|
|
|
#pragma once
|
|
|
|
|
|
|
|
#include "math.hpp"
|
|
|
|
|
|
|
|
namespace matrix {
|
|
|
|
|
|
|
|
template<typename Type, size_t M, size_t N>
|
|
|
|
int integrate_rk4(
|
|
|
|
Vector<Type, M> (*f)(Type, const Matrix<Type, M, 1> &x, const Matrix<Type, N, 1> & u),
|
|
|
|
const Matrix<Type, M, 1> & y0,
|
|
|
|
const Matrix<Type, N, 1> & u,
|
|
|
|
Type t0,
|
|
|
|
Type tf,
|
|
|
|
Type h0,
|
|
|
|
Matrix<Type, M, 1> & y1
|
|
|
|
)
|
|
|
|
{
|
|
|
|
// https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
|
|
|
|
Type t1 = t0;
|
|
|
|
y1 = y0;
|
|
|
|
Type h = h0;
|
|
|
|
Vector<Type, M> k1, k2, k3, k4;
|
|
|
|
if (tf < t0) return -1; // make sure t1 > t0
|
|
|
|
while (t1 < tf) {
|
|
|
|
if (t1 + h0 < tf) {
|
|
|
|
h = h0;
|
|
|
|
} else {
|
|
|
|
h = tf - t1;
|
|
|
|
}
|
|
|
|
k1 = f(t1, y1, u);
|
|
|
|
k2 = f(t1 + h/2, y1 + k1*h/2, u);
|
|
|
|
k3 = f(t1 + h/2, y1 + k2*h/2, u);
|
|
|
|
k4 = f(t1 + h, y1 + k3*h, u);
|
|
|
|
y1 += (k1 + k2*2 + k3*2 + k4)*(h/6);
|
|
|
|
t1 += h;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace matrix
|
|
|
|
|
|
|
|
// vim: set et fenc=utf-8 ff=unix sts=0 sw=4 ts=4 :
|