You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

657 lines
0 B

EKF: Add Emergency yaw recovery using EKF-GSF estimator (#766) * EKF: Use common rate vector calculation for offset corrections * EKF: Remove duplicate matrix entry calculations * EKF: Create a EKF-GSF yaw estimator class * EKF: add emergency yaw reset functionality * EKF: remove un-used function * EKF: Ensure required constants are defined for all builds * EKF: Fix CI build error * Revert "EKF: remove un-used function" This reverts commit 93005309c7f3794414ad99c86218b3062e00bbd3. * EKF: Replace in-lined Tait-Bryan 312 conversions with function call Also remove unnecessary operations * EKF: Remove unnecessary update of external vision rotation matrix * EKF: Use const * EKF: use const * EKF: don't use class variable as a temporary variable * EKF: update comments * EKF: Improve efficiency of yaw reset Use conversion from rotation matrix to Euler angles instead of quaternion to euler angles. * EKF: use const * EKF: remove un-used struct element * EKF: more descriptive function name * EKF: use existing matrix row operator * EKF: remove unnecessary rotation matrix update * EKF: Use square matrix type * EKF: Improve protection for bad innovation covariance * EKF: Use matrix library operations * EKF: Replace memcpy with better alternative memcpy bypasses compiler sanity checks and is unnecessary in this instance. * EKF: Split EKF-GSF yaw reset function Adds a common function to support yaw reset that can be used elsewhere. * EKF: Use common function for quaternion state and covariance yaw reset * EKF: Replace inlined matrix operation * EKF: Use const * EKF: Change accessor function name * EKF: Use const * EKF: Don't create unnecessary duplicate variable locations * EKF: Remove duplicate covariance innovation inverse * EKF: Don't create unnecessary duplicate variable locations * EKF: Rely on geo library to provide gravity * EKF: Improve protection from bad updates * EKF: Reduce effect of vibration on yaw estimator AHRS * EKF: Improve yaw estimator AHRS accuracy during manoeuvre transients
5 years ago
#include "EKFGSF_yaw.h"
#include <cstdlib>
EKFGSF_yaw::EKFGSF_yaw()
{
// this flag must be false when we start
_ahrs_ekf_gsf_tilt_aligned = false;
// these objects are initialised in initialise() before being used internally, but can be reported for logging before then
memset(&_ahrs_ekf_gsf, 0, sizeof(_ahrs_ekf_gsf));
memset(&_ekf_gsf, 0, sizeof(_ekf_gsf));
_gsf_yaw = 0.0f;
_ahrs_accel.zero();
}
void EKFGSF_yaw::update(const Vector3f del_ang, // IMU delta angle rotation vector meassured in body frame (rad)
const Vector3f del_vel, // IMU delta velocity vector meassured in body frame (m/s)
const float del_ang_dt, // time interval that del_ang was integrated over (sec)
const float del_vel_dt, // time interval that del_vel was integrated over (sec)
bool run_EKF, // set to true when flying or movement is suitable for yaw estimation
float airspeed) // true airspeed used for centripetal accel compensation - set to 0 when not required.
{
// copy to class variables
_delta_ang = del_ang;
_delta_vel = del_vel;
_delta_ang_dt = del_ang_dt;
_delta_vel_dt = del_vel_dt;
_run_ekf_gsf = run_EKF;
_true_airspeed = airspeed;
// to reduce effect of vibration, filter using an LPF whose time constant is 1/10 of the AHRS tilt correction time constant
const float filter_coef = fminf(10.0f * _delta_vel_dt * _tilt_gain, 1.0f);
const Vector3f accel = _delta_vel / fmaxf(_delta_vel_dt, 0.001f);
_ahrs_accel = _ahrs_accel * (1.0f - filter_coef) + accel * filter_coef;
// Initialise states first time
if (!_ahrs_ekf_gsf_tilt_aligned) {
// check for excessive acceleration to reduce likelihood of large inital roll/pitch errors
// due to vehicle movement
const float accel_norm_sq = accel.norm_squared();
const float upper_accel_limit = CONSTANTS_ONE_G * 1.1f;
const float lower_accel_limit = CONSTANTS_ONE_G * 0.9f;
const bool ok_to_align = (accel_norm_sq > sq(lower_accel_limit)) && (accel_norm_sq < sq(upper_accel_limit));
if (ok_to_align) {
initialiseEKFGSF();
ahrsAlignTilt();
_ahrs_ekf_gsf_tilt_aligned = true;
}
return;
}
// AHRS prediction cycle for each model - this always runs
ahrsCalcAccelGain();
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
predictEKF(model_index);
}
// The 3-state EKF models only run when flying to avoid corrupted estimates due to operator handling and GPS interference
if (_run_ekf_gsf && _vel_data_updated) {
if (!_ekf_gsf_vel_fuse_started) {
initialiseEKFGSF();
ahrsAlignYaw();
_ekf_gsf_vel_fuse_started = true;
} else {
float total_w = 0.0f;
float newWeight[N_MODELS_EKFGSF];
bool bad_update = false;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
// subsequent measurements are fused as direct state observations
if (!updateEKF(model_index)) {
bad_update = true;
}
}
if (!bad_update) {
// calculate weighting for each model assuming a normal distribution
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
newWeight[model_index] = fmaxf(gaussianDensity(model_index) * _ekf_gsf[model_index].W, 0.0f);
total_w += newWeight[model_index];
}
// normalise the weighting function
if (_ekf_gsf_vel_fuse_started && total_w > 1e-15f && !bad_update) {
float total_w_inv = 1.0f / total_w;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
_ekf_gsf[model_index].W = newWeight[model_index] * total_w_inv;
}
}
// Enforce a minimum weighting value. This was added during initial development but has not been needed
// subsequently, so this block of code and the corresponding _weight_min can be removed if we get
// through testing without any weighting function issues.
if (_weight_min > FLT_EPSILON) {
float correction_sum = 0.0f; // amount the sum of weights has been increased by application of the limit
bool change_mask[N_MODELS_EKFGSF] = {}; // true when the weighting for that model has been increased
float unmodified_weights_sum = 0.0f; // sum of unmodified weights
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
if (_ekf_gsf[model_index].W < _weight_min) {
correction_sum += _weight_min - _ekf_gsf[model_index].W;
_ekf_gsf[model_index].W = _weight_min;
change_mask[model_index] = true;
} else {
unmodified_weights_sum += _ekf_gsf[model_index].W;
}
}
// rescale the unmodified weights to make the total sum unity
const float scale_factor = (unmodified_weights_sum - correction_sum - _weight_min) / (unmodified_weights_sum - _weight_min);
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
if (!change_mask[model_index]) {
_ekf_gsf[model_index].W = _weight_min + scale_factor * (_ekf_gsf[model_index].W - _weight_min);
}
}
}
}
}
} else if (_ekf_gsf_vel_fuse_started && !_run_ekf_gsf) {
// wait to fly again
_ekf_gsf_vel_fuse_started = false;
}
// Calculate a composite yaw vector as a weighted average of the states for each model.
// To avoid issues with angle wrapping, the yaw state is converted to a vector with legnth
// equal to the weighting value before it is summed.
Vector2f yaw_vector = {};
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
yaw_vector(0) += _ekf_gsf[model_index].W * cosf(_ekf_gsf[model_index].X(2));
yaw_vector(1) += _ekf_gsf[model_index].W * sinf(_ekf_gsf[model_index].X(2));
}
_gsf_yaw = atan2f(yaw_vector(1),yaw_vector(0));
// calculate a composite variance for the yaw state from a weighted average of the variance for each model
// models with larger innovations are weighted less
_gsf_yaw_variance = 0.0f;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index ++) {
float yaw_delta = wrap_pi(_ekf_gsf[model_index].X(2) - _gsf_yaw);
_gsf_yaw_variance += _ekf_gsf[model_index].W * (_ekf_gsf[model_index].P(2,2) + yaw_delta * yaw_delta);
}
// prevent the same velocity data being used more than once
_vel_data_updated = false;
}
void EKFGSF_yaw::ahrsPredict(const uint8_t model_index)
{
// generate attitude solution using simple complementary filter for the selected model
Vector3f ang_rate = _delta_ang / fmaxf(_delta_ang_dt, 0.001f) - _ahrs_ekf_gsf[model_index].gyro_bias;
// Accelerometer correction
// Project 'k' unit vector of earth frame to body frame
// Vector3f k = quaterion.conjugate_inversed(Vector3f(0.0f, 0.0f, 1.0f));
// Optimized version with dropped zeros
const Vector3f k(_ahrs_ekf_gsf[model_index].R(2,0), _ahrs_ekf_gsf[model_index].R(2,1), _ahrs_ekf_gsf[model_index].R(2,2));
// Perform angular rate correction using accel data and reduce correction as accel magnitude moves away from 1 g (reduces drift when vehicle picked up and moved).
// During fixed wing flight, compensate for centripetal acceleration assuming coordinated turns and X axis forward
Vector3f tilt_correction = {};
if (_ahrs_accel_fusion_gain > 0.0f) {
Vector3f accel = _ahrs_accel;
if (_true_airspeed > FLT_EPSILON) {
// turn rate is component of gyro rate about vertical (down) axis
const float turn_rate = _ahrs_ekf_gsf[model_index].R(2,0) * ang_rate(0)
+ _ahrs_ekf_gsf[model_index].R(2,1) * ang_rate(1)
+ _ahrs_ekf_gsf[model_index].R(2,2) * ang_rate(2);
// use measured airspeed to calculate centripetal acceleration if available
float centripetal_accel = _true_airspeed * turn_rate;
// project Y body axis onto horizontal and multiply by centripetal acceleration to give estimated
// centripetal acceleration vector in earth frame due to coordinated turn
Vector3f centripetal_accel_vec_ef = {_ahrs_ekf_gsf[model_index].R(0,1), _ahrs_ekf_gsf[model_index].R(1,1), 0.0f};
if (_ahrs_ekf_gsf[model_index].R(2,2) > 0.0f) {
// vehicle is upright
centripetal_accel_vec_ef *= centripetal_accel;
} else {
// vehicle is inverted
centripetal_accel_vec_ef *= - centripetal_accel;
}
// rotate into body frame
Vector3f centripetal_accel_vec_bf = _ahrs_ekf_gsf[model_index].R.transpose() * centripetal_accel_vec_ef;
// correct measured accel for centripetal acceleration
accel -= centripetal_accel_vec_bf;
}
tilt_correction = (k % accel) * _ahrs_accel_fusion_gain / _ahrs_accel_norm;
}
// Gyro bias estimation
const float gyro_bias_limit = 0.05f;
const float spinRate = ang_rate.length();
if (spinRate < 0.175f) {
_ahrs_ekf_gsf[model_index].gyro_bias -= tilt_correction * (_gyro_bias_gain * _delta_ang_dt);
for (int i = 0; i < 3; i++) {
_ahrs_ekf_gsf[model_index].gyro_bias(i) = math::constrain(_ahrs_ekf_gsf[model_index].gyro_bias(i), -gyro_bias_limit, gyro_bias_limit);
}
}
// delta angle from previous to current frame
Vector3f delta_angle_corrected = _delta_ang + (tilt_correction - _ahrs_ekf_gsf[model_index].gyro_bias) * _delta_ang_dt;
// Apply delta angle to rotation matrix
_ahrs_ekf_gsf[model_index].R = ahrsPredictRotMat(_ahrs_ekf_gsf[model_index].R, delta_angle_corrected);
}
void EKFGSF_yaw::ahrsAlignTilt()
{
// Rotation matrix is constructed directly from acceleration measurement and will be the same for
// all models so only need to calculate it once. Assumptions are:
// 1) Yaw angle is zero - yaw is aligned later for each model when velocity fusion commences.
// 2) The vehicle is not accelerating so all of the measured acceleration is due to gravity.
// Calculate earth frame Down axis unit vector rotated into body frame
Vector3f down_in_bf = -_delta_vel;
down_in_bf.normalize();
// Calculate earth frame North axis unit vector rotated into body frame, orthogonal to 'down_in_bf'
// * operator is overloaded to provide a dot product
const Vector3f i_vec_bf(1.0f,0.0f,0.0f);
Vector3f north_in_bf = i_vec_bf - down_in_bf * (i_vec_bf * down_in_bf);
north_in_bf.normalize();
// Calculate earth frame East axis unit vector rotated into body frame, orthogonal to 'down_in_bf' and 'north_in_bf'
// % operator is overloaded to provide a cross product
const Vector3f east_in_bf = down_in_bf % north_in_bf;
// Each column in a rotation matrix from earth frame to body frame represents the projection of the
// corresponding earth frame unit vector rotated into the body frame, eg 'north_in_bf' would be the first column.
// We need the rotation matrix from body frame to earth frame so the earth frame unit vectors rotated into body
// frame are copied into corresponding rows instead.
Dcmf R;
R.setRow(0, north_in_bf);
R.setRow(1, east_in_bf);
R.setRow(2, down_in_bf);
}
void EKFGSF_yaw::ahrsAlignYaw()
{
// Align yaw angle for each model
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
if (fabsf(_ahrs_ekf_gsf[model_index].R(2, 0)) < fabsf(_ahrs_ekf_gsf[model_index].R(2, 1))) {
// get the roll, pitch, yaw estimates from the rotation matrix using a 321 Tait-Bryan rotation sequence
Eulerf euler_init(_ahrs_ekf_gsf[model_index].R);
// set the yaw angle
euler_init(2) = wrap_pi(_ekf_gsf[model_index].X(2));
// update the rotation matrix
_ahrs_ekf_gsf[model_index].R = Dcmf(euler_init);
} else {
// Calculate the 312 Tait-Bryan rotation sequence that rotates from earth to body frame
Vector3f rot312;
rot312(0) = wrap_pi(_ekf_gsf[model_index].X(2)); // first rotation (yaw) taken from EKF model state
rot312(1) = asinf(_ahrs_ekf_gsf[model_index].R(2, 1)); // second rotation (roll)
rot312(2) = atan2f(-_ahrs_ekf_gsf[model_index].R(2, 0), _ahrs_ekf_gsf[model_index].R(2, 2)); // third rotation (pitch)
// Calculate the body to earth frame rotation matrix
_ahrs_ekf_gsf[model_index].R = taitBryan312ToRotMat(rot312);
}
_ahrs_ekf_gsf[model_index].aligned = true;
}
}
void EKFGSF_yaw::predictEKF(const uint8_t model_index)
{
// generate an attitude reference using IMU data
ahrsPredict(model_index);
// we don't start running the EKF part of the algorithm until there are regular velocity observations
if (!_ekf_gsf_vel_fuse_started) {
return;
}
// Calculate the yaw state using a projection onto the horizontal that avoids gimbal lock
if (fabsf(_ahrs_ekf_gsf[model_index].R(2, 0)) < fabsf(_ahrs_ekf_gsf[model_index].R(2, 1))) {
// use 321 Tait-Bryan rotation to define yaw state
_ekf_gsf[model_index].X(2) = atan2f(_ahrs_ekf_gsf[model_index].R(1, 0), _ahrs_ekf_gsf[model_index].R(0, 0));
} else {
// use 312 Tait-Bryan rotation to define yaw state
_ekf_gsf[model_index].X(2) = atan2f(-_ahrs_ekf_gsf[model_index].R(0, 1), _ahrs_ekf_gsf[model_index].R(1, 1)); // first rotation (yaw)
}
// calculate delta velocity in a horizontal front-right frame
const Vector3f del_vel_NED = _ahrs_ekf_gsf[model_index].R * _delta_vel;
const float dvx = del_vel_NED(0) * cosf(_ekf_gsf[model_index].X(2)) + del_vel_NED(1) * sinf(_ekf_gsf[model_index].X(2));
const float dvy = - del_vel_NED(0) * sinf(_ekf_gsf[model_index].X(2)) + del_vel_NED(1) * cosf(_ekf_gsf[model_index].X(2));
// sum delta velocities in earth frame:
_ekf_gsf[model_index].X(0) += del_vel_NED(0);
_ekf_gsf[model_index].X(1) += del_vel_NED(1);
// predict covariance - autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPupdate.txt
// Local short variable name copies required for readability
// Compiler might be smart enough to optimise these out
const float &P00 = _ekf_gsf[model_index].P(0,0);
const float &P01 = _ekf_gsf[model_index].P(0,1);
const float &P02 = _ekf_gsf[model_index].P(0,2);
const float &P10 = _ekf_gsf[model_index].P(1,0);
const float &P11 = _ekf_gsf[model_index].P(1,1);
const float &P12 = _ekf_gsf[model_index].P(1,2);
const float &P20 = _ekf_gsf[model_index].P(2,0);
const float &P21 = _ekf_gsf[model_index].P(2,1);
const float &P22 = _ekf_gsf[model_index].P(2,2);
// Use fixed values for delta velocity and delta angle process noise variances
const float dvxVar = sq(_accel_noise * _delta_vel_dt); // variance of forward delta velocity - (m/s)^2
const float dvyVar = dvxVar; // variance of right delta velocity - (m/s)^2
const float dazVar = sq(_gyro_noise * _delta_ang_dt); // variance of yaw delta angle - rad^2
const float t2 = sinf(_ekf_gsf[model_index].X(2));
const float t3 = cosf(_ekf_gsf[model_index].X(2));
const float t4 = dvy*t3;
const float t5 = dvx*t2;
const float t6 = t4+t5;
const float t8 = P22*t6;
const float t7 = P02-t8;
const float t9 = dvx*t3;
const float t11 = dvy*t2;
const float t10 = t9-t11;
const float t12 = dvxVar*t2*t3;
const float t13 = t2*t2;
const float t14 = t3*t3;
const float t15 = P22*t10;
const float t16 = P12+t15;
const float min_var = 1e-6f;
_ekf_gsf[model_index].P(0,0) = fmaxf(P00-P20*t6+dvxVar*t14+dvyVar*t13-t6*t7 , min_var);
_ekf_gsf[model_index].P(0,1) = P01+t12-P21*t6+t7*t10-dvyVar*t2*t3;
_ekf_gsf[model_index].P(0,2) = t7;
_ekf_gsf[model_index].P(1,0) = P10+t12+P20*t10-t6*t16-dvyVar*t2*t3;
_ekf_gsf[model_index].P(1,1) = fmaxf(P11+P21*t10+dvxVar*t13+dvyVar*t14+t10*t16 , min_var);
_ekf_gsf[model_index].P(1,2) = t16;
_ekf_gsf[model_index].P(2,0) = P20-t8;
_ekf_gsf[model_index].P(2,1) = P21+t15;
_ekf_gsf[model_index].P(2,2) = fmaxf(P22+dazVar , min_var);
// force symmetry
_ekf_gsf[model_index].P.makeBlockSymmetric<3>(0);
}
// Update EKF states and covariance for specified model index using velocity measurement
bool EKFGSF_yaw::updateEKF(const uint8_t model_index)
{
// set observation variance from accuracy estimate supplied by GPS and apply a sanity check minimum
const float velObsVar = sq(fmaxf(_vel_accuracy, 0.5f));
// calculate velocity observation innovations
_ekf_gsf[model_index].innov(0) = _ekf_gsf[model_index].X(0) - _vel_NE(0);
_ekf_gsf[model_index].innov(1) = _ekf_gsf[model_index].X(1) - _vel_NE(1);
// Use temporary variables for covariance elements to reduce verbosity of auto-code expressions
const float &P00 = _ekf_gsf[model_index].P(0,0);
const float &P01 = _ekf_gsf[model_index].P(0,1);
const float &P02 = _ekf_gsf[model_index].P(0,2);
const float &P10 = _ekf_gsf[model_index].P(1,0);
const float &P11 = _ekf_gsf[model_index].P(1,1);
const float &P12 = _ekf_gsf[model_index].P(1,2);
const float &P20 = _ekf_gsf[model_index].P(2,0);
const float &P21 = _ekf_gsf[model_index].P(2,1);
const float &P22 = _ekf_gsf[model_index].P(2,2);
// calculate innovation variance
_ekf_gsf[model_index].S(0,0) = P00 + velObsVar;
_ekf_gsf[model_index].S(1,1) = P11 + velObsVar;
_ekf_gsf[model_index].S(0,1) = P01;
_ekf_gsf[model_index].S(1,0) = P10;
// Update the inverse of the innovation covariance matrix S_inverse
updateInnovCovMatInv(model_index);
// Perform a chi-square innovation consistency test and calculate a compression scale factor that limits the magnitude of innovations to 5-sigma
float innov_comp_scale_factor = 1.0f;
// test ratio = transpose(innovation) * inverse(innovation variance) * innovation = [1x2] * [2,2] * [2,1] = [1,1]
const float test_ratio = _ekf_gsf[model_index].innov * (_ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov);
// If the test ratio is greater than 25 (5 Sigma) then reduce the length of the innovation vector to clip it at 5-Sigma
// This protects from large measurement spikes
if (test_ratio > 25.0f) {
innov_comp_scale_factor = sqrtf(25.0f / test_ratio);
}
// calculate Kalman gain K nd covariance matrix P
// autocode from https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcK.txt
// and https://github.com/priseborough/3_state_filter/blob/flightLogReplay-wip/calcPmat.txt
const float t2 = P00*velObsVar;
const float t3 = P11*velObsVar;
const float t4 = velObsVar*velObsVar;
const float t5 = P00*P11;
const float t9 = P01*P10;
const float t6 = t2+t3+t4+t5-t9;
float t7;
if (fabsf(t6) > 1e-6f) {
t7 = 1.0f/t6;
} else {
// skip this fusion step
return false;
}
const float t8 = P11+velObsVar;
const float t10 = P00+velObsVar;
matrix::Matrix<float, 3, 2> K;
K(0,0) = -P01*P10*t7+P00*t7*t8;
K(0,1) = -P00*P01*t7+P01*t7*t10;
K(1,0) = -P10*P11*t7+P10*t7*t8;
K(1,1) = -P01*P10*t7+P11*t7*t10;
K(2,0) = -P10*P21*t7+P20*t7*t8;
K(2,1) = -P01*P20*t7+P21*t7*t10;
const float t11 = P00*P01*t7;
const float t15 = P01*t7*t10;
const float t12 = t11-t15;
const float t13 = P01*P10*t7;
const float t16 = P00*t7*t8;
const float t14 = t13-t16;
const float t17 = t8*t12;
const float t18 = P01*t14;
const float t19 = t17+t18;
const float t20 = t10*t14;
const float t21 = P10*t12;
const float t22 = t20+t21;
const float t27 = P11*t7*t10;
const float t23 = t13-t27;
const float t24 = P10*P11*t7;
const float t26 = P10*t7*t8;
const float t25 = t24-t26;
const float t28 = t8*t23;
const float t29 = P01*t25;
const float t30 = t28+t29;
const float t31 = t10*t25;
const float t32 = P10*t23;
const float t33 = t31+t32;
const float t34 = P01*P20*t7;
const float t38 = P21*t7*t10;
const float t35 = t34-t38;
const float t36 = P10*P21*t7;
const float t39 = P20*t7*t8;
const float t37 = t36-t39;
const float t40 = t8*t35;
const float t41 = P01*t37;
const float t42 = t40+t41;
const float t43 = t10*t37;
const float t44 = P10*t35;
const float t45 = t43+t44;
const float min_var = 1e-6f;
_ekf_gsf[model_index].P(0,0) = fmaxf(P00-t12*t19-t14*t22 , min_var);
_ekf_gsf[model_index].P(0,1) = P01-t19*t23-t22*t25;
_ekf_gsf[model_index].P(0,2) = P02-t19*t35-t22*t37;
_ekf_gsf[model_index].P(1,0) = P10-t12*t30-t14*t33;
_ekf_gsf[model_index].P(1,1) = fmaxf(P11-t23*t30-t25*t33 , min_var);
_ekf_gsf[model_index].P(1,2) = P12-t30*t35-t33*t37;
_ekf_gsf[model_index].P(2,0) = P20-t12*t42-t14*t45;
_ekf_gsf[model_index].P(2,1) = P21-t23*t42-t25*t45;
_ekf_gsf[model_index].P(2,2) = fmaxf(P22-t35*t42-t37*t45 , min_var);
// force symmetry
_ekf_gsf[model_index].P.makeBlockSymmetric<3>(0);
// Correct the state vector and capture the change in yaw angle
const float oldYaw = _ekf_gsf[model_index].X(2);
_ekf_gsf[model_index].X -= (K * _ekf_gsf[model_index].innov) * innov_comp_scale_factor;
float yawDelta = _ekf_gsf[model_index].X(2) - oldYaw;
// apply the change in yaw angle to the AHRS
// take advantage of sparseness in the yaw rotation matrix
const float cosYaw = cosf(yawDelta);
const float sinYaw = sinf(yawDelta);
float R_prev[2][3];
memcpy(&R_prev, &_ahrs_ekf_gsf[model_index].R, sizeof(R_prev));
_ahrs_ekf_gsf[model_index].R(0,0) = R_prev[0][0] * cosYaw - R_prev[1][0] * sinYaw;
_ahrs_ekf_gsf[model_index].R(0,1) = R_prev[0][1] * cosYaw - R_prev[1][1] * sinYaw;
_ahrs_ekf_gsf[model_index].R(0,2) = R_prev[0][2] * cosYaw - R_prev[1][2] * sinYaw;
_ahrs_ekf_gsf[model_index].R(1,0) = R_prev[0][0] * sinYaw + R_prev[1][0] * cosYaw;
_ahrs_ekf_gsf[model_index].R(1,1) = R_prev[0][1] * sinYaw + R_prev[1][1] * cosYaw;
_ahrs_ekf_gsf[model_index].R(1,2) = R_prev[0][2] * sinYaw + R_prev[1][2] * cosYaw;
return true;
}
void EKFGSF_yaw::initialiseEKFGSF()
{
_gsf_yaw = 0.0f;
_ekf_gsf_vel_fuse_started = false;
_gsf_yaw_variance = M_PI_2_F * M_PI_2_F;
memset(&_ekf_gsf, 0, sizeof(_ekf_gsf));
const float yaw_increment = 2.0f * M_PI_F / (float)N_MODELS_EKFGSF;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
// evenly space initial yaw estimates in the region between +-Pi
_ekf_gsf[model_index].X(2) = -M_PI_F + (0.5f * yaw_increment) + ((float)model_index * yaw_increment);
// All filter models start with the same weight
_ekf_gsf[model_index].W = 1.0f / (float)N_MODELS_EKFGSF;
// take velocity states and corresponding variance from last meaurement
_ekf_gsf[model_index].X(0) = _vel_NE(0);
_ekf_gsf[model_index].X(1) = _vel_NE(1);
_ekf_gsf[model_index].P(0,0) = sq(_vel_accuracy);
_ekf_gsf[model_index].P(1,1) = _ekf_gsf[model_index].P(0,0);
// use half yaw interval for yaw uncertainty
_ekf_gsf[model_index].P(2,2) = sq(0.5f * yaw_increment);
}
}
float EKFGSF_yaw::gaussianDensity(const uint8_t model_index) const
{
// calculate inv(S) * innovation
const matrix::Vector2f tempVec = _ekf_gsf[model_index].S_inverse * _ekf_gsf[model_index].innov;
// calculate transpose(innovation) * inv(S) * innovation
// * operator is overloaded to provide a dot product
const float normDist = _ekf_gsf[model_index].innov * tempVec;
return M_TWOPI_INV * sqrtf(_ekf_gsf[model_index].S_det_inverse) * expf(-0.5f * normDist);
}
void EKFGSF_yaw::updateInnovCovMatInv(const uint8_t model_index)
{
// calculate determinant for innovation covariance matrix
const float t2 = _ekf_gsf[model_index].S(0,0) * _ekf_gsf[model_index].S(1,1);
const float t5 = _ekf_gsf[model_index].S(0,1) * _ekf_gsf[model_index].S(1,0);
const float t3 = t2 - t5;
// calculate determinant inverse and protect against badly conditioned matrix
_ekf_gsf[model_index].S_det_inverse = 1.0f / fmaxf(t3 , 1e-12f);
// calculate inv(S)
_ekf_gsf[model_index].S_inverse(0,0) = _ekf_gsf[model_index].S_det_inverse * _ekf_gsf[model_index].S(1,1);
_ekf_gsf[model_index].S_inverse(1,1) = _ekf_gsf[model_index].S_det_inverse * _ekf_gsf[model_index].S(0,0);
_ekf_gsf[model_index].S_inverse(0,1) = - _ekf_gsf[model_index].S_det_inverse * _ekf_gsf[model_index].S(0,1);
_ekf_gsf[model_index].S_inverse(1,0) = - _ekf_gsf[model_index].S_det_inverse * _ekf_gsf[model_index].S(1,0);
}
bool EKFGSF_yaw::getLogData(float *yaw_composite, float *yaw_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF])
{
if (_ekf_gsf_vel_fuse_started) {
*yaw_composite = _gsf_yaw;
*yaw_variance = _gsf_yaw_variance;
for (uint8_t model_index = 0; model_index < N_MODELS_EKFGSF; model_index++) {
yaw[model_index] = _ekf_gsf[model_index].X(2);
innov_VN[model_index] = _ekf_gsf[model_index].innov(0);
innov_VE[model_index] = _ekf_gsf[model_index].innov(1);
weight[model_index] = _ekf_gsf[model_index].W;
}
return true;
}
return false;
}
Dcmf EKFGSF_yaw::taitBryan312ToRotMat(const Vector3f &rot312)
{
// Calculate the frame2 to frame 1 rotation matrix from a 312 rotation sequence
const float c2 = cosf(rot312(2));
const float s2 = sinf(rot312(2));
const float s1 = sinf(rot312(1));
const float c1 = cosf(rot312(1));
const float s0 = sinf(rot312(0));
const float c0 = cosf(rot312(0));
Dcmf R;
R(0, 0) = c0 * c2 - s0 * s1 * s2;
R(1, 1) = c0 * c1;
R(2, 2) = c2 * c1;
R(0, 1) = -c1 * s0;
R(0, 2) = s2 * c0 + c2 * s1 * s0;
R(1, 0) = c2 * s0 + s2 * s1 * c0;
R(1, 2) = s0 * s2 - s1 * c0 * c2;
R(2, 0) = -s2 * c1;
R(2, 1) = s1;
return R;
}
void EKFGSF_yaw::ahrsCalcAccelGain()
{
// calculate common values used by the AHRS complementary filter models
_ahrs_accel_norm = _ahrs_accel.norm();
// Calculate the acceleration fusion gain using a continuous function that is unity at 1g and zero
// at the min and mas g value. Allow for more acceleration when flying as a fixed wing vehicle using centripetal
// acceleration correction as higher and more sustained g will be experienced.
// Use a quadratic finstead of linear unction to prevent vibration around 1g reducing the tilt correction effectiveness.
float accel_g = _ahrs_accel_norm / CONSTANTS_ONE_G;
if (accel_g > 1.0f) {
if (_true_airspeed > FLT_EPSILON && accel_g < 2.0f) {
_ahrs_accel_fusion_gain = _tilt_gain * sq(2.0f - accel_g);
} else if (accel_g < 1.5f) {
_ahrs_accel_fusion_gain = _tilt_gain * sq(3.0f - 2.0f * accel_g);
} else {
_ahrs_accel_fusion_gain = 0.0f;
}
} else if (accel_g > 0.5f) {
_ahrs_accel_fusion_gain = _tilt_gain * sq(2.0f * accel_g - 1.0f);
} else {
_ahrs_accel_fusion_gain = 0.0f;
}
}
Matrix3f EKFGSF_yaw::ahrsPredictRotMat(Matrix3f &R, Vector3f &g)
{
Matrix3f ret = R;
ret(0,0) += R(0,1) * g(2) - R(0,2) * g(1);
ret(0,1) += R(0,2) * g(0) - R(0,0) * g(2);
ret(0,2) += R(0,0) * g(1) - R(0,1) * g(0);
ret(1,0) += R(1,1) * g(2) - R(1,2) * g(1);
ret(1,1) += R(1,2) * g(0) - R(1,0) * g(2);
ret(1,2) += R(1,0) * g(1) - R(1,1) * g(0),
ret(2,0) += R(2,1) * g(2) - R(2,2) * g(1);
ret(2,1) += R(2,2) * g(0) - R(2,0) * g(2);
ret(2,2) += R(2,0) * g(1) - R(2,1) * g(0);
// Renormalise rows
float rowLengthSq;
for (uint8_t r = 0; r < 3; r++) {
rowLengthSq = ret.row(r).norm_squared();
if (rowLengthSq > FLT_EPSILON) {
// Use linear approximation for inverse sqrt taking advantage of the row length being close to 1.0
const float rowLengthInv = 1.5f - 0.5f * rowLengthSq;
ret(r,0) *= rowLengthInv;
ret(r,1) *= rowLengthInv;
ret(r,2) *= rowLengthInv;
}
}
return ret;
}
bool EKFGSF_yaw::getYawData(float *yaw, float *yaw_variance)
{
if(_ekf_gsf_vel_fuse_started) {
*yaw = _gsf_yaw;
*yaw_variance = _gsf_yaw_variance;
return true;
}
return false;
}
void EKFGSF_yaw::setVelocity(Vector2f velocity, float accuracy)
{
_vel_NE = velocity;
_vel_accuracy = accuracy;
_vel_data_updated = true;
}