You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
142 lines
0 B
142 lines
0 B
5 years ago
|
from pyulog import ULog
|
||
|
import pandas as pd
|
||
|
|
||
|
def getVioData(ulog: ULog) -> pd.DataFrame:
|
||
|
|
||
|
vehicle_visual_odometry = ulog.get_dataset("vehicle_visual_odometry").data
|
||
|
vio = pd.DataFrame({'timestamp': vehicle_visual_odometry['timestamp'],
|
||
|
'sensor' : 'vio',
|
||
|
'x': vehicle_visual_odometry["x"],
|
||
|
'y': vehicle_visual_odometry["y"],
|
||
|
'z': vehicle_visual_odometry["z"],
|
||
|
'qw': vehicle_visual_odometry["q[0]"],
|
||
|
'qx': vehicle_visual_odometry["q[1]"],
|
||
|
'qy': vehicle_visual_odometry["q[2]"],
|
||
|
'qz': vehicle_visual_odometry["q[3]"],
|
||
|
'vx': vehicle_visual_odometry["vx"],
|
||
|
'vy': vehicle_visual_odometry["vy"],
|
||
|
'vz': vehicle_visual_odometry["vz"]
|
||
|
})
|
||
|
return vio
|
||
|
|
||
|
|
||
|
def getOpticalFlowData(ulog: ULog) -> pd.DataFrame:
|
||
|
|
||
|
optical_flow = ulog.get_dataset("optical_flow").data
|
||
|
flow = pd.DataFrame({'timestamp': optical_flow['timestamp'],
|
||
|
'sensor' : 'flow',
|
||
|
'pixel_flow_x_integral': optical_flow["pixel_flow_x_integral"],
|
||
|
'pixel_flow_y_integral': optical_flow["pixel_flow_y_integral"],
|
||
|
'gyro_x_rate_integral': optical_flow["gyro_x_rate_integral"],
|
||
|
'gyro_y_rate_integral': optical_flow["gyro_y_rate_integral"],
|
||
|
'gyro_z_rate_integral': optical_flow["gyro_z_rate_integral"],
|
||
|
'quality': optical_flow["quality"]
|
||
|
})
|
||
|
return flow
|
||
|
|
||
|
|
||
|
def getAirspeedData(ulog: ULog) -> pd.DataFrame:
|
||
|
|
||
|
airspeed = ulog.get_dataset("airspeed").data
|
||
|
airspeed = pd.DataFrame({'timestamp': airspeed['timestamp'],
|
||
|
'sensor' : 'airspeed',
|
||
|
'true_as': airspeed["true_airspeed_m_s"],
|
||
|
'indicated_as': airspeed["indicated_airspeed_m_s"]
|
||
|
})
|
||
|
return airspeed
|
||
|
|
||
|
|
||
|
def getRangeFinderData(ulog: ULog) -> pd.DataFrame:
|
||
|
|
||
|
range = pd.DataFrame()
|
||
|
try:
|
||
|
range_0 = ulog.get_dataset("distance_sensor", 0).data
|
||
|
rng_0 = pd.DataFrame({'timestamp': range_0['timestamp'],
|
||
|
'sensor' : 'range',
|
||
|
'data': range_0["current_distance"],
|
||
|
'quality': range_0["signal_quality"]
|
||
|
})
|
||
|
range = pd.concat([range, rng_0], ignore_index=True, sort=False)
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
try:
|
||
|
range_1 = ulog.get_dataset("distance_sensor", 1).data
|
||
|
rng_1 = pd.DataFrame({'timestamp': range_1['timestamp'],
|
||
|
'sensor' : 'range',
|
||
|
'data': range_1["current_distance"],
|
||
|
'quality': range_1["signal_quality"]
|
||
|
})
|
||
|
range = pd.concat([range, rng_1], ignore_index=True, sort=False)
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
try:
|
||
|
range_2 = ulog.get_dataset("distance_sensor", 2).data
|
||
|
rng_2 = pd.DataFrame({'timestamp': range_2['timestamp'],
|
||
|
'sensor' : 'range',
|
||
|
'data': range_2["current_distance"],
|
||
|
'quality': range_2["signal_quality"]
|
||
|
})
|
||
|
range = pd.concat([range, rng_2], ignore_index=True, sort=False)
|
||
|
except:
|
||
|
pass
|
||
|
|
||
|
return range
|
||
|
|
||
|
|
||
|
def getGpsData(ulog: ULog) -> pd.DataFrame:
|
||
|
|
||
|
vehicle_gps_position = ulog.get_dataset("vehicle_gps_position").data
|
||
|
gps = pd.DataFrame({'timestamp': vehicle_gps_position['timestamp'],
|
||
|
'sensor' : 'gps',
|
||
|
'alt': vehicle_gps_position["alt"],
|
||
|
'lon': vehicle_gps_position["lon"],
|
||
|
'lat': vehicle_gps_position["lat"],
|
||
|
'vel_N': vehicle_gps_position["vel_n_m_s"],
|
||
|
'vel_E': vehicle_gps_position["vel_e_m_s"],
|
||
|
'vel_D': vehicle_gps_position["vel_d_m_s"],
|
||
|
})
|
||
|
return gps
|
||
|
|
||
|
|
||
|
def getBarometerData(ulog: ULog) -> pd.DataFrame:
|
||
|
|
||
|
vehicle_air_data = ulog.get_dataset("vehicle_air_data").data
|
||
|
baro = pd.DataFrame({'timestamp': vehicle_air_data['timestamp'],
|
||
|
'sensor' : 'baro',
|
||
|
'baro_alt_meter': vehicle_air_data["baro_alt_meter"]})
|
||
|
return baro
|
||
|
|
||
|
|
||
|
def getMagnetometerData(ulog: ULog) -> pd.DataFrame:
|
||
|
|
||
|
vehicle_magnetometer = ulog.get_dataset("vehicle_magnetometer").data
|
||
|
mag = pd.DataFrame({'timestamp': vehicle_magnetometer['timestamp'],
|
||
|
'sensor' : 'mag',
|
||
|
'magnetometer_ga[0]': vehicle_magnetometer["magnetometer_ga[0]"],
|
||
|
'magnetometer_ga[1]': vehicle_magnetometer["magnetometer_ga[1]"],
|
||
|
'magnetometer_ga[2]': vehicle_magnetometer["magnetometer_ga[2]"]})
|
||
|
return mag
|
||
|
|
||
|
|
||
|
def getImuData(ulog: ULog) -> pd.DataFrame:
|
||
|
|
||
|
sensor_combined = ulog.get_dataset("sensor_combined").data
|
||
|
imu = pd.DataFrame({'timestamp': sensor_combined['timestamp'],
|
||
|
'sensor' : 'imu',
|
||
|
'accel_m_s2[0]': sensor_combined["accelerometer_m_s2[0]"],
|
||
|
'accel_m_s2[1]': sensor_combined["accelerometer_m_s2[1]"],
|
||
|
'accel_m_s2[2]': sensor_combined["accelerometer_m_s2[2]"],
|
||
|
'gyro_rad[0]': sensor_combined["gyro_rad[0]"],
|
||
|
'gyro_rad[1]': sensor_combined["gyro_rad[1]"],
|
||
|
'gyro_rad[2]': sensor_combined["gyro_rad[2]"]})
|
||
|
return imu
|
||
|
|
||
|
def getVehicleLandingStatus(ulog: ULog) -> pd.DataFrame:
|
||
|
vehicle_land_detected = ulog.get_dataset("vehicle_land_detected").data
|
||
|
land = pd.DataFrame({'timestamp': vehicle_land_detected['timestamp'],
|
||
|
'sensor' : 'landed',
|
||
|
'landed': vehicle_land_detected["landed"]})
|
||
|
return land
|