy();
|
|
|
|
}
|
|
|
|
|
|
|
|
_flow_data_ready = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// handle the case when we have optical flow, are reliant on it, but have not been using it for an extended period
|
|
|
|
if (isTimedOut(_time_last_of_fuse, _params.reset_timeout_max)
|
|
|
|
&& !isOtherSourceOfHorizontalAidingThan(_control_status.flags.opt_flow)) {
|
|
|
|
|
|
|
|
resetVelocity();
|
|
|
|
resetHorizontalPosition();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (_control_status.flags.opt_flow && (_imu_sample_delayed.time_us > _flow_sample_delayed.time_us + (uint64_t)10e6)) {
|
|
|
|
stopFlowFusion();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::updateOnGroundMotionForOpticalFlowChecks()
|
|
|
|
{
|
|
|
|
// When on ground check if the vehicle is being shaken or moved in a way that could cause a loss of navigation
|
|
|
|
const float accel_norm = _accel_vec_filt.norm();
|
|
|
|
|
|
|
|
const bool motion_is_excessive = ((accel_norm > (CONSTANTS_ONE_G * 1.5f)) // upper g limit
|
|
|
|
|| (accel_norm < (CONSTANTS_ONE_G * 0.5f)) // lower g limit
|
|
|
|
|| (_ang_rate_magnitude_filt > _flow_max_rate) // angular rate exceeds flow sensor limit
|
|
|
|
|| (_R_to_earth(2,2) < cosf(math::radians(30.0f)))); // tilted excessively
|
|
|
|
|
|
|
|
if (motion_is_excessive) {
|
|
|
|
_time_bad_motion_us = _imu_sample_delayed.time_us;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
_time_good_motion_us = _imu_sample_delayed.time_us;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::resetOnGroundMotionForOpticalFlowChecks()
|
|
|
|
{
|
|
|
|
_time_bad_motion_us = 0;
|
|
|
|
_time_good_motion_us = _imu_sample_delayed.time_us;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlGpsFusion()
|
|
|
|
{
|
|
|
|
// Check for new GPS data that has fallen behind the fusion time horizon
|
|
|
|
if (_gps_data_ready) {
|
|
|
|
|
|
|
|
controlGpsYawFusion();
|
|
|
|
|
|
|
|
// Determine if we should use GPS aiding for velocity and horizontal position
|
|
|
|
// To start using GPS we need angular alignment completed, the local NED origin set and GPS data that has not failed checks recently
|
|
|
|
const bool gps_checks_passing = isTimedOut(_last_gps_fail_us, (uint64_t)5e6);
|
|
|
|
const bool gps_checks_failing = isTimedOut(_last_gps_pass_us, (uint64_t)5e6);
|
|
|
|
if ((_params.fusion_mode & MASK_USE_GPS) && !_control_status.flags.gps) {
|
|
|
|
if (_control_status.flags.tilt_align && _NED_origin_initialised && gps_checks_passing) {
|
|
|
|
// If the heading is not aligned, reset the yaw and magnetic field states
|
|
|
|
// Do not use external vision for yaw if using GPS because yaw needs to be
|
|
|
|
// defined relative to an NED reference frame
|
|
|
|
const bool want_to_reset_mag_heading = !_control_status.flags.yaw_align ||
|
|
|
|
_control_status.flags.ev_yaw ||
|
|
|
|
_mag_inhibit_yaw_reset_req;
|
|
|
|
if (want_to_reset_mag_heading && canResetMagHeading()) {
|
|
|
|
_control_status.flags.ev_yaw = false;
|
|
|
|
_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState());
|
|
|
|
// Handle the special case where we have not been constraining yaw drift or learning yaw bias due
|
|
|
|
// to assumed invalid mag field associated with indoor operation with a downwards looking flow sensor.
|
|
|
|
if (_mag_inhibit_yaw_reset_req) {
|
|
|
|
_mag_inhibit_yaw_reset_req = false;
|
|
|
|
// Zero the yaw bias covariance and set the variance to the initial alignment uncertainty
|
|
|
|
P.uncorrelateCovarianceSetVariance<1>(12, sq(_params.switch_on_gyro_bias * FILTER_UPDATE_PERIOD_S));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the heading is valid start using gps aiding
|
|
|
|
if (_control_status.flags.yaw_align) {
|
|
|
|
startGpsFusion();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (!(_params.fusion_mode & MASK_USE_GPS)) {
|
|
|
|
_control_status.flags.gps = false;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// Handle the case where we are using GPS and another source of aiding and GPS is failing checks
|
|
|
|
if (_control_status.flags.gps && gps_checks_failing && isOtherSourceOfHorizontalAidingThan(_control_status.flags.gps)) {
|
|
|
|
stopGpsFusion();
|
|
|
|
// Reset position state to external vision if we are going to use absolute values
|
|
|
|
if (_control_status.flags.ev_pos && !(_params.fusion_mode & MASK_ROTATE_EV)) {
|
|
|
|
resetHorizontalPosition();
|
|
|
|
}
|
|
|
|
ECL_WARN_TIMESTAMPED("GPS quality poor - stopping use");
|
|
|
|
}
|
|
|
|
|
|
|
|
// handle case where we are not currently using GPS, but need to align yaw angle using EKF-GSF before
|
|
|
|
// we can start using GPS
|
|
|
|
const bool align_yaw_using_gsf = !_control_status.flags.gps && _do_ekfgsf_yaw_reset && isTimedOut(_ekfgsf_yaw_reset_time, 5000000);
|
|
|
|
if (align_yaw_using_gsf) {
|
|
|
|
if (resetYawToEKFGSF()) {
|
|
|
|
_ekfgsf_yaw_reset_time = _time_last_imu;
|
|
|
|
_do_ekfgsf_yaw_reset = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// handle the case when we now have GPS, but have not been fusing it for an extended period
|
|
|
|
if (_control_status.flags.gps) {
|
|
|
|
// We are relying on aiding to constrain drift so after a specified time
|
|
|
|
// with no aiding we need to do something
|
|
|
|
bool do_vel_pos_reset = isTimedOut(_time_last_hor_pos_fuse, _params.reset_timeout_max)
|
|
|
|
&& isTimedOut(_time_last_delpos_fuse, _params.reset_timeout_max)
|
|
|
|
&& isTimedOut(_time_last_hor_vel_fuse, _params.reset_timeout_max)
|
|
|
|
&& isTimedOut(_time_last_of_fuse, _params.reset_timeout_max);
|
|
|
|
|
|
|
|
// We haven't had an absolute position fix for a longer time so need to do something
|
|
|
|
do_vel_pos_reset = do_vel_pos_reset || isTimedOut(_time_last_hor_pos_fuse, 2 * _params.reset_timeout_max);
|
|
|
|
|
|
|
|
/* Logic controlling the reset of navigation filter yaw to the EKF-GSF estimate to recover from loss of
|
|
|
|
navigation casued by a bad yaw estimate.
|
|
|
|
|
|
|
|
A rapid reset to the EKF-GSF estimate is performed after a recent takeoff if horizontal velocity
|
|
|
|
innovation checks fail. This enables recovery from a bad yaw estimate. After 30 seconds from takeoff,
|
|
|
|
different test criteria are used that take longer to trigger and reduce false positives. A reset is
|
|
|
|
not performed if the fault condition was present before flight to prevent triggering due to GPS glitches
|
|
|
|
or other sensor errors.
|
|
|
|
|
|
|
|
The yaw reset to the EKF-GSF estimate can be requested externally at any time during flight.
|
|
|
|
|
|
|
|
The total number of resets allowed per boot cycle is limited.
|
|
|
|
|
|
|
|
The minimum time interval between resets to the EKF-GSF estimate is limited to allow the EKF-GSF time
|
|
|
|
to improve its estimate if the previous reset was not successful.
|
|
|
|
|
|
|
|
A reset is not performed when getting GPS back after a significant period of no data because the timeout
|
|
|
|
could have been caused by bad GPS.
|
|
|
|
*/
|
|
|
|
|
|
|
|
const bool recent_takeoff_nav_failure = _control_status.flags.in_air &&
|
|
|
|
!isTimedOut(_time_last_on_ground_us, 30000000) &&
|
|
|
|
isTimedOut(_time_last_hor_vel_fuse, _params.EKFGSF_reset_delay) &&
|
|
|
|
(_time_last_hor_vel_fuse > _time_last_on_ground_us);
|
|
|
|
|
|
|
|
const bool inflight_nav_failure = _control_status.flags.in_air &&
|
|
|
|
do_vel_pos_reset &&
|
|
|
|
(_time_last_hor_vel_fuse > _time_last_on_ground_us) &&
|
|
|
|
(_time_last_hor_pos_fuse > _time_last_on_ground_us);
|
|
|
|
|
|
|
|
bool is_yaw_failure = false;
|
|
|
|
if ((recent_takeoff_nav_failure || inflight_nav_failure) && _time_last_hor_vel_fuse > 0) {
|
|
|
|
// Do sanity check to see if the innovation failures is likely caused by a yaw angle error
|
|
|
|
// by measuring the angle between the velocity estimate and the last velocity observation
|
|
|
|
// Only use those vectors if their norm if they are larger than 4 times their noise standard deviation
|
|
|
|
const float vel_obs_xy_norm_sq = _last_vel_obs.xy().norm_squared();
|
|
|
|
const float vel_state_xy_norm_sq = _state.vel.xy().norm_squared();
|
|
|
|
|
|
|
|
const float vel_obs_threshold_sq = fmaxf(sq(4.f) * (_last_vel_obs_var(0) + _last_vel_obs_var(1)), 1.f);
|
|
|
|
const float vel_state_threshold_sq = fmaxf(sq(4.f) * (P(4, 4) + P(5, 5)), 1.f);
|
|
|
|
|
|
|
|
if (vel_obs_xy_norm_sq > vel_obs_threshold_sq && vel_state_xy_norm_sq > vel_state_threshold_sq) {
|
|
|
|
const float obs_dot_vel = Vector2f(_last_vel_obs).dot(_state.vel.xy());
|
|
|
|
const float cos_sq = sq(obs_dot_vel) / (vel_state_xy_norm_sq * vel_obs_xy_norm_sq);
|
|
|
|
|
|
|
|
if (cos_sq < sq(cosf(math::radians(25.f))) || obs_dot_vel < 0.f) {
|
|
|
|
// The angle between the observation and the velocity estimate is greater than 25 degrees
|
|
|
|
is_yaw_failure = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Detect if coming back after significant time without GPS data
|
|
|
|
const bool gps_signal_was_lost = isTimedOut(_time_prev_gps_us, 1000000);
|
|
|
|
const bool do_yaw_vel_pos_reset = (_do_ekfgsf_yaw_reset || is_yaw_failure) &&
|
|
|
|
_ekfgsf_yaw_reset_count < _params.EKFGSF_reset_count_limit &&
|
|
|
|
isTimedOut(_ekfgsf_yaw_reset_time, 5000000) &&
|
|
|
|
!gps_signal_was_lost;
|
|
|
|
|
|
|
|
if (do_yaw_vel_pos_reset) {
|
|
|
|
if (resetYawToEKFGSF()) {
|
|
|
|
_ekfgsf_yaw_reset_time = _time_last_imu;
|
|
|
|
_do_ekfgsf_yaw_reset = false;
|
|
|
|
_ekfgsf_yaw_reset_count++;
|
|
|
|
|
|
|
|
// Reset the timeout counters
|
|
|
|
_time_last_hor_pos_fuse = _time_last_imu;
|
|
|
|
_time_last_delpos_fuse = _time_last_imu;
|
|
|
|
_time_last_hor_vel_fuse = _time_last_imu;
|
|
|
|
_time_last_of_fuse = _time_last_imu;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (do_vel_pos_reset) {
|
|
|
|
// use GPS velocity data to check and correct yaw angle if a FW vehicle
|
|
|
|
if (_control_status.flags.fixed_wing && _control_status.flags.in_air) {
|
|
|
|
// if flying a fixed wing aircraft, do a complete reset that includes yaw
|
|
|
|
_control_status.flags.mag_aligned_in_flight = realignYawGPS();
|
|
|
|
}
|
|
|
|
|
|
|
|
resetVelocity();
|
|
|
|
resetHorizontalPosition();
|
|
|
|
_velpos_reset_request = false;
|
|
|
|
ECL_WARN_TIMESTAMPED("GPS fusion timeout - reset to GPS");
|
|
|
|
|
|
|
|
// Reset the timeout counters
|
|
|
|
_time_last_hor_pos_fuse = _time_last_imu;
|
|
|
|
_time_last_hor_vel_fuse = _time_last_imu;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Only use GPS data for position and velocity aiding if enabled
|
|
|
|
if (_control_status.flags.gps) {
|
|
|
|
|
|
|
|
Vector2f gps_vel_innov_gates; // [horizontal vertical]
|
|
|
|
Vector2f gps_pos_innov_gates; // [horizontal vertical]
|
|
|
|
Vector3f gps_pos_obs_var;
|
|
|
|
|
|
|
|
// correct velocity for offset relative to IMU
|
|
|
|
const Vector3f pos_offset_body = _params.gps_pos_body - _params.imu_pos_body;
|
|
|
|
const Vector3f vel_offset_body = _ang_rate_delayed_raw % pos_offset_body;
|
|
|
|
const Vector3f vel_offset_earth = _R_to_earth * vel_offset_body;
|
|
|
|
_gps_sample_delayed.vel -= vel_offset_earth;
|
|
|
|
|
|
|
|
// correct position and height for offset relative to IMU
|
|
|
|
const Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
|
|
|
|
_gps_sample_delayed.pos -= pos_offset_earth.xy();
|
|
|
|
_gps_sample_delayed.hgt += pos_offset_earth(2);
|
|
|
|
|
|
|
|
const float lower_limit = fmaxf(_params.gps_pos_noise, 0.01f);
|
|
|
|
|
|
|
|
if (isOtherSourceOfHorizontalAidingThan(_control_status.flags.gps)) {
|
|
|
|
// if we are using other sources of aiding, then relax the upper observation
|
|
|
|
// noise limit which prevents bad GPS perturbing the position estimate
|
|
|
|
gps_pos_obs_var(0) = gps_pos_obs_var(1) = sq(fmaxf(_gps_sample_delayed.hacc, lower_limit));
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// if we are not using another source of aiding, then we are reliant on the GPS
|
|
|
|
// observations to constrain attitude errors and must limit the observation noise value.
|
|
|
|
float upper_limit = fmaxf(_params.pos_noaid_noise, lower_limit);
|
|
|
|
gps_pos_obs_var(0) = gps_pos_obs_var(1) = sq(math::constrain(_gps_sample_delayed.hacc, lower_limit, upper_limit));
|
|
|
|
}
|
|
|
|
|
|
|
|
_last_vel_obs_var.setAll(sq(fmaxf(_gps_sample_delayed.sacc, _params.gps_vel_noise)));
|
|
|
|
_last_vel_obs_var(2) *= sq(1.5f);
|
|
|
|
|
|
|
|
// calculate innovations
|
|
|
|
_last_vel_obs = _gps_sample_delayed.vel;
|
|
|
|
_gps_vel_innov = _state.vel - _last_vel_obs;
|
|
|
|
_gps_pos_innov.xy() = Vector2f(_state.pos) - _gps_sample_delayed.pos;
|
|
|
|
|
|
|
|
// set innovation gate size
|
|
|
|
gps_pos_innov_gates(0) = fmaxf(_params.gps_pos_innov_gate, 1.0f);
|
|
|
|
gps_vel_innov_gates(0) = gps_vel_innov_gates(1) = fmaxf(_params.gps_vel_innov_gate, 1.0f);
|
|
|
|
|
|
|
|
// fuse GPS measurement
|
|
|
|
fuseHorizontalVelocity(_gps_vel_innov, gps_vel_innov_gates, _last_vel_obs_var, _gps_vel_innov_var, _gps_vel_test_ratio);
|
|
|
|
fuseVerticalVelocity(_gps_vel_innov, gps_vel_innov_gates, _last_vel_obs_var, _gps_vel_innov_var, _gps_vel_test_ratio);
|
|
|
|
fuseHorizontalPosition(_gps_pos_innov, gps_pos_innov_gates, gps_pos_obs_var, _gps_pos_innov_var, _gps_pos_test_ratio);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (_control_status.flags.gps && (_imu_sample_delayed.time_us - _gps_sample_delayed.time_us > (uint64_t)10e6)) {
|
|
|
|
stopGpsFusion();
|
|
|
|
ECL_WARN_TIMESTAMPED("GPS data stopped");
|
|
|
|
} else if (_control_status.flags.gps && (_imu_sample_delayed.time_us - _gps_sample_delayed.time_us > (uint64_t)1e6) && isOtherSourceOfHorizontalAidingThan(_control_status.flags.gps)) {
|
|
|
|
// Handle the case where we are fusing another position source along GPS,
|
|
|
|
// stop waiting for GPS after 1 s of lost signal
|
|
|
|
stopGpsFusion();
|
|
|
|
ECL_WARN_TIMESTAMPED("GPS data stopped, using only EV, OF or air data" );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlGpsYawFusion()
|
|
|
|
{
|
|
|
|
if (!(_params.fusion_mode & MASK_USE_GPSYAW)
|
|
|
|
|| _is_gps_yaw_faulty) {
|
|
|
|
|
|
|
|
stopGpsYawFusion();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ISFINITE(_gps_sample_delayed.yaw)) {
|
|
|
|
|
|
|
|
if (_control_status.flags.gps_yaw) {
|
|
|
|
fuseGpsYaw();
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Try to activate GPS yaw fusion
|
|
|
|
if (_control_status.flags.tilt_align
|
|
|
|
&& !_gps_hgt_intermittent) {
|
|
|
|
|
|
|
|
if (resetYawToGps()) {
|
|
|
|
_control_status.flags.yaw_align = true;
|
|
|
|
startGpsYawFusion();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the data is constantly fused by the estimator,
|
|
|
|
// if not, declare the sensor faulty and stop the fusion
|
|
|
|
// By doing this, another source of yaw aiding is allowed to start
|
|
|
|
if (_control_status.flags.gps_yaw
|
|
|
|
&& isTimedOut(_time_last_gps_yaw_fuse, (uint64_t)5e6)) {
|
|
|
|
_is_gps_yaw_faulty = true;
|
|
|
|
stopGpsYawFusion();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlHeightSensorTimeouts()
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Handle the case where we have not fused height measurements recently and
|
|
|
|
* uncertainty exceeds the max allowable. Reset using the best available height
|
|
|
|
* measurement source, continue using it after the reset and declare the current
|
|
|
|
* source failed if we have switched.
|
|
|
|
*/
|
|
|
|
|
|
|
|
checkVerticalAccelerationHealth();
|
|
|
|
|
|
|
|
// check if height is continuously failing because of accel errors
|
|
|
|
const bool continuous_bad_accel_hgt = isTimedOut(_time_good_vert_accel, (uint64_t)_params.bad_acc_reset_delay_us);
|
|
|
|
|
|
|
|
// check if height has been inertial deadreckoning for too long
|
|
|
|
const bool hgt_fusion_timeout = isTimedOut(_time_last_hgt_fuse, (uint64_t)5e6);
|
|
|
|
|
|
|
|
if (hgt_fusion_timeout || continuous_bad_accel_hgt) {
|
|
|
|
|
|
|
|
bool request_height_reset = false;
|
|
|
|
const char* failing_height_source = nullptr;
|
|
|
|
const char* new_height_source = nullptr;
|
|
|
|
|
|
|
|
if (_control_status.flags.baro_hgt) {
|
|
|
|
// check if GPS height is available
|
|
|
|
const gpsSample &gps_init = _gps_buffer.get_newest();
|
|
|
|
const bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);
|
|
|
|
|
|
|
|
// check for inertial sensing errors in the last BADACC_PROBATION seconds
|
|
|
|
const bool prev_bad_vert_accel = isRecent(_time_bad_vert_accel, BADACC_PROBATION);
|
|
|
|
|
|
|
|
// reset to GPS if adequate GPS data is available and the timeout cannot be blamed on IMU data
|
|
|
|
const bool reset_to_gps = !_gps_hgt_intermittent &&
|
|
|
|
((gps_hgt_accurate && !prev_bad_vert_accel) || _baro_hgt_faulty);
|
|
|
|
|
|
|
|
if (reset_to_gps) {
|
|
|
|
// set height sensor health
|
|
|
|
_baro_hgt_faulty = true;
|
|
|
|
|
|
|
|
startGpsHgtFusion();
|
|
|
|
|
|
|
|
request_height_reset = true;
|
|
|
|
failing_height_source = "baro";
|
|
|
|
new_height_source = "gps";
|
|
|
|
|
|
|
|
} else if (!_baro_hgt_faulty) {
|
|
|
|
request_height_reset = true;
|
|
|
|
failing_height_source = "baro";
|
|
|
|
new_height_source = "baro";
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (_control_status.flags.gps_hgt) {
|
|
|
|
// check if GPS height is available
|
|
|
|
const gpsSample &gps_init = _gps_buffer.get_newest();
|
|
|
|
const bool gps_hgt_accurate = (gps_init.vacc < _params.req_vacc);
|
|
|
|
|
|
|
|
// check the baro height source for consistency and freshness
|
|
|
|
const baroSample &baro_init = _baro_buffer.get_newest();
|
|
|
|
const float baro_innov = _state.pos(2) - (_hgt_sensor_offset - baro_init.hgt + _baro_hgt_offset);
|
|
|
|
const bool baro_data_consistent = fabsf(baro_innov) < (sq(_params.baro_noise) + P(9,9)) * sq(_params.baro_innov_gate);
|
|
|
|
|
|
|
|
// if baro data is acceptable and GPS data is inaccurate, reset height to baro
|
|
|
|
const bool reset_to_baro = !_baro_hgt_faulty &&
|
|
|
|
((baro_data_consistent && !gps_hgt_accurate) ||
|
|
|
|
_gps_hgt_intermittent);
|
|
|
|
|
|
|
|
if (reset_to_baro) {
|
|
|
|
startBaroHgtFusion();
|
|
|
|
|
|
|
|
request_height_reset = true;
|
|
|
|
failing_height_source = "gps";
|
|
|
|
new_height_source = "baro";
|
|
|
|
|
|
|
|
} else if (!_gps_hgt_intermittent) {
|
|
|
|
request_height_reset = true;
|
|
|
|
failing_height_source = "gps";
|
|
|
|
new_height_source = "gps";
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (_control_status.flags.rng_hgt) {
|
|
|
|
|
|
|
|
if (_range_sensor.isHealthy()) {
|
|
|
|
request_height_reset = true;
|
|
|
|
failing_height_source = "rng";
|
|
|
|
new_height_source = "rng";
|
|
|
|
|
|
|
|
} else if (!_baro_hgt_faulty) {
|
|
|
|
startBaroHgtFusion();
|
|
|
|
|
|
|
|
request_height_reset = true;
|
|
|
|
failing_height_source = "rng";
|
|
|
|
new_height_source = "baro";
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (_control_status.flags.ev_hgt) {
|
|
|
|
// check if vision data is available
|
|
|
|
const extVisionSample &ev_init = _ext_vision_buffer.get_newest();
|
|
|
|
const bool ev_data_available = isRecent(ev_init.time_us, 2 * EV_MAX_INTERVAL);
|
|
|
|
|
|
|
|
if (ev_data_available) {
|
|
|
|
request_height_reset = true;
|
|
|
|
failing_height_source = "ev";
|
|
|
|
new_height_source = "ev";
|
|
|
|
|
|
|
|
} else if (!_baro_hgt_faulty) {
|
|
|
|
startBaroHgtFusion();
|
|
|
|
|
|
|
|
request_height_reset = true;
|
|
|
|
failing_height_source = "ev";
|
|
|
|
new_height_source = "baro";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (failing_height_source && new_height_source) {
|
|
|
|
ECL_WARN("%s hgt timeout - reset to %s", failing_height_source, new_height_source);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reset vertical position and velocity states to the last measurement
|
|
|
|
if (request_height_reset) {
|
|
|
|
resetHeight();
|
|
|
|
// Reset the timout timer
|
|
|
|
_time_last_hgt_fuse = _time_last_imu;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::checkVerticalAccelerationHealth()
|
|
|
|
{
|
|
|
|
// Check for IMU accelerometer vibration induced clipping as evidenced by the vertical
|
|
|
|
// innovations being positive and not stale.
|
|
|
|
// Clipping usually causes the average accel reading to move towards zero which makes the INS
|
|
|
|
// think it is falling and produces positive vertical innovations.
|
|
|
|
// Don't use stale innovation data.
|
|
|
|
bool is_inertial_nav_falling = false;
|
|
|
|
bool are_vertical_pos_and_vel_independant = false;
|
|
|
|
if (isRecent(_vert_pos_fuse_attempt_time_us, 1000000)) {
|
|
|
|
if (isRecent(_vert_vel_fuse_time_us, 1000000)) {
|
|
|
|
// If vertical position and velocity come from independent sensors then we can
|
|
|
|
// trust them more if they disagree with the IMU, but need to check that they agree
|
|
|
|
const bool using_gps_for_both = _control_status.flags.gps_hgt && _control_status.flags.gps;
|
|
|
|
const bool using_ev_for_both = _control_status.flags.ev_hgt && _control_status.flags.ev_vel;
|
|
|
|
are_vertical_pos_and_vel_independant = !(using_gps_for_both || using_ev_for_both);
|
|
|
|
is_inertial_nav_falling |= _vert_vel_innov_ratio > _params.vert_innov_test_lim && _vert_pos_innov_ratio > 0.0f;
|
|
|
|
is_inertial_nav_falling |= _vert_pos_innov_ratio > _params.vert_innov_test_lim && _vert_vel_innov_ratio > 0.0f;
|
|
|
|
} else {
|
|
|
|
// only height sensing available
|
|
|
|
is_inertial_nav_falling = _vert_pos_innov_ratio > _params.vert_innov_test_lim;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for more than 50% clipping affected IMU samples within the past 1 second
|
|
|
|
const uint16_t clip_count_limit = 1000 / FILTER_UPDATE_PERIOD_MS;
|
|
|
|
const bool is_clipping = _imu_sample_delayed.delta_vel_clipping[0] ||
|
|
|
|
_imu_sample_delayed.delta_vel_clipping[1] ||
|
|
|
|
_imu_sample_delayed.delta_vel_clipping[2];
|
|
|
|
if (is_clipping &&_clip_counter < clip_count_limit) {
|
|
|
|
_clip_counter++;
|
|
|
|
} else if (_clip_counter > 0) {
|
|
|
|
_clip_counter--;
|
|
|
|
}
|
|
|
|
const bool is_clipping_frequently = _clip_counter > 0;
|
|
|
|
|
|
|
|
// if vertical velocity and position are independent and agree, then do not require evidence of clipping if
|
|
|
|
// innovations are large
|
|
|
|
const bool bad_vert_accel = (are_vertical_pos_and_vel_independant || is_clipping_frequently) &&
|
|
|
|
is_inertial_nav_falling;
|
|
|
|
|
|
|
|
if (bad_vert_accel) {
|
|
|
|
_time_bad_vert_accel = _time_last_imu;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
_time_good_vert_accel = _time_last_imu;
|
|
|
|
}
|
|
|
|
|
|
|
|
// declare a bad vertical acceleration measurement and make the declaration persist
|
|
|
|
// for a minimum of BADACC_PROBATION seconds
|
|
|
|
if (_fault_status.flags.bad_acc_vertical) {
|
|
|
|
_fault_status.flags.bad_acc_vertical = isRecent(_time_bad_vert_accel, BADACC_PROBATION);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
_fault_status.flags.bad_acc_vertical = bad_vert_accel;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlHeightFusion()
|
|
|
|
{
|
|
|
|
checkRangeAidSuitability();
|
|
|
|
const bool do_range_aid = (_params.range_aid == 1) && isRangeAidSuitable();
|
|
|
|
|
|
|
|
bool fuse_height = false;
|
|
|
|
|
|
|
|
switch (_params.vdist_sensor_type) {
|
|
|
|
default:
|
|
|
|
ECL_ERR("Invalid hgt mode: %d", _params.vdist_sensor_type);
|
|
|
|
|
|
|
|
// FALLTHROUGH
|
|
|
|
case VDIST_SENSOR_BARO:
|
|
|
|
if (do_range_aid && _range_sensor.isDataHealthy()) {
|
|
|
|
setControlRangeHeight();
|
|
|
|
fuse_height = true;
|
|
|
|
|
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current
|
|
|
|
// measurement matches our current height estimate
|
|
|
|
if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
|
|
|
|
_hgt_sensor_offset = _terrain_vpos;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (!do_range_aid && _baro_data_ready && !_baro_hgt_faulty) {
|
|
|
|
startBaroHgtFusion();
|
|
|
|
fuse_height = true;
|
|
|
|
|
|
|
|
} else if (_control_status.flags.gps_hgt && _gps_data_ready && !_gps_hgt_intermittent) {
|
|
|
|
// switch to gps if there was a reset to gps
|
|
|
|
fuse_height = true;
|
|
|
|
|
|
|
|
// we have just switched to using gps height, calculate height sensor offset such that current
|
|
|
|
// measurement matches our current height estimate
|
|
|
|
if (_control_status_prev.flags.gps_hgt != _control_status.flags.gps_hgt) {
|
|
|
|
_hgt_sensor_offset = _gps_sample_delayed.hgt - _gps_alt_ref + _state.pos(2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VDIST_SENSOR_RANGE:
|
|
|
|
if (_range_sensor.isDataHealthy()) {
|
|
|
|
setControlRangeHeight();
|
|
|
|
fuse_height = true;
|
|
|
|
|
|
|
|
if (_control_status_prev.flags.rng_hgt != _control_status.flags.rng_hgt) {
|
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current
|
|
|
|
// measurement matches our current height estimate
|
|
|
|
// use the parameter rng_gnd_clearance if on ground to avoid a noisy offset initialization (e.g. sonar)
|
|
|
|
if (_control_status.flags.in_air && isTerrainEstimateValid()) {
|
|
|
|
_hgt_sensor_offset = _terrain_vpos;
|
|
|
|
|
|
|
|
} else if (_control_status.flags.in_air) {
|
|
|
|
_hgt_sensor_offset = _range_sensor.getDistBottom() + _state.pos(2);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
_hgt_sensor_offset = _params.rng_gnd_clearance;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} else if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
|
|
|
|
// fuse baro data if there was a reset to baro
|
|
|
|
fuse_height = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VDIST_SENSOR_GPS:
|
|
|
|
|
|
|
|
// NOTE: emergency fallback due to extended loss of currently selected sensor data or failure
|
|
|
|
// to pass innovation cinsistency checks is handled elsewhere in Ekf::controlHeightSensorTimeouts.
|
|
|
|
// Do switching between GPS and rangefinder if using range finder as a height source when close
|
|
|
|
// to ground and moving slowly. Also handle switch back from emergency Baro sensor when GPS recovers.
|
|
|
|
if (!_control_status_prev.flags.rng_hgt && do_range_aid && _range_sensor.isDataHealthy()) {
|
|
|
|
setControlRangeHeight();
|
|
|
|
|
|
|
|
// we have just switched to using range finder, calculate height sensor offset such that current
|
|
|
|
// measurement matches our current height estimate
|
|
|
|
_hgt_sensor_offset = _terrain_vpos;
|
|
|
|
|
|
|
|
} else if (_control_status_prev.flags.rng_hgt && !do_range_aid) {
|
|
|
|
// must stop using range finder so find another sensor now
|
|
|
|
if (!_gps_hgt_intermittent && _gps_checks_passed) {
|
|
|
|
// GPS quality OK
|
|
|
|
startGpsHgtFusion();
|
|
|
|
} else if (!_baro_hgt_faulty) {
|
|
|
|
// Use baro as a fallback
|
|
|
|
startBaroHgtFusion();
|
|
|
|
}
|
|
|
|
} else if (_control_status.flags.baro_hgt && !do_range_aid && !_gps_hgt_intermittent && _gps_checks_passed) {
|
|
|
|
// In baro fallback mode and GPS has recovered so start using it
|
|
|
|
startGpsHgtFusion();
|
|
|
|
}
|
|
|
|
if (_control_status.flags.gps_hgt && _gps_data_ready) {
|
|
|
|
fuse_height = true;
|
|
|
|
} else if (_control_status.flags.rng_hgt && _range_sensor.isDataHealthy()) {
|
|
|
|
fuse_height = true;
|
|
|
|
} else if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
|
|
|
|
fuse_height = true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case VDIST_SENSOR_EV:
|
|
|
|
|
|
|
|
// don't start using EV data unless data is arriving frequently
|
|
|
|
if (!_control_status.flags.ev_hgt && isRecent(_time_last_ext_vision, 2 * EV_MAX_INTERVAL)) {
|
|
|
|
fuse_height = true;
|
|
|
|
setControlEVHeight();
|
|
|
|
resetHeight();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_control_status.flags.baro_hgt && _baro_data_ready && !_baro_hgt_faulty) {
|
|
|
|
// switch to baro if there was a reset to baro
|
|
|
|
fuse_height = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// determine if we should use the vertical position observation
|
|
|
|
if (_control_status.flags.ev_hgt) {
|
|
|
|
fuse_height = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
updateBaroHgtOffset();
|
|
|
|
|
|
|
|
if (_control_status.flags.rng_hgt
|
|
|
|
&& isTimedOut(_time_last_hgt_fuse, 2 * RNG_MAX_INTERVAL)
|
|
|
|
&& !_range_sensor.isDataHealthy()
|
|
|
|
&& _range_sensor.isRegularlySendingData()
|
|
|
|
&& !_control_status.flags.in_air) {
|
|
|
|
|
|
|
|
// If we are supposed to be using range finder data as the primary height sensor, have missed or rejected measurements
|
|
|
|
// and are on the ground, then synthesise a measurement at the expected on ground value
|
|
|
|
_range_sensor.setRange(_params.rng_gnd_clearance);
|
|
|
|
_range_sensor.setDataReadiness(true);
|
|
|
|
_range_sensor.setValidity(true); // bypass the checks
|
|
|
|
|
|
|
|
fuse_height = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (fuse_height) {
|
|
|
|
if (_control_status.flags.baro_hgt) {
|
|
|
|
Vector2f baro_hgt_innov_gate;
|
|
|
|
Vector3f baro_hgt_obs_var;
|
|
|
|
|
|
|
|
// vertical position innovation - baro measurement has opposite sign to earth z axis
|
|
|
|
_baro_hgt_innov(2) = _state.pos(2) + _baro_sample_delayed.hgt - _baro_hgt_offset;
|
|
|
|
// observation variance - user parameter defined
|
|
|
|
baro_hgt_obs_var(2) = sq(fmaxf(_params.baro_noise, 0.01f));
|
|
|
|
// innovation gate size
|
|
|
|
baro_hgt_innov_gate(1) = fmaxf(_params.baro_innov_gate, 1.0f);
|
|
|
|
|
|
|
|
// Compensate for positive static pressure transients (negative vertical position innovations)
|
|
|
|
// caused by rotor wash ground interaction by applying a temporary deadzone to baro innovations.
|
|
|
|
const float deadzone_start = 0.0f;
|
|
|
|
const float deadzone_end = deadzone_start + _params.gnd_effect_deadzone;
|
|
|
|
|
|
|
|
if (_control_status.flags.gnd_effect) {
|
|
|
|
if (_baro_hgt_innov(2) < -deadzone_start) {
|
|
|
|
if (_baro_hgt_innov(2) <= -deadzone_end) {
|
|
|
|
_baro_hgt_innov(2) += deadzone_end;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
_baro_hgt_innov(2) = -deadzone_start;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// fuse height information
|
|
|
|
fuseVerticalPosition(_baro_hgt_innov,baro_hgt_innov_gate,
|
|
|
|
baro_hgt_obs_var, _baro_hgt_innov_var,_baro_hgt_test_ratio);
|
|
|
|
|
|
|
|
} else if (_control_status.flags.gps_hgt) {
|
|
|
|
Vector2f gps_hgt_innov_gate;
|
|
|
|
Vector3f gps_hgt_obs_var;
|
|
|
|
// vertical position innovation - gps measurement has opposite sign to earth z axis
|
|
|
|
_gps_pos_innov(2) = _state.pos(2) + _gps_sample_delayed.hgt - _gps_alt_ref - _hgt_sensor_offset;
|
|
|
|
gps_hgt_obs_var(2) = getGpsHeightVariance();
|
|
|
|
// innovation gate size
|
|
|
|
gps_hgt_innov_gate(1) = fmaxf(_params.baro_innov_gate, 1.0f);
|
|
|
|
// fuse height information
|
|
|
|
fuseVerticalPosition(_gps_pos_innov,gps_hgt_innov_gate,
|
|
|
|
gps_hgt_obs_var, _gps_pos_innov_var, _gps_pos_test_ratio);
|
|
|
|
|
|
|
|
} else if (_control_status.flags.rng_hgt) {
|
|
|
|
Vector2f rng_hgt_innov_gate;
|
|
|
|
Vector3f rng_hgt_obs_var;
|
|
|
|
// use range finder with tilt correction
|
|
|
|
_rng_hgt_innov(2) = _state.pos(2) - (-math::max(_range_sensor.getDistBottom(),
|
|
|
|
_params.rng_gnd_clearance)) - _hgt_sensor_offset;
|
|
|
|
// observation variance - user parameter defined
|
|
|
|
rng_hgt_obs_var(2) = fmaxf(sq(_params.range_noise)
|
|
|
|
+ sq(_params.range_noise_scaler * _range_sensor.getDistBottom()), 0.01f);
|
|
|
|
// innovation gate size
|
|
|
|
rng_hgt_innov_gate(1) = fmaxf(_params.range_innov_gate, 1.0f);
|
|
|
|
// fuse height information
|
|
|
|
fuseVerticalPosition(_rng_hgt_innov,rng_hgt_innov_gate,
|
|
|
|
rng_hgt_obs_var, _rng_hgt_innov_var,_rng_hgt_test_ratio);
|
|
|
|
|
|
|
|
} else if (_control_status.flags.ev_hgt) {
|
|
|
|
Vector2f ev_hgt_innov_gate;
|
|
|
|
Vector3f ev_hgt_obs_var;
|
|
|
|
// calculate the innovation assuming the external vision observation is in local NED frame
|
|
|
|
_ev_pos_innov(2) = _state.pos(2) - _ev_sample_delayed.pos(2);
|
|
|
|
// observation variance - defined externally
|
|
|
|
ev_hgt_obs_var(2) = fmaxf(_ev_sample_delayed.posVar(2), sq(0.01f));
|
|
|
|
// innovation gate size
|
|
|
|
ev_hgt_innov_gate(1) = fmaxf(_params.ev_pos_innov_gate, 1.0f);
|
|
|
|
// fuse height information
|
|
|
|
fuseVerticalPosition(_ev_pos_innov,ev_hgt_innov_gate,
|
|
|
|
ev_hgt_obs_var, _ev_pos_innov_var,_ev_pos_test_ratio);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::checkRangeAidSuitability()
|
|
|
|
{
|
|
|
|
if (_control_status.flags.in_air
|
|
|
|
&& _range_sensor.isHealthy()
|
|
|
|
&& isTerrainEstimateValid()
|
|
|
|
&& isHorizontalAidingActive()) {
|
|
|
|
// check if we can use range finder measurements to estimate height, use hysteresis to avoid rapid switching
|
|
|
|
// Note that the 0.7 coefficients and the innovation check are arbitrary values but work well in practice
|
|
|
|
const bool is_in_range = _is_range_aid_suitable
|
|
|
|
? (_terrain_vpos - _state.pos(2) < _params.max_hagl_for_range_aid)
|
|
|
|
: (_terrain_vpos - _state.pos(2) < _params.max_hagl_for_range_aid * 0.7f);
|
|
|
|
|
|
|
|
const float ground_vel = sqrtf(_state.vel(0) * _state.vel(0) + _state.vel(1) * _state.vel(1));
|
|
|
|
const bool is_below_max_speed = _is_range_aid_suitable
|
|
|
|
? ground_vel < _params.max_vel_for_range_aid
|
|
|
|
: ground_vel < _params.max_vel_for_range_aid * 0.7f;
|
|
|
|
|
|
|
|
const bool is_hagl_stable = _is_range_aid_suitable
|
|
|
|
? ((_hagl_innov * _hagl_innov / (sq(_params.range_aid_innov_gate) * _hagl_innov_var)) < 1.0f)
|
|
|
|
: ((_hagl_innov * _hagl_innov / (sq(_params.range_aid_innov_gate) * _hagl_innov_var)) < 0.01f);
|
|
|
|
|
|
|
|
_is_range_aid_suitable = is_in_range && is_below_max_speed && is_hagl_stable;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
_is_range_aid_suitable = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlAirDataFusion()
|
|
|
|
{
|
|
|
|
// control activation and initialisation/reset of wind states required for airspeed fusion
|
|
|
|
|
|
|
|
// If both airspeed and sideslip fusion have timed out and we are not using a drag observation model then we no longer have valid wind estimates
|
|
|
|
const bool airspeed_timed_out = isTimedOut(_time_last_arsp_fuse, (uint64_t)10e6);
|
|
|
|
const bool sideslip_timed_out = isTimedOut(_time_last_beta_fuse, (uint64_t)10e6);
|
|
|
|
if (_control_status.flags.wind &&
|
|
|
|
(_using_synthetic_position || (airspeed_timed_out && sideslip_timed_out && !(_params.fusion_mode & MASK_USE_DRAG)))) {
|
|
|
|
_control_status.flags.wind = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_control_status.flags.fuse_aspd && airspeed_timed_out) {
|
|
|
|
_control_status.flags.fuse_aspd = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Always try to fuse airspeed data if available and we are in flight
|
|
|
|
if (!_using_synthetic_position && _tas_data_ready && _control_status.flags.in_air) {
|
|
|
|
// If starting wind state estimation, reset the wind states and covariances before fusing any data
|
|
|
|
if (!_control_status.flags.wind) {
|
|
|
|
// activate the wind states
|
|
|
|
_control_status.flags.wind = true;
|
|
|
|
// reset the timout timer to prevent repeated resets
|
|
|
|
_time_last_arsp_fuse = _time_last_imu;
|
|
|
|
// reset the wind speed states and corresponding covariances
|
|
|
|
resetWindStates();
|
|
|
|
resetWindCovariance();
|
|
|
|
}
|
|
|
|
|
|
|
|
fuseAirspeed();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlBetaFusion()
|
|
|
|
{
|
|
|
|
if (_using_synthetic_position) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Perform synthetic sideslip fusion at regular intervals when in-air and sideslip fuson had been enabled externally:
|
|
|
|
const bool beta_fusion_time_triggered = isTimedOut(_time_last_beta_fuse, _params.beta_avg_ft_us);
|
|
|
|
if (beta_fusion_time_triggered &&
|
|
|
|
_control_status.flags.fuse_beta &&
|
|
|
|
_control_status.flags.in_air) {
|
|
|
|
// If starting wind state estimation, reset the wind states and covariances before fusing any data
|
|
|
|
if (!_control_status.flags.wind) {
|
|
|
|
// activate the wind states
|
|
|
|
_control_status.flags.wind = true;
|
|
|
|
// reset the timeout timers to prevent repeated resets
|
|
|
|
_time_last_beta_fuse = _time_last_imu;
|
|
|
|
// reset the wind speed states and corresponding covariances
|
|
|
|
resetWindStates();
|
|
|
|
resetWindCovariance();
|
|
|
|
}
|
|
|
|
|
|
|
|
fuseSideslip();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlDragFusion()
|
|
|
|
{
|
|
|
|
if ((_params.fusion_mode & MASK_USE_DRAG) &&
|
|
|
|
!_using_synthetic_position &&
|
|
|
|
_control_status.flags.in_air &&
|
|
|
|
!_mag_inhibit_yaw_reset_req) {
|
|
|
|
if (!_control_status.flags.wind) {
|
|
|
|
// reset the wind states and covariances when starting drag accel fusion
|
|
|
|
_control_status.flags.wind = true;
|
|
|
|
resetWindStates();
|
|
|
|
resetWindCovariance();
|
|
|
|
|
|
|
|
} else if (_drag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_drag_sample_delayed)) {
|
|
|
|
fuseDrag();
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlFakePosFusion()
|
|
|
|
{
|
|
|
|
// if we aren't doing any aiding, fake position measurements at the last known position to constrain drift
|
|
|
|
// Coincide fake measurements with baro data for efficiency with a minimum fusion rate of 5Hz
|
|
|
|
|
|
|
|
if (!isHorizontalAidingActive()
|
|
|
|
&& !(_control_status.flags.fuse_aspd && _control_status.flags.fuse_beta)) {
|
|
|
|
|
|
|
|
// We now need to use a synthetic position observation to prevent unconstrained drift of the INS states.
|
|
|
|
_using_synthetic_position = true;
|
|
|
|
|
|
|
|
// Fuse synthetic position observations every 200msec
|
|
|
|
if (isTimedOut(_time_last_fake_pos, (uint64_t)2e5)) {
|
|
|
|
|
|
|
|
// Reset position and velocity states if we re-commence this aiding method
|
|
|
|
if (isTimedOut(_time_last_fake_pos, (uint64_t)4e5)) {
|
|
|
|
_last_known_posNE = _state.pos.xy();
|
|
|
|
resetHorizontalPosition();
|
|
|
|
resetVelocity();
|
|
|
|
_fuse_hpos_as_odom = false;
|
|
|
|
|
|
|
|
if (_time_last_fake_pos != 0) {
|
|
|
|
ECL_WARN_TIMESTAMPED("stopping navigation");
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
_time_last_fake_pos = _time_last_imu;
|
|
|
|
|
|
|
|
Vector3f fake_pos_obs_var;
|
|
|
|
|
|
|
|
if (_control_status.flags.in_air && _control_status.flags.tilt_align) {
|
|
|
|
fake_pos_obs_var(0) = fake_pos_obs_var(1) = sq(fmaxf(_params.pos_noaid_noise, _params.gps_pos_noise));
|
|
|
|
|
|
|
|
} else {
|
|
|
|
fake_pos_obs_var(0) = fake_pos_obs_var(1) = sq(0.5f);
|
|
|
|
}
|
|
|
|
|
|
|
|
_gps_pos_innov.xy() = Vector2f(_state.pos) - _last_known_posNE;
|
|
|
|
|
|
|
|
const Vector2f fake_pos_innov_gate(3.0f, 3.0f);
|
|
|
|
|
|
|
|
fuseHorizontalPosition(_gps_pos_innov, fake_pos_innov_gate, fake_pos_obs_var,
|
|
|
|
_gps_pos_innov_var, _gps_pos_test_ratio, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
_using_synthetic_position = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void Ekf::controlAuxVelFusion()
|
|
|
|
{
|
|
|
|
const bool data_ready = _auxvel_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_auxvel_sample_delayed);
|
|
|
|
|
|
|
|
if (data_ready && isHorizontalAidingActive()) {
|
|
|
|
|
|
|
|
const Vector2f aux_vel_innov_gate(_params.auxvel_gate, _params.auxvel_gate);
|
|
|
|
|
|
|
|
_last_vel_obs = _auxvel_sample_delayed.vel;
|
|
|
|
_aux_vel_innov = _state.vel - _last_vel_obs;
|
|
|
|
_last_vel_obs_var = _aux_vel_innov_var;
|
|
|
|
|
|
|
|
fuseHorizontalVelocity(_aux_vel_innov, aux_vel_innov_gate, _auxvel_sample_delayed.velVar,
|
|
|
|
_aux_vel_innov_var, _aux_vel_test_ratio);
|
|
|
|
|
|
|
|
// Can be enabled after bit for this is added to EKF_AID_MASK
|
|
|
|
// fuseVerticalVelocity(_aux_vel_innov, aux_vel_innov_gate, _auxvel_sample_delayed.velVar,
|
|
|
|
// _aux_vel_innov_var, _aux_vel_test_ratio);
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|