|
|
|
/**
|
|
|
|
* @file Quaternion.hpp
|
|
|
|
*
|
|
|
|
* All rotations and axis systems follow the right-hand rule.
|
|
|
|
*
|
|
|
|
* In order to rotate a vector v by a righthand rotation defined by the quaternion q
|
|
|
|
* one can use the following operation:
|
|
|
|
* v_rotated = q^(-1) * [0;v] * q
|
|
|
|
* where q^(-1) represents the inverse of the quaternion q.
|
|
|
|
* The product z of two quaternions z = q1 * q2 represents an intrinsic rotation
|
|
|
|
* in the order of first q1 followed by q2.
|
|
|
|
* The first element of the quaternion
|
|
|
|
* represents the real part, thus, a quaternion representing a zero-rotation
|
|
|
|
* is defined as (1,0,0,0).
|
|
|
|
*
|
|
|
|
* @author James Goppert <james.goppert@gmail.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "math.hpp"
|
|
|
|
#include "helper_functions.hpp"
|
|
|
|
|
|
|
|
namespace matrix
|
|
|
|
{
|
|
|
|
|
|
|
|
template <typename Type>
|
|
|
|
class Dcm;
|
|
|
|
|
|
|
|
template <typename Type>
|
|
|
|
class Euler;
|
|
|
|
|
|
|
|
template <typename Type>
|
|
|
|
class AxisAngle;
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Quaternion class
|
|
|
|
*
|
|
|
|
* The rotation between two coordinate frames is
|
|
|
|
* described by this class.
|
|
|
|
*/
|
|
|
|
template<typename Type>
|
|
|
|
class Quaternion : public Vector<Type, 4>
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
virtual ~Quaternion() {};
|
|
|
|
|
|
|
|
typedef Matrix<Type, 4, 1> Matrix41;
|
|
|
|
typedef Matrix<Type, 3, 1> Matrix31;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor from array
|
|
|
|
*
|
|
|
|
* @param data_ array
|
|
|
|
*/
|
|
|
|
Quaternion(const Type *data_) :
|
|
|
|
Vector<Type, 4>(data_)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Standard constructor
|
|
|
|
*/
|
|
|
|
Quaternion() :
|
|
|
|
Vector<Type, 4>()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
q(0) = 1;
|
|
|
|
q(1) = 0;
|
|
|
|
q(2) = 0;
|
|
|
|
q(3) = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor from Matrix41
|
|
|
|
*
|
|
|
|
* @param other Matrix41 to copy
|
|
|
|
*/
|
|
|
|
Quaternion(const Matrix41 &other) :
|
|
|
|
Vector<Type, 4>(other)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor from dcm
|
|
|
|
*
|
|
|
|
* Instance is initialized from a dcm representing coordinate transformation
|
|
|
|
* from frame 2 to frame 1.
|
|
|
|
*
|
|
|
|
* @param dcm dcm to set quaternion to
|
|
|
|
*/
|
|
|
|
Quaternion(const Dcm<Type> &dcm) :
|
|
|
|
Vector<Type, 4>()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
q(0) = Type(0.5) * Type(sqrt(Type(1) + dcm(0, 0) +
|
|
|
|
dcm(1, 1) + dcm(2, 2)));
|
|
|
|
q(1) = Type((dcm(2, 1) - dcm(1, 2)) /
|
|
|
|
(Type(4) * q(0)));
|
|
|
|
q(2) = Type((dcm(0, 2) - dcm(2, 0)) /
|
|
|
|
(Type(4) * q(0)));
|
|
|
|
q(3) = Type((dcm(1, 0) - dcm(0, 1)) /
|
|
|
|
(Type(4) * q(0)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor from euler angles
|
|
|
|
*
|
|
|
|
* This sets the instance to a quaternion representing coordinate transformation from
|
|
|
|
* frame 2 to frame 1 where the rotation from frame 1 to frame 2 is described
|
|
|
|
* by a 3-2-1 intrinsic Tait-Bryan rotation sequence.
|
|
|
|
*
|
|
|
|
* @param euler euler angle instance
|
|
|
|
*/
|
|
|
|
Quaternion(const Euler<Type> &euler) :
|
|
|
|
Vector<Type, 4>()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
Type cosPhi_2 = Type(cos(euler.phi() / (Type)2.0));
|
|
|
|
Type cosTheta_2 = Type(cos(euler.theta() / (Type)2.0));
|
|
|
|
Type cosPsi_2 = Type(cos(euler.psi() / (Type)2.0));
|
|
|
|
Type sinPhi_2 = Type(sin(euler.phi() / (Type)2.0));
|
|
|
|
Type sinTheta_2 = Type(sin(euler.theta() / (Type)2.0));
|
|
|
|
Type sinPsi_2 = Type(sin(euler.psi() / (Type)2.0));
|
|
|
|
q(0) = cosPhi_2 * cosTheta_2 * cosPsi_2 +
|
|
|
|
sinPhi_2 * sinTheta_2 * sinPsi_2;
|
|
|
|
q(1) = sinPhi_2 * cosTheta_2 * cosPsi_2 -
|
|
|
|
cosPhi_2 * sinTheta_2 * sinPsi_2;
|
|
|
|
q(2) = cosPhi_2 * sinTheta_2 * cosPsi_2 +
|
|
|
|
sinPhi_2 * cosTheta_2 * sinPsi_2;
|
|
|
|
q(3) = cosPhi_2 * cosTheta_2 * sinPsi_2 -
|
|
|
|
sinPhi_2 * sinTheta_2 * cosPsi_2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Quaternion from AxisAngle
|
|
|
|
*
|
|
|
|
* @param aa axis-angle vector
|
|
|
|
*/
|
|
|
|
Quaternion(const AxisAngle<Type> &aa) :
|
|
|
|
Vector<Type, 4>()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
Type angle = aa.norm();
|
|
|
|
Vector<Type, 3> axis = aa.unit();
|
|
|
|
if (angle < (Type)1e-10) {
|
|
|
|
q(0) = (Type)1.0;
|
|
|
|
q(1) = q(2) = q(3) = 0;
|
|
|
|
} else {
|
|
|
|
Type magnitude = sinf(angle / 2.0f);
|
|
|
|
q(0) = cosf(angle / 2.0f);
|
|
|
|
q(1) = axis(0) * magnitude;
|
|
|
|
q(2) = axis(1) * magnitude;
|
|
|
|
q(3) = axis(2) * magnitude;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructor from quaternion values
|
|
|
|
*
|
|
|
|
* Instance is initialized from quaternion values representing coordinate
|
|
|
|
* transformation from frame 2 to frame 1.
|
|
|
|
* A zero-rotation quaternion is represented by (1,0,0,0).
|
|
|
|
*
|
|
|
|
* @param a set quaternion value 0
|
|
|
|
* @param b set quaternion value 1
|
|
|
|
* @param c set quaternion value 2
|
|
|
|
* @param d set quaternion value 3
|
|
|
|
*/
|
|
|
|
Quaternion(Type a, Type b, Type c, Type d) :
|
|
|
|
Vector<Type, 4>()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
q(0) = a;
|
|
|
|
q(1) = b;
|
|
|
|
q(2) = c;
|
|
|
|
q(3) = d;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Quaternion multiplication operator
|
|
|
|
*
|
|
|
|
* @param q quaternion to multiply with
|
|
|
|
* @return product
|
|
|
|
*/
|
|
|
|
Quaternion operator*(const Quaternion &q) const
|
|
|
|
{
|
|
|
|
const Quaternion &p = *this;
|
|
|
|
Quaternion r;
|
|
|
|
r(0) = p(0) * q(0) - p(1) * q(1) - p(2) * q(2) - p(3) * q(3);
|
|
|
|
r(1) = p(0) * q(1) + p(1) * q(0) - p(2) * q(3) + p(3) * q(2);
|
|
|
|
r(2) = p(0) * q(2) + p(1) * q(3) + p(2) * q(0) - p(3) * q(1);
|
|
|
|
r(3) = p(0) * q(3) - p(1) * q(2) + p(2) * q(1) + p(3) * q(0);
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Self-multiplication operator
|
|
|
|
*
|
|
|
|
* @param other quaternion to multiply with
|
|
|
|
*/
|
|
|
|
void operator*=(const Quaternion &other)
|
|
|
|
{
|
|
|
|
Quaternion &self = *this;
|
|
|
|
self = self * other;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Scalar multiplication operator
|
|
|
|
*
|
|
|
|
* @param scalar scalar to multiply with
|
|
|
|
* @return product
|
|
|
|
*/
|
|
|
|
Quaternion operator*(Type scalar) const
|
|
|
|
{
|
|
|
|
const Quaternion &q = *this;
|
|
|
|
return scalar * q;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Scalar self-multiplication operator
|
|
|
|
*
|
|
|
|
* @param scalar scalar to multiply with
|
|
|
|
*/
|
|
|
|
void operator*=(Type scalar)
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
q = q * scalar;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Computes the derivative
|
|
|
|
*
|
|
|
|
* @param w direction
|
|
|
|
*/
|
|
|
|
Matrix41 derivative(const Matrix31 &w) const
|
|
|
|
{
|
|
|
|
const Quaternion &q = *this;
|
|
|
|
Quaternion<Type> v(0, w(0, 0), w(1, 0), w(2, 0));
|
|
|
|
return v * q * Type(0.5);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Invert quaternion
|
|
|
|
*/
|
|
|
|
void invert()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
q(1) *= -1;
|
|
|
|
q(2) *= -1;
|
|
|
|
q(3) *= -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Invert quaternion
|
|
|
|
*
|
|
|
|
* @return inverted quaternion
|
|
|
|
*/
|
|
|
|
Quaternion inversed()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
Quaternion ret;
|
|
|
|
ret(0) = q(0);
|
|
|
|
ret(1) = -q(1);
|
|
|
|
ret(2) = -q(2);
|
|
|
|
ret(3) = -q(3);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Rotate quaternion from rotation vector
|
|
|
|
* TODO replace with AxisAngle call
|
|
|
|
*
|
|
|
|
* @param vec rotation vector
|
|
|
|
*/
|
|
|
|
void rotate(const Vector<Type, 3> &vec)
|
|
|
|
{
|
|
|
|
Quaternion res;
|
|
|
|
res.from_axis_angle(vec);
|
|
|
|
(*this) = (*this) * res;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector3f conjugate(const Vector3f &vec) {
|
|
|
|
Quaternion q = *this;
|
|
|
|
Quaternion v(0, vec(0), vec(1), vec(2));
|
|
|
|
Quaternion res = q*v*q.inversed();
|
|
|
|
return Vector3f(res(1), res(2), res(3));
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector3f conjugate_inversed(const Vector3f &vec) {
|
|
|
|
Quaternion q = *this;
|
|
|
|
Quaternion v(0, vec(0), vec(1), vec(2));
|
|
|
|
Quaternion res = q.inversed()*v*q;
|
|
|
|
return Vector3f(res(1), res(2), res(3));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Rotation quaternion from vector
|
|
|
|
*
|
|
|
|
* The axis of rotation is given by vector direction and
|
|
|
|
* the angle is given by the norm.
|
|
|
|
*
|
|
|
|
* @param vec rotation vector
|
|
|
|
* @return quaternion representing the rotation
|
|
|
|
*/
|
|
|
|
void from_axis_angle(Vector<Type, 3> vec)
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
Type theta = vec.norm();
|
|
|
|
|
|
|
|
if (theta < (Type)1e-10) {
|
|
|
|
q(0) = (Type)1.0;
|
|
|
|
q(1) = q(2) = q(3) = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
vec /= theta;
|
|
|
|
from_axis_angle(vec, theta);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Rotation quaternion from axis and angle
|
|
|
|
* XXX DEPRECATED, use AxisAngle class
|
|
|
|
*
|
|
|
|
* @param axis axis of rotation
|
|
|
|
* @param theta scalar describing angle of rotation
|
|
|
|
* @return quaternion representing the rotation
|
|
|
|
*/
|
|
|
|
void from_axis_angle(const Vector<Type, 3> &axis, Type theta)
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
|
|
|
|
if (theta < (Type)1e-10) {
|
|
|
|
q(0) = (Type)1.0;
|
|
|
|
q(1) = q(2) = q(3) = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
Type magnitude = sinf(theta / 2.0f);
|
|
|
|
|
|
|
|
q(0) = cosf(theta / 2.0f);
|
|
|
|
q(1) = axis(0) * magnitude;
|
|
|
|
q(2) = axis(1) * magnitude;
|
|
|
|
q(3) = axis(2) * magnitude;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Rotation vector from quaternion
|
|
|
|
* XXX DEPRECATED, use AxisAngle class
|
|
|
|
*
|
|
|
|
* The axis of rotation is given by vector direction and
|
|
|
|
* the angle is given by the norm.
|
|
|
|
*
|
|
|
|
* @return vector, direction representing rotation axis and norm representing angle
|
|
|
|
*/
|
|
|
|
Vector<Type, 3> to_axis_angle()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
Type axis_magnitude = Type(sqrt(q(1) * q(1) + q(2) * q(2) + q(3) * q(3)));
|
|
|
|
Vector<Type, 3> vec;
|
|
|
|
vec(0) = q(1);
|
|
|
|
vec(1) = q(2);
|
|
|
|
vec(2) = q(3);
|
|
|
|
|
|
|
|
if (axis_magnitude >= (Type)1e-10) {
|
|
|
|
vec = vec / axis_magnitude;
|
|
|
|
vec = vec * wrap_pi((Type)2.0 * atan2f(axis_magnitude, q(0)));
|
|
|
|
}
|
|
|
|
|
|
|
|
return vec;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Imaginary components of quaternion
|
|
|
|
*/
|
|
|
|
Vector3<Type> imag()
|
|
|
|
{
|
|
|
|
Quaternion &q = *this;
|
|
|
|
return Vector3<Type>(q(1), q(2), q(3));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* XXX DEPRECATED, can use assignment or ctor
|
|
|
|
*/
|
|
|
|
Quaternion from_dcm(Matrix<Type, 3, 3> dcm) {
|
|
|
|
return Quaternion(Dcmf(dcm));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* XXX DEPRECATED, can use assignment or ctor
|
|
|
|
*/
|
|
|
|
Dcm<Type> to_dcm() {
|
|
|
|
return Dcm<Type>(*this);
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
typedef Quaternion<float> Quatf;
|
|
|
|
typedef Quaternion<float> Quaternionf;
|
|
|
|
|
|
|
|
} // namespace matrix
|
|
|
|
|
|
|
|
/* vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 : */
|