You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

530 lines
20 KiB

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf.cpp
* Core functions for ekf attitude and position estimator.
*
* @author Roman Bast <bapstroman@gmail.com>
* @author Paul Riseborough <p_riseborough@live.com.au>
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
bool Ekf::init(uint64_t timestamp)
{
bool ret = initialise_interface(timestamp);
reset();
return ret;
}
void Ekf::reset()
{
_state.vel.setZero();
_state.pos.setZero();
_state.delta_ang_bias.setZero();
_state.delta_vel_bias.setZero();
_state.mag_I.setZero();
_state.mag_B.setZero();
_state.wind_vel.setZero();
_state.quat_nominal.setIdentity();
_output_new.vel.setZero();
_output_new.pos.setZero();
_output_new.quat_nominal.setIdentity();
_delta_angle_corr.setZero();
_imu_updated = false;
_NED_origin_initialised = false;
_gps_speed_valid = false;
_filter_initialised = false;
_terrain_initialised = false;
_sin_tilt_rng = sinf(_params.rng_sens_pitch);
_cos_tilt_rng = cosf(_params.rng_sens_pitch);
_control_status.value = 0;
_control_status_prev.value = 0;
_dt_ekf_avg = FILTER_UPDATE_PERIOD_S;
_fault_status.value = 0;
_innov_check_fail_status.value = 0;
_accel_magnitude_filt = 0.0f;
_ang_rate_magnitude_filt = 0.0f;
_prev_dvel_bias_var.zero();
}
bool Ekf::update()
{
bool updated = false;
if (!_filter_initialised) {
_filter_initialised = initialiseFilter();
if (!_filter_initialised) {
return false;
}
}
// Only run the filter if IMU data in the buffer has been updated
if (_imu_updated) {
const imuSample &imu_init = _imu_buffer.get_newest();
_accel_lpf.update(imu_init.delta_vel);
// perform state and covariance prediction for the main filter
predictState();
predictCovariance();
// control fusion of observation data
controlFusionModes();
// run a separate filter for terrain estimation
runTerrainEstimator();
updated = true;
}
// the output observer always runs
// Use full rate IMU data at the current time horizon
calculateOutputStates();
return updated;
}
bool Ekf::initialiseFilter()
{
// Keep accumulating measurements until we have a minimum of 10 samples for the required sensors
// Filter accel for tilt initialization
const imuSample &imu_init = _imu_buffer.get_newest();
if(_is_first_imu_sample){
_accel_lpf.reset(imu_init.delta_vel);
_is_first_imu_sample = false;
}
else
{
_accel_lpf.update(imu_init.delta_vel);
}
// Sum the magnetometer measurements
if (_mag_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_mag_sample_delayed)) {
if(_mag_sample_delayed.time_us != 0)
{
_mag_counter ++;
// wait for all bad initial data to be flushed
if (_mag_counter <= uint8_t(_obs_buffer_length + 1)) {
[ekf] controlMagFusion refactor and mag field strength check (#662) * ekf_control: Inhibit mag fusion when field magnitude is large Move mag inhibition check in separate function * ekf_control: pull out of functionalities out of controlMagFusion - yaw abd mag bias observability checks - mag 3D conditions - load mag covariances - set and clear mag control modes * ekf_control: refactor mag heading/3D start/stop. Move mag declination, mag 3d and mag heading fusion out of the main function * ekf_control: extract mag yaw reset and mag declination fusion requirements * ekf_control: use WMM in isStronMagneticField for mag fusion inhibition - Correct units of WMM strength table * ekf_control: extract mag_state_only functionality of AUTOFW (VTOL custom) Also split inAirYawReset from onGroundYawReset * ekf_control: extract mag automatic selection - transform if-else into switch-case for parameter fusion type selection * ekf_control: extract run3DMagAndDeclFusion, reorganize functions, fix flag naming in Test script * ekf_control: do not run mag fusion if tilt is not aligned. Reset some variables on ground even if mag fusion is not running yet. It could be that it runs later so we need to make sure that those variables are properly set. * ekf_control: move controlMagFusion and related functions to mag_control.cpp * ekf control: check for validity of mag strength from WMM and falls back to average earth mag field with larger gate if not valid * ekf control: remove evyaw check for mag inhibition * ekf control: change nested ternary operator into if-else if * Ekf: create AlphaFilter template class for simple low-pass filtering 0.1/0.9 type low-pass filters are commonly used to smooth data, this class is meant to abstract the computation of this filter * ekf control: reset heading using mag_lpf data to avoid resetting on an outlier fixes ecl issue #525 * ekf control: replace mag_states_only flag with mag_field_disturbed and add parameter to enable or disable mag field strength check * ekf control: remove AUTOFW mag fusion type as not needed This was implemented for VTOL but did not solve the problem and should not be used anymore * ekf control: use start/stop mag functions everywhere instead of setting the flag * ekf control: Run mag fusion depending on yaw_align instead of tilt_align as there is no reason to fuse mag when the ekf isn't aligned * AlphaFilter: add test for float and Vector3f
5 years ago
_mag_lpf.reset(_mag_sample_delayed.mag);
} else {
[ekf] controlMagFusion refactor and mag field strength check (#662) * ekf_control: Inhibit mag fusion when field magnitude is large Move mag inhibition check in separate function * ekf_control: pull out of functionalities out of controlMagFusion - yaw abd mag bias observability checks - mag 3D conditions - load mag covariances - set and clear mag control modes * ekf_control: refactor mag heading/3D start/stop. Move mag declination, mag 3d and mag heading fusion out of the main function * ekf_control: extract mag yaw reset and mag declination fusion requirements * ekf_control: use WMM in isStronMagneticField for mag fusion inhibition - Correct units of WMM strength table * ekf_control: extract mag_state_only functionality of AUTOFW (VTOL custom) Also split inAirYawReset from onGroundYawReset * ekf_control: extract mag automatic selection - transform if-else into switch-case for parameter fusion type selection * ekf_control: extract run3DMagAndDeclFusion, reorganize functions, fix flag naming in Test script * ekf_control: do not run mag fusion if tilt is not aligned. Reset some variables on ground even if mag fusion is not running yet. It could be that it runs later so we need to make sure that those variables are properly set. * ekf_control: move controlMagFusion and related functions to mag_control.cpp * ekf control: check for validity of mag strength from WMM and falls back to average earth mag field with larger gate if not valid * ekf control: remove evyaw check for mag inhibition * ekf control: change nested ternary operator into if-else if * Ekf: create AlphaFilter template class for simple low-pass filtering 0.1/0.9 type low-pass filters are commonly used to smooth data, this class is meant to abstract the computation of this filter * ekf control: reset heading using mag_lpf data to avoid resetting on an outlier fixes ecl issue #525 * ekf control: replace mag_states_only flag with mag_field_disturbed and add parameter to enable or disable mag field strength check * ekf control: remove AUTOFW mag fusion type as not needed This was implemented for VTOL but did not solve the problem and should not be used anymore * ekf control: use start/stop mag functions everywhere instead of setting the flag * ekf control: Run mag fusion depending on yaw_align instead of tilt_align as there is no reason to fuse mag when the ekf isn't aligned * AlphaFilter: add test for float and Vector3f
5 years ago
_mag_lpf.update(_mag_sample_delayed.mag);
}
}
}
// accumulate enough height measurements to be confident in the quality of the data
if (_baro_buffer.pop_first_older_than(_imu_sample_delayed.time_us, &_baro_sample_delayed)) {
if (_baro_sample_delayed.time_us != 0)
{
_baro_counter ++;
// wait for all bad initial data to be flushed
if (_baro_counter <= uint8_t(_obs_buffer_length + 1)) {
_baro_hgt_offset = _baro_sample_delayed.hgt;
} else if (_baro_counter > (uint8_t)(_obs_buffer_length + 1)) {
_baro_hgt_offset = 0.9f * _baro_hgt_offset + 0.1f * _baro_sample_delayed.hgt;
}
}
}
const bool not_enough_baro_samples_accumulated = _baro_counter <= 2u * _obs_buffer_length;
const bool not_enough_mag_samples_accumulated = _mag_counter <= 2u * _obs_buffer_length;
if (not_enough_baro_samples_accumulated || not_enough_mag_samples_accumulated) {
return false;
} else {
// we use baro height initially and switch to GPS/range/EV finder later when it passes checks.
setControlBaroHeight();
// reset variables that are shared with post alignment GPS checks
_gps_pos_deriv_filt(2) = 0.0f;
_gps_alt_ref = 0.0f;
if(!initialiseTilt()){
return false;
}
// calculate the initial magnetic field and yaw alignment
[ekf] controlMagFusion refactor and mag field strength check (#662) * ekf_control: Inhibit mag fusion when field magnitude is large Move mag inhibition check in separate function * ekf_control: pull out of functionalities out of controlMagFusion - yaw abd mag bias observability checks - mag 3D conditions - load mag covariances - set and clear mag control modes * ekf_control: refactor mag heading/3D start/stop. Move mag declination, mag 3d and mag heading fusion out of the main function * ekf_control: extract mag yaw reset and mag declination fusion requirements * ekf_control: use WMM in isStronMagneticField for mag fusion inhibition - Correct units of WMM strength table * ekf_control: extract mag_state_only functionality of AUTOFW (VTOL custom) Also split inAirYawReset from onGroundYawReset * ekf_control: extract mag automatic selection - transform if-else into switch-case for parameter fusion type selection * ekf_control: extract run3DMagAndDeclFusion, reorganize functions, fix flag naming in Test script * ekf_control: do not run mag fusion if tilt is not aligned. Reset some variables on ground even if mag fusion is not running yet. It could be that it runs later so we need to make sure that those variables are properly set. * ekf_control: move controlMagFusion and related functions to mag_control.cpp * ekf control: check for validity of mag strength from WMM and falls back to average earth mag field with larger gate if not valid * ekf control: remove evyaw check for mag inhibition * ekf control: change nested ternary operator into if-else if * Ekf: create AlphaFilter template class for simple low-pass filtering 0.1/0.9 type low-pass filters are commonly used to smooth data, this class is meant to abstract the computation of this filter * ekf control: reset heading using mag_lpf data to avoid resetting on an outlier fixes ecl issue #525 * ekf control: replace mag_states_only flag with mag_field_disturbed and add parameter to enable or disable mag field strength check * ekf control: remove AUTOFW mag fusion type as not needed This was implemented for VTOL but did not solve the problem and should not be used anymore * ekf control: use start/stop mag functions everywhere instead of setting the flag * ekf control: Run mag fusion depending on yaw_align instead of tilt_align as there is no reason to fuse mag when the ekf isn't aligned * AlphaFilter: add test for float and Vector3f
5 years ago
_control_status.flags.yaw_align = resetMagHeading(_mag_lpf.getState(), false, false);
// initialise the state covariance matrix now we have starting values for all the states
initialiseCovariance();
// update the yaw angle variance using the variance of the measurement
if (_params.mag_fusion_type <= MAG_FUSE_TYPE_3D) {
// using magnetic heading tuning parameter
increaseQuatYawErrVariance(sq(fmaxf(_params.mag_heading_noise, 1.0e-2f)));
}
// try to initialise the terrain estimator
_terrain_initialised = initHagl();
// reset the essential fusion timeout counters
_time_last_hgt_fuse = _time_last_imu;
_time_last_hor_pos_fuse = _time_last_imu;
_time_last_delpos_fuse = _time_last_imu;
_time_last_hor_vel_fuse = _time_last_imu;
_time_last_hagl_fuse = _time_last_imu;
_time_last_of_fuse = _time_last_imu;
// reset the output predictor state history to match the EKF initial values
alignOutputFilter();
return true;
}
}
bool Ekf::initialiseTilt()
{
if (_accel_lpf.getState().norm() < 0.001f) {
return false;
}
// get initial roll and pitch estimate from delta velocity vector, assuming vehicle is static
Vector3f gravity_in_body = _accel_lpf.getState();
gravity_in_body.normalize();
const float pitch = asinf(gravity_in_body(0));
const float roll = atan2f(-gravity_in_body(1), -gravity_in_body(2));
const Eulerf euler_init(roll, pitch, 0.0f);
_state.quat_nominal = Quatf(euler_init);
_R_to_earth = Dcmf(_state.quat_nominal);
return true;
}
void Ekf::predictState()
{
// apply imu bias corrections
Vector3f corrected_delta_ang = _imu_sample_delayed.delta_ang - _state.delta_ang_bias;
const Vector3f corrected_delta_vel = _imu_sample_delayed.delta_vel - _state.delta_vel_bias;
// subtract component of angular rate due to earth rotation
corrected_delta_ang -= _R_to_earth.transpose() * _earth_rate_NED * _imu_sample_delayed.delta_ang_dt;
const Quatf dq(AxisAnglef{corrected_delta_ang});
// rotate the previous quaternion by the delta quaternion using a quaternion multiplication
_state.quat_nominal = _state.quat_nominal * dq;
// quaternions must be normalised whenever they are modified
_state.quat_nominal.normalize();
// save the previous value of velocity so we can use trapzoidal integration
const Vector3f vel_last = _state.vel;
_R_to_earth = Dcmf(_state.quat_nominal);
// Calculate an earth frame delta velocity
const Vector3f corrected_delta_vel_ef = _R_to_earth * corrected_delta_vel;
// calculate a filtered horizontal acceleration with a 1 sec time constant
// this are used for manoeuvre detection elsewhere
float alpha = 1.0f - _imu_sample_delayed.delta_vel_dt;
_accel_lpf_NE(0) = _accel_lpf_NE(0) * alpha + corrected_delta_vel_ef(0);
_accel_lpf_NE(1) = _accel_lpf_NE(1) * alpha + corrected_delta_vel_ef(1);
// calculate the increment in velocity using the current orientation
_state.vel += corrected_delta_vel_ef;
// compensate for acceleration due to gravity
_state.vel(2) += CONSTANTS_ONE_G * _imu_sample_delayed.delta_vel_dt;
// predict position states via trapezoidal integration of velocity
_state.pos += (vel_last + _state.vel) * _imu_sample_delayed.delta_vel_dt * 0.5f;
constrainStates();
// calculate an average filter update time
float input = 0.5f * (_imu_sample_delayed.delta_vel_dt + _imu_sample_delayed.delta_ang_dt);
// filter and limit input between -50% and +100% of nominal value
input = math::constrain(input, 0.5f * FILTER_UPDATE_PERIOD_S, 2.0f * FILTER_UPDATE_PERIOD_S);
_dt_ekf_avg = 0.99f * _dt_ekf_avg + 0.01f * input;
}
/*
* Implement a strapdown INS algorithm using the latest IMU data at the current time horizon.
* Buffer the INS states and calculate the difference with the EKF states at the delayed fusion time horizon.
* Calculate delta angle, delta velocity and velocity corrections from the differences and apply them at the
* current time horizon so that the INS states track the EKF states at the delayed fusion time horizon.
* The inspiration for using a complementary filter to correct for time delays in the EKF
* is based on the work by A Khosravian:
* Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements
* A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
*/
void Ekf::calculateOutputStates()
{
// Use full rate IMU data at the current time horizon
const imuSample &imu = _newest_high_rate_imu_sample;
// correct delta angles for bias offsets
const float dt_scale_correction = _dt_imu_avg / _dt_ekf_avg;
// Apply corrections to the delta angle required to track the quaternion states at the EKF fusion time horizon
const Vector3f delta_angle{imu.delta_ang - _state.delta_ang_bias * dt_scale_correction + _delta_angle_corr};
// calculate a yaw change about the earth frame vertical
const float spin_del_ang_D = _R_to_earth_now(2, 0) * delta_angle(0) +
_R_to_earth_now(2, 1) * delta_angle(1) +
_R_to_earth_now(2, 2) * delta_angle(2);
_yaw_delta_ef += spin_del_ang_D;
// Calculate filtered yaw rate to be used by the magnetometer fusion type selection logic
// Note fixed coefficients are used to save operations. The exact time constant is not important.
_yaw_rate_lpf_ef = 0.95f * _yaw_rate_lpf_ef + 0.05f * spin_del_ang_D / imu.delta_ang_dt;
const Quatf dq(AxisAnglef{delta_angle});
// rotate the previous INS quaternion by the delta quaternions
_output_new.time_us = imu.time_us;
_output_new.quat_nominal = _output_new.quat_nominal * dq;
// the quaternions must always be normalised after modification
_output_new.quat_nominal.normalize();
// calculate the rotation matrix from body to earth frame
_R_to_earth_now = Dcmf(_output_new.quat_nominal);
// correct delta velocity for bias offsets
const Vector3f delta_vel{imu.delta_vel - _state.delta_vel_bias * dt_scale_correction};
// rotate the delta velocity to earth frame
Vector3f delta_vel_NED{_R_to_earth_now * delta_vel};
// correct for measured acceleration due to gravity
delta_vel_NED(2) += CONSTANTS_ONE_G * imu.delta_vel_dt;
// calculate the earth frame velocity derivatives
if (imu.delta_vel_dt > 1e-4f) {
_vel_deriv_ned = delta_vel_NED * (1.0f / imu.delta_vel_dt);
}
// save the previous velocity so we can use trapezoidal integration
const Vector3f vel_last{_output_new.vel};
// increment the INS velocity states by the measurement plus corrections
// do the same for vertical state used by alternative correction algorithm
_output_new.vel += delta_vel_NED;
_output_vert_new.vel_d += delta_vel_NED(2);
// use trapezoidal integration to calculate the INS position states
// do the same for vertical state used by alternative correction algorithm
const Vector3f delta_pos_NED = (_output_new.vel + vel_last) * (imu.delta_vel_dt * 0.5f);
_output_new.pos += delta_pos_NED;
_output_vert_new.vel_d_integ += delta_pos_NED(2);
// accumulate the time for each update
_output_vert_new.dt += imu.delta_vel_dt;
// correct velocity for IMU offset
if (imu.delta_ang_dt > 1e-4f) {
// calculate the average angular rate across the last IMU update
const Vector3f ang_rate = imu.delta_ang * (1.0f / imu.delta_ang_dt);
// calculate the velocity of the IMU relative to the body origin
const Vector3f vel_imu_rel_body = ang_rate % _params.imu_pos_body;
// rotate the relative velocity into earth frame
_vel_imu_rel_body_ned = _R_to_earth_now * vel_imu_rel_body;
}
// store the INS states in a ring buffer with the same length and time coordinates as the IMU data buffer
if (_imu_updated) {
_output_buffer.push(_output_new);
_output_vert_buffer.push(_output_vert_new);
// get the oldest INS state data from the ring buffer
// this data will be at the EKF fusion time horizon
_output_sample_delayed = _output_buffer.get_oldest();
_output_vert_delayed = _output_vert_buffer.get_oldest();
// calculate the quaternion delta between the INS and EKF quaternions at the EKF fusion time horizon
const Quatf q_error( (_state.quat_nominal.inversed() * _output_sample_delayed.quat_nominal).normalized() );
// convert the quaternion delta to a delta angle
float scalar;
if (q_error(0) >= 0.0f) {
scalar = -2.0f;
} else {
scalar = 2.0f;
}
const Vector3f delta_ang_error{scalar * q_error(1), scalar * q_error(2), scalar * q_error(3)};
// calculate a gain that provides tight tracking of the estimator attitude states and
// adjust for changes in time delay to maintain consistent damping ratio of ~0.7
const float time_delay = fmaxf((imu.time_us - _imu_sample_delayed.time_us) * 1e-6f, _dt_imu_avg);
const float att_gain = 0.5f * _dt_imu_avg / time_delay;
// calculate a corrrection to the delta angle
// that will cause the INS to track the EKF quaternions
_delta_angle_corr = delta_ang_error * att_gain;
// calculate velocity and position tracking errors
const Vector3f vel_err{_state.vel - _output_sample_delayed.vel};
const Vector3f pos_err{_state.pos - _output_sample_delayed.pos};
// collect magnitude tracking error for diagnostics
_output_tracking_error[0] = delta_ang_error.norm();
_output_tracking_error[1] = vel_err.norm();
_output_tracking_error[2] = pos_err.norm();
/*
* Loop through the output filter state history and apply the corrections to the velocity and position states.
* This method is too expensive to use for the attitude states due to the quaternion operations required
* but because it eliminates the time delay in the 'correction loop' it allows higher tracking gains
* to be used and reduces tracking error relative to EKF states.
*/
// Complementary filter gains
const float vel_gain = _dt_ekf_avg / math::constrain(_params.vel_Tau, _dt_ekf_avg, 10.0f);
const float pos_gain = _dt_ekf_avg / math::constrain(_params.pos_Tau, _dt_ekf_avg, 10.0f);
{
/*
* Calculate a correction to be applied to vel_d that casues vel_d_integ to track the EKF
* down position state at the fusion time horizon using an alternative algorithm to what
* is used for the vel and pos state tracking. The algorithm applies a correction to the vel_d
* state history and propagates vel_d_integ forward in time using the corrected vel_d history.
* This provides an alternative vertical velocity output that is closer to the first derivative
* of the position but does degrade tracking relative to the EKF state.
*/
// calculate down velocity and position tracking errors
const float vel_d_err = (_state.vel(2) - _output_vert_delayed.vel_d);
const float pos_d_err = (_state.pos(2) - _output_vert_delayed.vel_d_integ);
// calculate a velocity correction that will be applied to the output state history
// using a PD feedback tuned to a 5% overshoot
const float vel_d_correction = pos_d_err * pos_gain + vel_d_err * pos_gain * 1.1f;
/*
* Calculate corrections to be applied to vel and pos output state history.
* The vel and pos state history are corrected individually so they track the EKF states at
* the fusion time horizon. This option provides the most accurate tracking of EKF states.
*/
// loop through the vertical output filter state history starting at the oldest and apply the corrections to the
// vel_d states and propagate vel_d_integ forward using the corrected vel_d
uint8_t index = _output_vert_buffer.get_oldest_index();
const uint8_t size = _output_vert_buffer.get_length();
for (uint8_t counter = 0; counter < (size - 1); counter++) {
const uint8_t index_next = (index + 1) % size;
outputVert &current_state = _output_vert_buffer[index];
outputVert &next_state = _output_vert_buffer[index_next];
// correct the velocity
if (counter == 0) {
current_state.vel_d += vel_d_correction;
}
next_state.vel_d += vel_d_correction;
// position is propagated forward using the corrected velocity and a trapezoidal integrator
next_state.vel_d_integ = current_state.vel_d_integ + (current_state.vel_d + next_state.vel_d) * 0.5f * next_state.dt;
// advance the index
index = (index + 1) % size;
}
// update output state to corrected values
_output_vert_new = _output_vert_buffer.get_newest();
// reset time delta to zero for the next accumulation of full rate IMU data
_output_vert_new.dt = 0.0f;
}
{
/*
* Calculate corrections to be applied to vel and pos output state history.
* The vel and pos state history are corrected individually so they track the EKF states at
* the fusion time horizon. This option provides the most accurate tracking of EKF states.
*/
// calculate a velocity correction that will be applied to the output state history
_vel_err_integ += vel_err;
const Vector3f vel_correction = vel_err * vel_gain + _vel_err_integ * sq(vel_gain) * 0.1f;
// calculate a position correction that will be applied to the output state history
_pos_err_integ += pos_err;
const Vector3f pos_correction = pos_err * pos_gain + _pos_err_integ * sq(pos_gain) * 0.1f;
// loop through the output filter state history and apply the corrections to the velocity and position states
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
// a constant velocity correction is applied
_output_buffer[index].vel += vel_correction;
// a constant position correction is applied
_output_buffer[index].pos += pos_correction;
}
// update output state to corrected values
_output_new = _output_buffer.get_newest();
}
}
}
/*
* Predict the previous quaternion output state forward using the latest IMU delta angle data.
*/
Quatf Ekf::calculate_quaternion() const
{
// Correct delta angle data for bias errors using bias state estimates from the EKF and also apply
// corrections required to track the EKF quaternion states
const Vector3f delta_angle{_newest_high_rate_imu_sample.delta_ang - _state.delta_ang_bias * (_dt_imu_avg / _dt_ekf_avg) + _delta_angle_corr};
// increment the quaternions using the corrected delta angle vector
// the quaternions must always be normalised after modification
return Quatf{_output_new.quat_nominal * AxisAnglef{delta_angle}}.unit();
}