|
|
|
/****************************************************************************
|
|
|
|
*
|
|
|
|
* Copyright (C) 2012 PX4 Development Team. All rights reserved.
|
|
|
|
* Author: Thomas Gubler <thomasgubler@student.ethz.ch>
|
|
|
|
* Julian Oes <joes@student.ethz.ch>
|
|
|
|
* Lorenz Meier <lm@inf.ethz.ch>
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
|
|
|
* used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file geo.c
|
|
|
|
*
|
|
|
|
* Geo / math functions to perform geodesic calculations
|
|
|
|
*
|
|
|
|
* @author Thomas Gubler <thomasgubler@student.ethz.ch>
|
|
|
|
* @author Julian Oes <joes@student.ethz.ch>
|
|
|
|
* @author Lorenz Meier <lm@inf.ethz.ch>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <systemlib/geo/geo.h>
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
__EXPORT float get_distance_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
|
|
|
|
{
|
|
|
|
double lat_now_rad = lat_now / 180.0 * M_PI;
|
|
|
|
double lon_now_rad = lon_now / 180.0 * M_PI;
|
|
|
|
double lat_next_rad = lat_next / 180.0 * M_PI;
|
|
|
|
double lon_next_rad = lon_next / 180.0 * M_PI;
|
|
|
|
|
|
|
|
|
|
|
|
double d_lat = lat_next_rad - lat_now_rad;
|
|
|
|
double d_lon = lon_next_rad - lon_now_rad;
|
|
|
|
|
|
|
|
double a = sin(d_lat / 2.0) * sin(d_lat / 2.0) + sin(d_lon / 2.0) * sin(d_lon / 2.0) * cos(lat_now_rad) * cos(lat_next_rad);
|
|
|
|
double c = 2 * atan2(sqrt(a), sqrt(1 - a));
|
|
|
|
|
|
|
|
const double radius_earth = 6371000.0;
|
|
|
|
|
|
|
|
return radius_earth * c;
|
|
|
|
}
|
|
|
|
|
|
|
|
__EXPORT float get_bearing_to_next_waypoint(double lat_now, double lon_now, double lat_next, double lon_next)
|
|
|
|
{
|
|
|
|
double lat_now_rad = lat_now * M_DEG_TO_RAD;
|
|
|
|
double lon_now_rad = lon_now * M_DEG_TO_RAD;
|
|
|
|
double lat_next_rad = lat_next * M_DEG_TO_RAD;
|
|
|
|
double lon_next_rad = lon_next * M_DEG_TO_RAD;
|
|
|
|
|
|
|
|
double d_lat = lat_next_rad - lat_now_rad;
|
|
|
|
double d_lon = lon_next_rad - lon_now_rad;
|
|
|
|
|
|
|
|
/* conscious mix of double and float trig function to maximize speed and efficiency */
|
|
|
|
float theta = atan2f(sin(d_lon) * cos(lat_next_rad) , cos(lat_now_rad) * sin(lat_next_rad) - sin(lat_now_rad) * cos(lat_next_rad) * cos(d_lon));
|
|
|
|
|
|
|
|
theta = _wrapPI(theta);
|
|
|
|
|
|
|
|
return theta;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Additional functions - @author Doug Weibel <douglas.weibel@colorado.edu>
|
|
|
|
|
|
|
|
__EXPORT crosstrack_error_s get_distance_to_line(double lat_now, double lon_now, double lat_start, double lon_start, double lat_end, double lon_end)
|
|
|
|
{
|
|
|
|
// This function returns the distance to the nearest point on the track line. Distance is positive if current
|
|
|
|
// position is right of the track and negative if left of the track as seen from a point on the track line
|
|
|
|
// headed towards the end point.
|
|
|
|
|
|
|
|
crosstrack_error_s return_var;
|
|
|
|
float dist_to_end;
|
|
|
|
float bearing_end;
|
|
|
|
float bearing_track;
|
|
|
|
float bearing_diff;
|
|
|
|
|
|
|
|
return_var.error = true; // Set error flag, cleared when valid result calculated.
|
|
|
|
return_var.past_end = false;
|
|
|
|
return_var.distance = 0.0f;
|
|
|
|
return_var.bearing = 0.0f;
|
|
|
|
|
|
|
|
// Return error if arguments are bad
|
|
|
|
if (lat_now == 0.0d || lon_now == 0.0d || lat_start == 0.0d || lon_start == 0.0d || lat_end == 0.0d || lon_end == 0.0d) return return_var;
|
|
|
|
|
|
|
|
bearing_end = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
|
|
|
|
bearing_track = get_bearing_to_next_waypoint(lat_start, lon_start, lat_end, lon_end);
|
|
|
|
bearing_diff = bearing_track - bearing_end;
|
|
|
|
bearing_diff = _wrapPI(bearing_diff);
|
|
|
|
|
|
|
|
// Return past_end = true if past end point of line
|
|
|
|
if (bearing_diff > M_PI_2_F || bearing_diff < -M_PI_2_F) {
|
|
|
|
return_var.past_end = true;
|
|
|
|
return_var.error = false;
|
|
|
|
return return_var;
|
|
|
|
}
|
|
|
|
|
|
|
|
dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
|
|
|
|
return_var.distance = (dist_to_end) * sin(bearing_diff);
|
|
|
|
|
|
|
|
if (sin(bearing_diff) >= 0) {
|
|
|
|
return_var.bearing = _wrapPI(bearing_track - M_PI_2_F);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return_var.bearing = _wrapPI(bearing_track + M_PI_2_F);
|
|
|
|
}
|
|
|
|
|
|
|
|
return_var.error = false;
|
|
|
|
|
|
|
|
return return_var;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
__EXPORT crosstrack_error_s get_distance_to_arc(double lat_now, double lon_now, double lat_center, double lon_center,
|
|
|
|
float radius, float arc_start_bearing, float arc_sweep)
|
|
|
|
{
|
|
|
|
// This function returns the distance to the nearest point on the track arc. Distance is positive if current
|
|
|
|
// position is right of the arc and negative if left of the arc as seen from the closest point on the arc and
|
|
|
|
// headed towards the end point.
|
|
|
|
crosstrack_error_s return_var;
|
|
|
|
|
|
|
|
// Determine if the current position is inside or outside the sector between the line from the center
|
|
|
|
// to the arc start and the line from the center to the arc end
|
|
|
|
float bearing_sector_start;
|
|
|
|
float bearing_sector_end;
|
|
|
|
float bearing_now = get_bearing_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
|
|
|
|
bool in_sector;
|
|
|
|
|
|
|
|
return_var.error = true; // Set error flag, cleared when valid result calculated.
|
|
|
|
return_var.past_end = false;
|
|
|
|
return_var.distance = 0.0f;
|
|
|
|
return_var.bearing = 0.0f;
|
|
|
|
|
|
|
|
// Return error if arguments are bad
|
|
|
|
if (lat_now == 0.0d || lon_now == 0.0d || lat_center == 0.0d || lon_center == 0.0d || radius == 0.0d) return return_var;
|
|
|
|
|
|
|
|
|
|
|
|
if (arc_sweep >= 0) {
|
|
|
|
bearing_sector_start = arc_start_bearing;
|
|
|
|
bearing_sector_end = arc_start_bearing + arc_sweep;
|
|
|
|
|
|
|
|
if (bearing_sector_end > 2.0f * M_PI_F) bearing_sector_end -= M_TWOPI_F;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
bearing_sector_end = arc_start_bearing;
|
|
|
|
bearing_sector_start = arc_start_bearing - arc_sweep;
|
|
|
|
|
|
|
|
if (bearing_sector_start < 0.0) bearing_sector_start += M_TWOPI_F;
|
|
|
|
}
|
|
|
|
|
|
|
|
in_sector = false;
|
|
|
|
|
|
|
|
// Case where sector does not span zero
|
|
|
|
if (bearing_sector_end >= bearing_sector_start && bearing_now >= bearing_sector_start && bearing_now <= bearing_sector_end) in_sector = true;
|
|
|
|
|
|
|
|
// Case where sector does span zero
|
|
|
|
if (bearing_sector_end < bearing_sector_start && (bearing_now > bearing_sector_start || bearing_now < bearing_sector_end)) in_sector = true;
|
|
|
|
|
|
|
|
// If in the sector then calculate distance and bearing to closest point
|
|
|
|
if (in_sector) {
|
|
|
|
return_var.past_end = false;
|
|
|
|
float dist_to_center = get_distance_to_next_waypoint(lat_now, lon_now, lat_center, lon_center);
|
|
|
|
|
|
|
|
if (dist_to_center <= radius) {
|
|
|
|
return_var.distance = radius - dist_to_center;
|
|
|
|
return_var.bearing = bearing_now + M_PI_F;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return_var.distance = dist_to_center - radius;
|
|
|
|
return_var.bearing = bearing_now;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If out of the sector then calculate dist and bearing to start or end point
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
// Use the approximation that 111,111 meters in the y direction is 1 degree (of latitude)
|
|
|
|
// and 111,111 * cos(latitude) meters in the x direction is 1 degree (of longitude) to
|
|
|
|
// calculate the position of the start and end points. We should not be doing this often
|
|
|
|
// as this function generally will not be called repeatedly when we are out of the sector.
|
|
|
|
|
|
|
|
// TO DO - this is messed up and won't compile
|
|
|
|
float start_disp_x = radius * sin(arc_start_bearing);
|
|
|
|
float start_disp_y = radius * cos(arc_start_bearing);
|
|
|
|
float end_disp_x = radius * sin(_wrapPI(arc_start_bearing + arc_sweep));
|
|
|
|
float end_disp_y = radius * cos(_wrapPI(arc_start_bearing + arc_sweep));
|
|
|
|
float lon_start = lon_now + start_disp_x / 111111.0d;
|
|
|
|
float lat_start = lat_now + start_disp_y * cos(lat_now) / 111111.0d;
|
|
|
|
float lon_end = lon_now + end_disp_x / 111111.0d;
|
|
|
|
float lat_end = lat_now + end_disp_y * cos(lat_now) / 111111.0d;
|
|
|
|
float dist_to_start = get_distance_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
|
|
|
|
float dist_to_end = get_distance_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
|
|
|
|
|
|
|
|
if (dist_to_start < dist_to_end) {
|
|
|
|
return_var.distance = dist_to_start;
|
|
|
|
return_var.bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_start, lon_start);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
return_var.past_end = true;
|
|
|
|
return_var.distance = dist_to_end;
|
|
|
|
return_var.bearing = get_bearing_to_next_waypoint(lat_now, lon_now, lat_end, lon_end);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return_var.bearing = _wrapPI(return_var.bearing);
|
|
|
|
return_var.error = false;
|
|
|
|
return return_var;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _wrapPI(float bearing)
|
|
|
|
{
|
|
|
|
|
|
|
|
while (bearing > M_PI_F) {
|
|
|
|
bearing = bearing - M_TWOPI_F;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (bearing <= -M_PI_F) {
|
|
|
|
bearing = bearing + M_TWOPI_F;
|
|
|
|
}
|
|
|
|
|
|
|
|
return bearing;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _wrap2PI(float bearing)
|
|
|
|
{
|
|
|
|
|
|
|
|
while (bearing >= M_TWOPI_F) {
|
|
|
|
bearing = bearing - M_TWOPI_F;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (bearing < 0.0f) {
|
|
|
|
bearing = bearing + M_TWOPI_F;
|
|
|
|
}
|
|
|
|
|
|
|
|
return bearing;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _wrap180(float bearing)
|
|
|
|
{
|
|
|
|
|
|
|
|
while (bearing > 180.0f) {
|
|
|
|
bearing = bearing - 360.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (bearing <= -180.0f) {
|
|
|
|
bearing = bearing + 360.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
return bearing;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _wrap360(float bearing)
|
|
|
|
{
|
|
|
|
|
|
|
|
while (bearing >= 360.0f) {
|
|
|
|
bearing = bearing - 360.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (bearing < 0.0f) {
|
|
|
|
bearing = bearing + 360.0f;
|
|
|
|
}
|
|
|
|
|
|
|
|
return bearing;
|
|
|
|
}
|
|
|
|
|
|
|
|
|