|
|
|
/**
|
|
|
|
* @file Dual.hpp
|
|
|
|
*
|
|
|
|
* This is a dual number type for calculating automatic derivatives.
|
|
|
|
*
|
|
|
|
* Based roughly on the methods described in:
|
|
|
|
* Automatic Differentiation, C++ Templates and Photogrammetry, by Dan Piponi
|
|
|
|
* and
|
|
|
|
* Ceres Solver's excellent Jet.h
|
|
|
|
*
|
|
|
|
* @author Julian Kent <julian@auterion.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "math.hpp"
|
|
|
|
|
|
|
|
namespace matrix
|
|
|
|
{
|
|
|
|
|
|
|
|
template <typename Type, size_t M>
|
|
|
|
class Vector;
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
struct Dual
|
|
|
|
{
|
|
|
|
static constexpr size_t WIDTH = N;
|
|
|
|
|
|
|
|
Scalar value {};
|
|
|
|
Vector<Scalar, N> derivative;
|
|
|
|
|
|
|
|
Dual() = default;
|
|
|
|
|
|
|
|
explicit Dual(Scalar v, size_t inputDimension = 65535)
|
|
|
|
{
|
|
|
|
value = v;
|
|
|
|
if (inputDimension < N) {
|
|
|
|
derivative(inputDimension) = Scalar(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
explicit Dual(Scalar v, const Vector<Scalar, N>& d) :
|
|
|
|
value(v), derivative(d)
|
|
|
|
{}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator=(const Scalar& a)
|
|
|
|
{
|
|
|
|
derivative.setZero();
|
|
|
|
value = a;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator +=(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return (*this = *this + a);
|
|
|
|
}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator *=(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return (*this = *this * a);
|
|
|
|
}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator -=(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return (*this = *this - a);
|
|
|
|
}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator /=(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return (*this = *this / a);
|
|
|
|
}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator +=(Scalar a)
|
|
|
|
{
|
|
|
|
return (*this = *this + a);
|
|
|
|
}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator -=(Scalar a)
|
|
|
|
{
|
|
|
|
return (*this = *this - a);
|
|
|
|
}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator *=(Scalar a)
|
|
|
|
{
|
|
|
|
return (*this = *this * a);
|
|
|
|
}
|
|
|
|
|
|
|
|
Dual<Scalar, N>& operator /=(Scalar a)
|
|
|
|
{
|
|
|
|
return (*this = *this / a);
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
// operators
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator+(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator-(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(-a.value, -a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator+(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(a.value + b.value, a.derivative + b.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator-(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
return a + (-b);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator+(const Dual<Scalar, N>& a, Scalar b)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(a.value + b, a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator-(const Dual<Scalar, N>& a, Scalar b)
|
|
|
|
{
|
|
|
|
return a + (-b);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator+(Scalar a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(a + b.value, b.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator-(Scalar a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
return a + (-b);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator*(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(a.value * b.value, a.value * b.derivative + b.value * a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator*(const Dual<Scalar, N>& a, Scalar b)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(a.value * b, a.derivative * b);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator*(Scalar a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
return b * a;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator/(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
const Scalar inv_b_real = Scalar(1) / b.value;
|
|
|
|
return Dual<Scalar, N>(a.value * inv_b_real, a.derivative * inv_b_real -
|
|
|
|
a.value * b.derivative * inv_b_real * inv_b_real);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator/(const Dual<Scalar, N>& a, Scalar b)
|
|
|
|
{
|
|
|
|
return a * (Scalar(1) / b);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> operator/(Scalar a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
const Scalar inv_b_real = Scalar(1) / b.value;
|
|
|
|
return Dual<Scalar, N>(a * inv_b_real, (-inv_b_real * a * inv_b_real) * b.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
// basic math
|
|
|
|
|
|
|
|
// sqrt
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> sqrt(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
Scalar real = sqrt(a.value);
|
|
|
|
return Dual<Scalar, N>(real, a.derivative * (Scalar(1) / (Scalar(2) * real)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// abs
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> abs(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return a.value >= Scalar(0) ? a : -a;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ceil
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> ceil(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(ceil(a.value));
|
|
|
|
}
|
|
|
|
|
|
|
|
// floor
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> floor(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(floor(a.value));
|
|
|
|
}
|
|
|
|
|
|
|
|
// fmod
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> fmod(const Dual<Scalar, N>& a, Scalar mod)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(a.value - Scalar(size_t(a.value / mod)) * mod, a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
// max
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> max(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
return a.value >= b.value ? a : b;
|
|
|
|
}
|
|
|
|
|
|
|
|
// min
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> min(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
return a.value < b.value ? a : b;
|
|
|
|
}
|
|
|
|
|
|
|
|
// isnan
|
|
|
|
template <typename Scalar>
|
|
|
|
bool IsNan(Scalar a)
|
|
|
|
{
|
|
|
|
return isnan(a);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
bool IsNan(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return IsNan(a.value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// isfinite
|
|
|
|
template <typename Scalar>
|
|
|
|
bool IsFinite(Scalar a)
|
|
|
|
{
|
|
|
|
return isfinite(a);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
bool IsFinite(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return IsFinite(a.value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// isinf
|
|
|
|
template <typename Scalar>
|
|
|
|
bool IsInf(Scalar a)
|
|
|
|
{
|
|
|
|
return isinf(a);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
bool IsInf(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return IsInf(a.value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// trig
|
|
|
|
|
|
|
|
// sin
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> sin(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(sin(a.value), cos(a.value) * a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
// cos
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> cos(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
return Dual<Scalar, N>(cos(a.value), -sin(a.value) * a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
// tan
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> tan(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
Scalar real = tan(a.value);
|
|
|
|
return Dual<Scalar, N>(real, (Scalar(1) + real * real) * a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
// asin
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> asin(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
Scalar asin_d = Scalar(1) / sqrt(Scalar(1) - a.value * a.value);
|
|
|
|
return Dual<Scalar, N>(asin(a.value), asin_d * a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
// acos
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> acos(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
Scalar acos_d = -Scalar(1) / sqrt(Scalar(1) - a.value * a.value);
|
|
|
|
return Dual<Scalar, N>(acos(a.value), acos_d * a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
// atan
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> atan(const Dual<Scalar, N>& a)
|
|
|
|
{
|
|
|
|
Scalar atan_d = Scalar(1) / (Scalar(1) + a.value * a.value);
|
|
|
|
return Dual<Scalar, N>(atan(a.value), atan_d * a.derivative);
|
|
|
|
}
|
|
|
|
|
|
|
|
// atan2
|
|
|
|
template <typename Scalar, size_t N>
|
|
|
|
Dual<Scalar, N> atan2(const Dual<Scalar, N>& a, const Dual<Scalar, N>& b)
|
|
|
|
{
|
|
|
|
// derivative is equal to that of atan(a/b), so substitute a/b into atan and simplify
|
|
|
|
Scalar atan_d = Scalar(1) / (a.value * a.value + b.value * b.value);
|
|
|
|
return Dual<Scalar, N>(atan2(a.value, b.value), (a.derivative * b.value - a.value * b.derivative) * atan_d);
|
|
|
|
}
|
|
|
|
|
|
|
|
// retrieve the derivative elements of a vector of Duals into a matrix
|
|
|
|
template <typename Scalar, size_t M, size_t N>
|
|
|
|
Matrix<Scalar, M, N> collectDerivatives(const Matrix<Dual<Scalar, N>, M, 1>& input)
|
|
|
|
{
|
|
|
|
Matrix<Scalar, M, N> jac;
|
|
|
|
for (size_t i = 0; i < M; i++) {
|
|
|
|
jac.row(i) = input(i, 0).derivative;
|
|
|
|
}
|
|
|
|
return jac;
|
|
|
|
}
|
|
|
|
|
|
|
|
// retrieve the real (non-derivative) elements of a matrix of Duals into an equally sized matrix
|
|
|
|
template <typename Scalar, size_t M, size_t N, size_t D>
|
|
|
|
Matrix<Scalar, M, N> collectReals(const Matrix<Dual<Scalar, D>, M, N>& input)
|
|
|
|
{
|
|
|
|
Matrix<Scalar, M, N> r;
|
|
|
|
for (size_t i = 0; i < M; i++) {
|
|
|
|
for (size_t j = 0; j < N; j++) {
|
|
|
|
r(i,j) = input(i,j).value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(SUPPORT_STDIOSTREAM)
|
|
|
|
template<typename Type, size_t N>
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const matrix::Dual<Type, N>& dual)
|
|
|
|
{
|
|
|
|
os << "[";
|
|
|
|
os << std::setw(10) << dual.value << ";";
|
|
|
|
for (size_t j = 0; j < N; ++j) {
|
|
|
|
os << "\t";
|
|
|
|
os << std::setw(10) << static_cast<double>(dual.derivative(j));
|
|
|
|
}
|
|
|
|
os << "]";
|
|
|
|
return os;
|
|
|
|
}
|
|
|
|
#endif // defined(SUPPORT_STDIOSTREAM)
|
|
|
|
|
|
|
|
}
|
|
|
|
|