You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
657 lines
0 B
657 lines
0 B
5 years ago
|
#include "EKFGSF_yaw.h"
|
||
|
#include <cstdlib>
|
||
|
|
||
|
EKFGSF_yaw::EKFGSF_yaw()
|
||
|
{
|
||
|
// this flag must be false when we start
|
||
|
_ahrs_ekf_gsf_tilt_aligned = false;
|
||
|
|
||
|
// these objects are initialised in initialise() before being used internally, but can be reported for logging before then
|
||
|
memset(&_ahrs_ekf_gsf, 0, sizeof(_ahrs_ekf_gsf));
|
||
|
memset(&_ekf_gsf, 0, sizeof(_ekf_gsf));
|
||
|
_gsf_yaw = 0.0f;
|
||
|
_ahrs_accel.zero();
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::update(const Vector3f del_ang, // IMU delta angle rotation vector meassured in body frame (rad)
|
||
|
const Vector3f del_vel, // IMU delta velocity vector meassured in body frame (m/s)
|
||
|
const float del_ang_dt, // time interval that del_ang was integrated over (sec)
|
||
|
const float del_vel_dt, // time interval that del_vel was integrated over (sec)
|
||
|
bool run_EKF, // set to true when flying or movement is suitable for yaw estimation
|
||
|
float airspeed) // true airspeed used for centripetal accel compensation - set to 0 when not required.
|
||
|
{
|
||
|
// copy to class variables
|
||
|
_delta_ang = del_ang;
|
||
|
_delta_vel = del_vel;
|
||
|
_delta_ang_dt = del_ang_dt;
|
||
|
_delta_vel_dt = del_vel_dt;
|
||
|
_run_ekf_gsf = run_EKF;
|
||
|
_true_airspeed = airspeed;
|
||
|
|
||
|
// to reduce effect of vibration, filter using an LPF whose time constant is 1/10 of the AHRS tilt correction time constant
|
||
|
const float filter_coef = fminf(10.0f * _delta_vel_dt * _tilt_gain, 1.0f);
|
||
|
const Vector3f accel = _delta_vel / fmaxf(_delta_vel_dt, 0.001f);
|
||
|
_ahrs_accel = _ahrs_accel * (1.0f - filter_coef) + accel * filter_coef;
|
||
|
|
||
|
// Initialise states first time
|
||
|
if (!_ahrs_ekf_gsf_tilt_aligned) {
|
||
|
// check for excessive acceleration to reduce likelihood of large inital roll/pitch errors
|
||
|
// due to vehicle movement
|
||
|
const float accel_norm_sq = accel.norm_squared();
|
||
|
const float upper_accel_limit = CONSTANTS_ONE_G * 1.1f;
|
||
|
const float lower_accel_limit = CONSTANTS_ONE_G * 0.9f;
|
||
|
const bool ok_to_align = (accel_norm_sq > sq(lower_accel_limit)) && (accel_norm_sq < sq(upper_accel_limit));
|
||
|
if (ok_to_align) {
|
||
|
initialiseEKFGSF();
|
||
|
ahrsAlignTilt();
|
||
|
_ahrs_ekf_gsf_tilt_aligned = true;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// AHRS prediction cycle for each model - this always runs
|
||
|
ahrsCalcAccelGain();
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
|
||
|
predictEKF(model_index);
|
||
|
}
|
||
|
|
||
|
// The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference
|
||
|
if (_run_ekf_gsf && _vel_data_updated) {
|
||
|
if (!_ekf_gsf_vel_fuse_started) {
|
||
|
initialiseEKFGSF();
|
||
|
ahrsAlignYaw();
|
||
|
_ekf_gsf_vel_fuse_started = true;
|
||
|
} else {
|
||
|
float total_w = 0.0f;
|
||
|
float newWeight[N_MODELS_EKFGSF];
|
||
|
bool bad_update = false;
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
|
||
|
// subsequent measurements are fused as direct state observations
|
||
|
if (!updateEKF(model_index)) {
|
||
|
bad_update = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!bad_update) {
|
||
|
// calculate weighting for each model assuming a normal distribution
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
|
||
|
newWeight[model_index] = fmaxf(gaussianDensity(model_index) * _ekf_gsf[model_index].W, 0.0f);
|
||
|
total_w += newWeight[model_index];
|
||
|
}
|
||
|
|
||
|
// normalise the weighting function
|
||
|
if (_ekf_gsf_vel_fuse_started && total_w > 1e-15f && !bad_update) {
|
||
|
float total_w_inv = 1.0f / total_w;
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
|
||
|
_ekf_gsf[model_index].W = newWeight[model_index] * total_w_inv;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Enforce a minimum weighting value. This was added during initial development but has not been needed
|
||
|
// subsequently, so this block of code and the corresponding _weight_min can be removed if we get
|
||
|
// through testing without any weighting function issues.
|
||
|
if (_weight_min > FLT_EPSILON) {
|
||
|
float correction_sum = 0.0f; // amount the sum of weights has been increased by application of the limit
|
||
|
bool change_mask[N_MODELS_EKFGSF] = {}; // true when the weighting for that model has been increased
|
||
|
float unmodified_weights_sum = 0.0f; // sum of unmodified weights
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
|
||
|
if (_ekf_gsf[model_index].W < _weight_min) {
|
||
|
correction_sum += _weight_min - _ekf_gsf[model_index].W;
|
||
|
_ekf_gsf[model_index].W = _weight_min;
|
||
|
change_mask[model_index] = true;
|
||
|
} else {
|
||
|
unmodified_weights_sum += _ekf_gsf[model_index].W;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// rescale the unmodified weights to make the total sum unity
|
||
|
const float scale_factor = (unmodified_weights_sum - correction_sum - _weight_min) / (unmodified_weights_sum - _weight_min);
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
|
||
|
if (!change_mask[model_index]) {
|
||
|
_ekf_gsf[model_index].W = _weight_min + scale_factor * (_ekf_gsf[model_index].W - _weight_min);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (_ekf_gsf_vel_fuse_started && !_run_ekf_gsf) {
|
||
|
// wait to fly again
|
||
|
_ekf_gsf_vel_fuse_started = false;
|
||
|
}
|
||
|
|
||
|
// Calculate a composite yaw vector as a weighted average of the states for each model.
|
||
|
// To avoid issues with angle wrapping, the yaw state is converted to a vector with legnth
|
||
|
// equal to the weighting value before it is summed.
|
||
|
Vector2f yaw_vector = {};
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
|
||
|
yaw_vector(0) += _ekf_gsf[model_index].W * cosf(_ekf_gsf[model_index].X(2));
|
||
|
yaw_vector(1) += _ekf_gsf[model_index].W * sinf(_ekf_gsf[model_index].X(2));
|
||
|
}
|
||
|
_gsf_yaw = atan2f(yaw_vector(1),yaw_vector(0));
|
||
|
|
||
|
// calculate a composite variance for the yaw state from a weighted average of the variance for each model
|
||
|
// models with larger innovations are weighted less
|
||
|
_gsf_yaw_variance = 0.0f;
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
|
||
|
float yaw_delta = wrap_pi(_ekf_gsf[model_index].X(2) - _gsf_yaw);
|
||
|
_gsf_yaw_variance += _ekf_gsf[model_index].W * (_ekf_gsf[model_index].P(2,2) + yaw_delta * yaw_delta);
|
||
|
}
|
||
|
|
||
|
// prevent the same velocity data being used more than once
|
||
|
_vel_data_updated = false;
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::ahrsPredict(const uint8_t model_index)
|
||
|
{
|
||
|
// generate attitude solution using simple complementary filter for the selected model
|
||
|
|
||
|
Vector3f ang_rate = _delta_ang / fmaxf(_delta_ang_dt, 0.001f) - _ahrs_ekf_gsf[model_index].gyro_bias;
|
||
|
|
||
|
// Accelerometer correction
|
||
|
// Project 'k' unit vector of earth frame to body frame
|
||
|
// Vector3f k = quaterion.conjugate_inversed(Vector3f(0.0f, 0.0f, 1.0f));
|
||
|
// Optimized version with dropped zeros
|
||
|
const Vector3f k(_ahrs_ekf_gsf[model_index].R(2,0), _ahrs_ekf_gsf[model_index].R(2,1), _ahrs_ekf_gsf[model_index].R(2,2));
|
||
|
|
||
|
// Perform angular rate correction using accel data and reduce correction as accel magnitude moves away from 1 g (reduces drift when vehicle picked up and moved).
|
||
|
// During fixed wing flight, compensate for centripetal acceleration assuming coordinated turns and X axis forward
|
||
|
Vector3f tilt_correction = {};
|
||
|
if (_ahrs_accel_fusion_gain > 0.0f) {
|
||
|
|
||
|
Vector3f accel = _ahrs_accel;
|
||
|
|
||
|
if (_true_airspeed > FLT_EPSILON) {
|
||
|
// turn rate is component of gyro rate about vertical (down) axis
|
||
|
const float turn_rate = _ahrs_ekf_gsf[model_index].R(2,0) * ang_rate(0)
|
||
|
+ _ahrs_ekf_gsf[model_index].R(2,1) * ang_rate(1)
|
||
|
+ _ahrs_ekf_gsf[model_index].R(2,2) * ang_rate(2);
|
||
|
|
||
|
// use measured airspeed to calculate centripetal acceleration if available
|
||
|
float centripetal_accel = _true_airspeed * turn_rate;
|
||
|
|
||
|
// project Y body axis onto horizontal and multiply by centripetal acceleration to give estimated
|
||
|
// centripetal acceleration vector in earth frame due to coordinated turn
|
||
|
Vector3f centripetal_accel_vec_ef = {_ahrs_ekf_gsf[model_index].R(0,1), _ahrs_ekf_gsf[model_index].R(1,1), 0.0f};
|
||
|
if (_ahrs_ekf_gsf[model_index].R(2,2) > 0.0f) {
|
||
|
// vehicle is upright
|
||
|
centripetal_accel_vec_ef *= centripetal_accel;
|
||
|
} else {
|
||
|
// vehicle is inverted
|
||
|
centripetal_accel_vec_ef *= - centripetal_accel;
|
||
|
}
|
||
|
|
||
|
// rotate into body frame
|
||
|
Vector3f centripetal_accel_vec_bf = _ahrs_ekf_gsf[model_index].R.transpose() * centripetal_accel_vec_ef;
|
||
|
|
||
|
// correct measured accel for centripetal acceleration
|
||
|
accel -= centripetal_accel_vec_bf;
|
||
|
}
|
||
|
|
||
|
tilt_correction = (k % accel) * _ahrs_accel_fusion_gain / _ahrs_accel_norm;
|
||
|
|
||
|
}
|
||
|
|
||
|
// Gyro bias estimation
|
||
|
const float gyro_bias_limit = 0.05f;
|
||
|
const float spinRate = ang_rate.length();
|
||
|
if (spinRate < 0.175f) {
|
||
|
_ahrs_ekf_gsf[model_index].gyro_bias -= tilt_correction * (_gyro_bias_gain * _delta_ang_dt);
|
||
|
|
||
|
for (int i = 0; i < 3; i++) {
|
||
|
_ahrs_ekf_gsf[model_index].gyro_bias(i) = math::constrain(_ahrs_ekf_gsf[model_index].gyro_bias(i), -gyro_bias_limit, gyro_bias_limit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// delta angle from previous to current frame
|
||
|
Vector3f delta_angle_corrected = _delta_ang + (tilt_correction - _ahrs_ekf_gsf[model_index].gyro_bias) * _delta_ang_dt;
|
||
|
|
||
|
// Apply delta angle to rotation matrix
|
||
|
_ahrs_ekf_gsf[model_index].R = ahrsPredictRotMat(_ahrs_ekf_gsf[model_index].R, delta_angle_corrected);
|
||
|
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::ahrsAlignTilt()
|
||
|
{
|
||
|
// Rotation matrix is constructed directly from acceleration measurement and will be the same for
|
||
|
// all models so only need to calculate it once. Assumptions are:
|
||
|
// 1) Yaw angle is zero - yaw is aligned later for each model when velocity fusion commences.
|
||
|
// 2) The vehicle is not accelerating so all of the measured acceleration is due to gravity.
|
||
|
|
||
|
// Calculate earth frame Down axis unit vector rotated into body frame
|
||
|
Vector3f down_in_bf = -_delta_vel;
|
||
|
down_in_bf.normalize();
|
||
|
|
||
|
// Calculate earth frame North axis unit vector rotated into body frame, orthogonal to 'down_in_bf'
|
||
|
// * operator is overloaded to provide a dot product
|
||
|
const Vector3f i_vec_bf(1.0f,0.0f,0.0f);
|
||
|
Vector3f north_in_bf = i_vec_bf - down_in_bf * (i_vec_bf * down_in_bf);
|
||
|
north_in_bf.normalize();
|
||
|
|
||
|
// Calculate earth frame East axis unit vector rotated into body frame, orthogonal to 'down_in_bf' and 'north_in_bf'
|
||
|
// % operator is overloaded to provide a cross product
|
||
|
const Vector3f east_in_bf = down_in_bf % north_in_bf;
|
||
|
|
||
|
// Each column in a rotation matrix from earth frame to body frame represents the projection of the
|
||
|
// corresponding earth frame unit vector rotated into the body frame, eg 'north_in_bf' would be the first column.
|
||
|
// We need the rotation matrix from body frame to earth frame so the earth frame unit vectors rotated into body
|
||
|
// frame are copied into corresponding rows instead.
|
||
|
Dcmf R;
|
||
|
R.setRow(0, north_in_bf);
|
||
|
R.setRow(1, east_in_bf);
|
||
|
R.setRow(2, down_in_bf);
|
||
|
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::ahrsAlignYaw()
|
||
|
{
|
||
|
// Align yaw angle for each model
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
|
||
|
if (fabsf(_ahrs_ekf_gsf[model_index].R(2, 0)) < fabsf(_ahrs_ekf_gsf[model_index].R(2, 1))) {
|
||
|
// get the roll, pitch, yaw estimates from the rotation matrix using a 321 Tait-Bryan rotation sequence
|
||
|
Eulerf euler_init(_ahrs_ekf_gsf[model_index].R);
|
||
|
|
||
|
// set the yaw angle
|
||
|
euler_init(2) = wrap_pi(_ekf_gsf[model_index].X(2));
|
||
|
|
||
|
// update the rotation matrix
|
||
|
_ahrs_ekf_gsf[model_index].R = Dcmf(euler_init);
|
||
|
|
||
|
} else {
|
||
|
// Calculate the 312 Tait-Bryan rotation sequence that rotates from earth to body frame
|
||
|
Vector3f rot312;
|
||
|
rot312(0) = wrap_pi(_ekf_gsf[model_index].X(2)); // first rotation (yaw) taken from EKF model state
|
||
|
rot312(1) = asinf(_ahrs_ekf_gsf[model_index].R(2, 1)); // second rotation (roll)
|
||
|
rot312(2) = atan2f(-_ahrs_ekf_gsf[model_index].R(2, 0), _ahrs_ekf_gsf[model_index].R(2, 2)); // third rotation (pitch)
|
||
|
|
||
|
// Calculate the body to earth frame rotation matrix
|
||
|
_ahrs_ekf_gsf[model_index].R = taitBryan312ToRotMat(rot312);
|
||
|
|
||
|
}
|
||
|
_ahrs_ekf_gsf[model_index].aligned = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::predictEKF(const uint8_t model_index)
|
||
|
{
|
||
|
// generate an attitude reference using IMU data
|
||
|
ahrsPredict(model_index);
|
||
|
|
||
|
// we don't start running the EKF part of the algorithm until there are regular velocity observations
|
||
|
if (!_ekf_gsf_vel_fuse_started) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Calculate the yaw state using a projection onto the horizontal that avoids gimbal lock
|
||
|
if (fabsf(_ahrs_ekf_gsf[model_index].R(2, 0)) < fabsf(_ahrs_ekf_gsf[model_index].R(2, 1))) {
|
||
|
// use 321 Tait-Bryan rotation to define yaw state
|
||
|
_ekf_gsf[model_index].X(2) = atan2f(_ahrs_ekf_gsf[model_index].R(1, 0), _ahrs_ekf_gsf[model_index].R(0, 0));
|
||
|
} else {
|
||
|
// use 312 Tait-Bryan rotation to define yaw state
|
||
|
_ekf_gsf[model_index].X(2) = atan2f(-_ahrs_ekf_gsf[model_index].R(0, 1), _ahrs_ekf_gsf[model_index].R(1, 1)); // first rotation (yaw)
|
||
|
}
|
||
|
|
||
|
// calculate delta velocity in a horizontal front-right frame
|
||
|
const Vector3f del_vel_NED = _ahrs_ekf_gsf[model_index].R * _delta_vel;
|
||
|
const float dvx = del_vel_NED(0) * cosf(_ekf_gsf[model_index].X(2)) + del_vel_NED(1) * sinf(_ekf_gsf[model_index].X(2));
|
||
|
const float dvy = - del_vel_NED(0) * sinf(_ekf_gsf[model_index].X(2)) + del_vel_NED(1) * cosf(_ekf_gsf[model_index].X(2));
|
||
|
|
||
|
// sum delta velocities in earth frame:
|
||
|
_ekf_gsf[model_index].X(0) += del_vel_NED(0);
|
||
|
_ekf_gsf[model_index].X(1) += del_vel_NED(1);
|
||
|
|
||
|
// predict covariance - autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPupdate.txt
|
||
|
|
||
|
// Local short variable name copies required for readability
|
||
|
// Compiler might be smart enough to optimise these out
|
||
|
const float &P00 = _ekf_gsf[model_index].P(0,0);
|
||
|
const float &P01 = _ekf_gsf[model_index].P(0,1);
|
||
|
const float &P02 = _ekf_gsf[model_index].P(0,2);
|
||
|
const float &P10 = _ekf_gsf[model_index].P(1,0);
|
||
|
const float &P11 = _ekf_gsf[model_index].P(1,1);
|
||
|
const float &P12 = _ekf_gsf[model_index].P(1,2);
|
||
|
const float &P20 = _ekf_gsf[model_index].P(2,0);
|
||
|
const float &P21 = _ekf_gsf[model_index].P(2,1);
|
||
|
const float &P22 = _ekf_gsf[model_index].P(2,2);
|
||
|
|
||
|
// Use fixed values for delta velocity and delta angle process noise variances
|
||
|
const float dvxVar = sq(_accel_noise * _delta_vel_dt); // variance of forward delta velocity - (m/s)^2
|
||
|
const float dvyVar = dvxVar; // variance of right delta velocity - (m/s)^2
|
||
|
const float dazVar = sq(_gyro_noise * _delta_ang_dt); // variance of yaw delta angle - rad^2
|
||
|
|
||
|
const float t2 = sinf(_ekf_gsf[model_index].X(2));
|
||
|
const float t3 = cosf(_ekf_gsf[model_index].X(2));
|
||
|
const float t4 = dvy*t3;
|
||
|
const float t5 = dvx*t2;
|
||
|
const float t6 = t4+t5;
|
||
|
const float t8 = P22*t6;
|
||
|
const float t7 = P02-t8;
|
||
|
const float t9 = dvx*t3;
|
||
|
const float t11 = dvy*t2;
|
||
|
const float t10 = t9-t11;
|
||
|
const float t12 = dvxVar*t2*t3;
|
||
|
const float t13 = t2*t2;
|
||
|
const float t14 = t3*t3;
|
||
|
const float t15 = P22*t10;
|
||
|
const float t16 = P12+t15;
|
||
|
|
||
|
const float min_var = 1e-6f;
|
||
|
_ekf_gsf[model_index].P(0,0) = fmaxf(P00-P20*t6+dvxVar*t14+dvyVar*t13-t6*t7 , min_var);
|
||
|
_ekf_gsf[model_index].P(0,1) = P01+t12-P21*t6+t7*t10-dvyVar*t2*t3;
|
||
|
_ekf_gsf[model_index].P(0,2) = t7;
|
||
|
_ekf_gsf[model_index].P(1,0) = P10+t12+P20*t10-t6*t16-dvyVar*t2*t3;
|
||
|
_ekf_gsf[model_index].P(1,1) = fmaxf(P11+P21*t10+dvxVar*t13+dvyVar*t14+t10*t16 , min_var);
|
||
|
_ekf_gsf[model_index].P(1,2) = t16;
|
||
|
_ekf_gsf[model_index].P(2,0) = P20-t8;
|
||
|
_ekf_gsf[model_index].P(2,1) = P21+t15;
|
||
|
_ekf_gsf[model_index].P(2,2) = fmaxf(P22+dazVar , min_var);
|
||
|
|
||
|
// force symmetry
|
||
|
_ekf_gsf[model_index].P.makeBlockSymmetric<3>(0);
|
||
|
}
|
||
|
|
||
|
// Update EKF states and covariance for specified model index using velocity measurement
|
||
|
bool EKFGSF_yaw::updateEKF(const uint8_t model_index)
|
||
|
{
|
||
|
// set observation variance from accuracy estimate supplied by GPS and apply a sanity check minimum
|
||
|
const float velObsVar = sq(fmaxf(_vel_accuracy, 0.5f));
|
||
|
|
||
|
// calculate velocity observation innovations
|
||
|
_ekf_gsf[model_index].innov(0) = _ekf_gsf[model_index].X(0) - _vel_NE(0);
|
||
|
_ekf_gsf[model_index].innov(1) = _ekf_gsf[model_index].X(1) - _vel_NE(1);
|
||
|
|
||
|
// Use temporary variables for covariance elements to reduce verbosity of auto-code expressions
|
||
|
const float &P00 = _ekf_gsf[model_index].P(0,0);
|
||
|
const float &P01 = _ekf_gsf[model_index].P(0,1);
|
||
|
const float &P02 = _ekf_gsf[model_index].P(0,2);
|
||
|
const float &P10 = _ekf_gsf[model_index].P(1,0);
|
||
|
const float &P11 = _ekf_gsf[model_index].P(1,1);
|
||
|
const float &P12 = _ekf_gsf[model_index].P(1,2);
|
||
|
const float &P20 = _ekf_gsf[model_index].P(2,0);
|
||
|
const float &P21 = _ekf_gsf[model_index].P(2,1);
|
||
|
const float &P22 = _ekf_gsf[model_index].P(2,2);
|
||
|
|
||
|
// calculate innovation variance
|
||
|
_ekf_gsf[model_index].S(0,0) = P00 + velObsVar;
|
||
|
_ekf_gsf[model_index].S(1,1) = P11 + velObsVar;
|
||
|
_ekf_gsf[model_index].S(0,1) = P01;
|
||
|
_ekf_gsf[model_index].S(1,0) = P10;
|
||
|
|
||
|
// Update the inverse of the innovation covariance matrix S_inverse
|
||
|
updateInnovCovMatInv(model_index);
|
||
|
|
||
|
// Perform a chi-square innovation consistency test and calculate a compression scale factor that limits the magnitude of innovations to 5-sigma
|
||
|
float innov_comp_scale_factor = 1.0f;
|
||
|
|
||
|
// test ratio = transpose(innovation) * inverse(innovation variance) * innovation = [1x2] * [2,2] * [2,1] = [1,1]
|
||
|
const float test_ratio = _ekf_gsf[model_index].innov * (_ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov);
|
||
|
|
||
|
// If the test ratio is greater than 25 (5 Sigma) then reduce the length of the innovation vector to clip it at 5-Sigma
|
||
|
// This protects from large measurement spikes
|
||
|
if (test_ratio > 25.0f) {
|
||
|
innov_comp_scale_factor = sqrtf(25.0f / test_ratio);
|
||
|
}
|
||
|
|
||
|
// calculate Kalman gain K nd covariance matrix P
|
||
|
// autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcK.txt
|
||
|
// and https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPmat.txt
|
||
|
const float t2 = P00*velObsVar;
|
||
|
const float t3 = P11*velObsVar;
|
||
|
const float t4 = velObsVar*velObsVar;
|
||
|
const float t5 = P00*P11;
|
||
|
const float t9 = P01*P10;
|
||
|
const float t6 = t2+t3+t4+t5-t9;
|
||
|
float t7;
|
||
|
if (fabsf(t6) > 1e-6f) {
|
||
|
t7 = 1.0f/t6;
|
||
|
} else {
|
||
|
// skip this fusion step
|
||
|
return false;
|
||
|
}
|
||
|
const float t8 = P11+velObsVar;
|
||
|
const float t10 = P00+velObsVar;
|
||
|
|
||
|
matrix::Matrix<float, 3, 2> K;
|
||
|
K(0,0) = -P01*P10*t7+P00*t7*t8;
|
||
|
K(0,1) = -P00*P01*t7+P01*t7*t10;
|
||
|
K(1,0) = -P10*P11*t7+P10*t7*t8;
|
||
|
K(1,1) = -P01*P10*t7+P11*t7*t10;
|
||
|
K(2,0) = -P10*P21*t7+P20*t7*t8;
|
||
|
K(2,1) = -P01*P20*t7+P21*t7*t10;
|
||
|
|
||
|
const float t11 = P00*P01*t7;
|
||
|
const float t15 = P01*t7*t10;
|
||
|
const float t12 = t11-t15;
|
||
|
const float t13 = P01*P10*t7;
|
||
|
const float t16 = P00*t7*t8;
|
||
|
const float t14 = t13-t16;
|
||
|
const float t17 = t8*t12;
|
||
|
const float t18 = P01*t14;
|
||
|
const float t19 = t17+t18;
|
||
|
const float t20 = t10*t14;
|
||
|
const float t21 = P10*t12;
|
||
|
const float t22 = t20+t21;
|
||
|
const float t27 = P11*t7*t10;
|
||
|
const float t23 = t13-t27;
|
||
|
const float t24 = P10*P11*t7;
|
||
|
const float t26 = P10*t7*t8;
|
||
|
const float t25 = t24-t26;
|
||
|
const float t28 = t8*t23;
|
||
|
const float t29 = P01*t25;
|
||
|
const float t30 = t28+t29;
|
||
|
const float t31 = t10*t25;
|
||
|
const float t32 = P10*t23;
|
||
|
const float t33 = t31+t32;
|
||
|
const float t34 = P01*P20*t7;
|
||
|
const float t38 = P21*t7*t10;
|
||
|
const float t35 = t34-t38;
|
||
|
const float t36 = P10*P21*t7;
|
||
|
const float t39 = P20*t7*t8;
|
||
|
const float t37 = t36-t39;
|
||
|
const float t40 = t8*t35;
|
||
|
const float t41 = P01*t37;
|
||
|
const float t42 = t40+t41;
|
||
|
const float t43 = t10*t37;
|
||
|
const float t44 = P10*t35;
|
||
|
const float t45 = t43+t44;
|
||
|
|
||
|
const float min_var = 1e-6f;
|
||
|
_ekf_gsf[model_index].P(0,0) = fmaxf(P00-t12*t19-t14*t22 , min_var);
|
||
|
_ekf_gsf[model_index].P(0,1) = P01-t19*t23-t22*t25;
|
||
|
_ekf_gsf[model_index].P(0,2) = P02-t19*t35-t22*t37;
|
||
|
_ekf_gsf[model_index].P(1,0) = P10-t12*t30-t14*t33;
|
||
|
_ekf_gsf[model_index].P(1,1) = fmaxf(P11-t23*t30-t25*t33 , min_var);
|
||
|
_ekf_gsf[model_index].P(1,2) = P12-t30*t35-t33*t37;
|
||
|
_ekf_gsf[model_index].P(2,0) = P20-t12*t42-t14*t45;
|
||
|
_ekf_gsf[model_index].P(2,1) = P21-t23*t42-t25*t45;
|
||
|
_ekf_gsf[model_index].P(2,2) = fmaxf(P22-t35*t42-t37*t45 , min_var);
|
||
|
|
||
|
// force symmetry
|
||
|
_ekf_gsf[model_index].P.makeBlockSymmetric<3>(0);
|
||
|
|
||
|
// Correct the state vector and capture the change in yaw angle
|
||
|
const float oldYaw = _ekf_gsf[model_index].X(2);
|
||
|
_ekf_gsf[model_index].X -= (K * _ekf_gsf[model_index].innov) * innov_comp_scale_factor;
|
||
|
float yawDelta = _ekf_gsf[model_index].X(2) - oldYaw;
|
||
|
|
||
|
// apply the change in yaw angle to the AHRS
|
||
|
// take advantage of sparseness in the yaw rotation matrix
|
||
|
const float cosYaw = cosf(yawDelta);
|
||
|
const float sinYaw = sinf(yawDelta);
|
||
|
float R_prev[2][3];
|
||
|
memcpy(&R_prev, &_ahrs_ekf_gsf[model_index].R, sizeof(R_prev));
|
||
|
_ahrs_ekf_gsf[model_index].R(0,0) = R_prev[0][0] * cosYaw - R_prev[1][0] * sinYaw;
|
||
|
_ahrs_ekf_gsf[model_index].R(0,1) = R_prev[0][1] * cosYaw - R_prev[1][1] * sinYaw;
|
||
|
_ahrs_ekf_gsf[model_index].R(0,2) = R_prev[0][2] * cosYaw - R_prev[1][2] * sinYaw;
|
||
|
_ahrs_ekf_gsf[model_index].R(1,0) = R_prev[0][0] * sinYaw + R_prev[1][0] * cosYaw;
|
||
|
_ahrs_ekf_gsf[model_index].R(1,1) = R_prev[0][1] * sinYaw + R_prev[1][1] * cosYaw;
|
||
|
_ahrs_ekf_gsf[model_index].R(1,2) = R_prev[0][2] * sinYaw + R_prev[1][2] * cosYaw;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::initialiseEKFGSF()
|
||
|
{
|
||
|
_gsf_yaw = 0.0f;
|
||
|
_ekf_gsf_vel_fuse_started = false;
|
||
|
_gsf_yaw_variance = M_PI_2_F * M_PI_2_F;
|
||
|
memset(&_ekf_gsf, 0, sizeof(_ekf_gsf));
|
||
|
const float yaw_increment = 2.0f * M_PI_F / (float)N_MODELS_EKFGSF;
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
|
||
|
// evenly space initial yaw estimates in the region between +-Pi
|
||
|
_ekf_gsf[model_index].X(2) = -M_PI_F + (0.5f * yaw_increment) + ((float)model_index * yaw_increment);
|
||
|
|
||
|
// All filter models start with the same weight
|
||
|
_ekf_gsf[model_index].W = 1.0f / (float)N_MODELS_EKFGSF;
|
||
|
|
||
|
// take velocity states and corresponding variance from last meaurement
|
||
|
_ekf_gsf[model_index].X(0) = _vel_NE(0);
|
||
|
_ekf_gsf[model_index].X(1) = _vel_NE(1);
|
||
|
_ekf_gsf[model_index].P(0,0) = sq(_vel_accuracy);
|
||
|
_ekf_gsf[model_index].P(1,1) = _ekf_gsf[model_index].P(0,0);
|
||
|
|
||
|
// use half yaw interval for yaw uncertainty
|
||
|
_ekf_gsf[model_index].P(2,2) = sq(0.5f * yaw_increment);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float EKFGSF_yaw::gaussianDensity(const uint8_t model_index) const
|
||
|
{
|
||
|
// calculate inv(S) * innovation
|
||
|
const matrix::Vector2f tempVec = _ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov;
|
||
|
|
||
|
// calculate transpose(innovation) * inv(S) * innovation
|
||
|
// * operator is overloaded to provide a dot product
|
||
|
const float normDist = _ekf_gsf[model_index].innov * tempVec;
|
||
|
|
||
|
return M_TWOPI_INV * sqrtf(_ekf_gsf[model_index].S_det_inverse) * expf(-0.5f * normDist);
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::updateInnovCovMatInv(const uint8_t model_index)
|
||
|
{
|
||
|
// calculate determinant for innovation covariance matrix
|
||
|
const float t2 = _ekf_gsf[model_index].S(0,0) * _ekf_gsf[model_index].S(1,1);
|
||
|
const float t5 = _ekf_gsf[model_index].S(0,1) * _ekf_gsf[model_index].S(1,0);
|
||
|
const float t3 = t2 - t5;
|
||
|
|
||
|
// calculate determinant inverse and protect against badly conditioned matrix
|
||
|
_ekf_gsf[model_index].S_det_inverse = 1.0f / fmaxf(t3 , 1e-12f);
|
||
|
|
||
|
// calculate inv(S)
|
||
|
_ekf_gsf[model_index].S_inverse(0,0) = _ekf_gsf[model_index].S_det_inverse * _ekf_gsf[model_index].S(1,1);
|
||
|
_ekf_gsf[model_index].S_inverse(1,1) = _ekf_gsf[model_index].S_det_inverse * _ekf_gsf[model_index].S(0,0);
|
||
|
_ekf_gsf[model_index].S_inverse(0,1) = - _ekf_gsf[model_index].S_det_inverse * _ekf_gsf[model_index].S(0,1);
|
||
|
_ekf_gsf[model_index].S_inverse(1,0) = - _ekf_gsf[model_index].S_det_inverse * _ekf_gsf[model_index].S(1,0);
|
||
|
|
||
|
}
|
||
|
|
||
|
bool EKFGSF_yaw::getLogData(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF])
|
||
|
{
|
||
|
if (_ekf_gsf_vel_fuse_started) {
|
||
|
*yaw_composite = _gsf_yaw;
|
||
|
*yaw_variance = _gsf_yaw_variance;
|
||
|
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
|
||
|
yaw[model_index] = _ekf_gsf[model_index].X(2);
|
||
|
innov_VN[model_index] = _ekf_gsf[model_index].innov(0);
|
||
|
innov_VE[model_index] = _ekf_gsf[model_index].innov(1);
|
||
|
weight[model_index] = _ekf_gsf[model_index].W;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
Dcmf EKFGSF_yaw::taitBryan312ToRotMat(const Vector3f &rot312)
|
||
|
{
|
||
|
// Calculate the frame2 to frame 1 rotation matrix from a 312 rotation sequence
|
||
|
const float c2 = cosf(rot312(2));
|
||
|
const float s2 = sinf(rot312(2));
|
||
|
const float s1 = sinf(rot312(1));
|
||
|
const float c1 = cosf(rot312(1));
|
||
|
const float s0 = sinf(rot312(0));
|
||
|
const float c0 = cosf(rot312(0));
|
||
|
|
||
|
Dcmf R;
|
||
|
R(0, 0) = c0 * c2 - s0 * s1 * s2;
|
||
|
R(1, 1) = c0 * c1;
|
||
|
R(2, 2) = c2 * c1;
|
||
|
R(0, 1) = -c1 * s0;
|
||
|
R(0, 2) = s2 * c0 + c2 * s1 * s0;
|
||
|
R(1, 0) = c2 * s0 + s2 * s1 * c0;
|
||
|
R(1, 2) = s0 * s2 - s1 * c0 * c2;
|
||
|
R(2, 0) = -s2 * c1;
|
||
|
R(2, 1) = s1;
|
||
|
|
||
|
return R;
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::ahrsCalcAccelGain()
|
||
|
{
|
||
|
// calculate common values used by the AHRS complementary filter models
|
||
|
_ahrs_accel_norm = _ahrs_accel.norm();
|
||
|
|
||
|
// Calculate the acceleration fusion gain using a continuous function that is unity at 1g and zero
|
||
|
// at the min and mas g value. Allow for more acceleration when flying as a fixed wing vehicle using centripetal
|
||
|
// acceleration correction as higher and more sustained g will be experienced.
|
||
|
// Use a quadratic finstead of linear unction to prevent vibration around 1g reducing the tilt correction effectiveness.
|
||
|
float accel_g = _ahrs_accel_norm / CONSTANTS_ONE_G;
|
||
|
if (accel_g > 1.0f) {
|
||
|
if (_true_airspeed > FLT_EPSILON && accel_g < 2.0f) {
|
||
|
_ahrs_accel_fusion_gain = _tilt_gain * sq(2.0f - accel_g);
|
||
|
} else if (accel_g < 1.5f) {
|
||
|
_ahrs_accel_fusion_gain = _tilt_gain * sq(3.0f - 2.0f * accel_g);
|
||
|
} else {
|
||
|
_ahrs_accel_fusion_gain = 0.0f;
|
||
|
}
|
||
|
} else if (accel_g > 0.5f) {
|
||
|
_ahrs_accel_fusion_gain = _tilt_gain * sq(2.0f * accel_g - 1.0f);
|
||
|
} else {
|
||
|
_ahrs_accel_fusion_gain = 0.0f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Matrix3f EKFGSF_yaw::ahrsPredictRotMat(Matrix3f &R, Vector3f &g)
|
||
|
{
|
||
|
Matrix3f ret = R;
|
||
|
ret(0,0) += R(0,1) * g(2) - R(0,2) * g(1);
|
||
|
ret(0,1) += R(0,2) * g(0) - R(0,0) * g(2);
|
||
|
ret(0,2) += R(0,0) * g(1) - R(0,1) * g(0);
|
||
|
ret(1,0) += R(1,1) * g(2) - R(1,2) * g(1);
|
||
|
ret(1,1) += R(1,2) * g(0) - R(1,0) * g(2);
|
||
|
ret(1,2) += R(1,0) * g(1) - R(1,1) * g(0),
|
||
|
ret(2,0) += R(2,1) * g(2) - R(2,2) * g(1);
|
||
|
ret(2,1) += R(2,2) * g(0) - R(2,0) * g(2);
|
||
|
ret(2,2) += R(2,0) * g(1) - R(2,1) * g(0);
|
||
|
|
||
|
// Renormalise rows
|
||
|
float rowLengthSq;
|
||
|
for (uint8_t r = 0; r < 3; r++) {
|
||
|
rowLengthSq = ret.row(r).norm_squared();
|
||
|
if (rowLengthSq > FLT_EPSILON) {
|
||
|
// Use linear approximation for inverse sqrt taking advantage of the row length being close to 1.0
|
||
|
const float rowLengthInv = 1.5f - 0.5f * rowLengthSq;
|
||
|
ret(r,0) *= rowLengthInv;
|
||
|
ret(r,1) *= rowLengthInv;
|
||
|
ret(r,2) *= rowLengthInv;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
bool EKFGSF_yaw::getYawData(float *yaw, float *yaw_variance)
|
||
|
{
|
||
|
if(_ekf_gsf_vel_fuse_started) {
|
||
|
*yaw = _gsf_yaw;
|
||
|
*yaw_variance = _gsf_yaw_variance;
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void EKFGSF_yaw::setVelocity(Vector2f velocity, float accuracy)
|
||
|
{
|
||
|
_vel_NE = velocity;
|
||
|
_vel_accuracy = accuracy;
|
||
|
_vel_data_updated = true;
|
||
|
}
|