|
|
|
###############################################################################
|
|
|
|
#
|
|
|
|
# Copyright (c) 2017 Estimation and Control Library (ECL). All rights reserved.
|
|
|
|
#
|
|
|
|
# Redistribution and use in source and binary forms, with or without
|
|
|
|
# modification, are permitted provided that the following conditions
|
|
|
|
# are met:
|
|
|
|
#
|
|
|
|
# 1. Redistributions of source code must retain the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer.
|
|
|
|
# 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
# notice, this list of conditions and the following disclaimer in
|
|
|
|
# the documentation and/or other materials provided with the
|
|
|
|
# distribution.
|
|
|
|
# 3. Neither the name ECL nor the names of its contributors may be
|
|
|
|
# used to endorse or promote products derived from this software
|
|
|
|
# without specific prior written permission.
|
|
|
|
#
|
|
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
|
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
|
|
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
|
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
|
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
|
|
# OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
|
|
# AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
# POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#
|
|
|
|
###############################################################################
|
|
|
|
|
|
|
|
"""Test the altitude estimation of the ecl's EKF
|
|
|
|
|
|
|
|
@author: Peter Dürr <Peter.Duerr@sony.com>
|
|
|
|
"""
|
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import absolute_import
|
|
|
|
|
|
|
|
from collections import namedtuple
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
from hypothesis import given
|
|
|
|
from hypothesis import example
|
|
|
|
from hypothesis import strategies as st
|
|
|
|
|
|
|
|
from test_utils import ecl_EKF
|
|
|
|
from test_utils import update_sensors
|
|
|
|
from test_utils import float_array
|
|
|
|
from test_utils import initialized_ekf
|
|
|
|
|
|
|
|
|
|
|
|
@given(z_bias=st.floats(-0.2, 0.2))
|
|
|
|
@example(0.1)
|
|
|
|
@example(0.2)
|
|
|
|
def test_accel_z_bias_converges(z_bias):
|
|
|
|
"""Make sure the accelerometer bias in z-direction is estimated correctly
|
|
|
|
"""
|
|
|
|
ekf = ecl_EKF.Ekf()
|
|
|
|
|
|
|
|
time_usec = 1000
|
|
|
|
dt_usec = ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000
|
|
|
|
|
|
|
|
# Run for a while
|
|
|
|
n_samples = 10000
|
|
|
|
|
|
|
|
# Prepare data collection for plotting
|
|
|
|
if pytest.ENABLE_PLOTTING: # pylint: disable=no-member
|
|
|
|
plot_data = namedtuple('PlotData', ['time', 'accel_bias', 'altitude'])
|
|
|
|
plot_data.time = np.array([i * dt_usec * 1e-6
|
|
|
|
for i in range(n_samples)])
|
|
|
|
plot_data.accel_bias = np.zeros(n_samples)
|
|
|
|
plot_data.altitude = np.zeros(n_samples)
|
|
|
|
|
|
|
|
# Simulation
|
|
|
|
for i in range(n_samples):
|
|
|
|
update_sensors(ekf,
|
|
|
|
time_usec,
|
|
|
|
dt_usec,
|
|
|
|
accel=float_array([0.0,
|
|
|
|
0.0,
|
|
|
|
-ecl_EKF.one_g + z_bias]))
|
|
|
|
ekf.update()
|
|
|
|
time_usec += dt_usec
|
|
|
|
|
|
|
|
if pytest.ENABLE_PLOTTING: # pylint: disable=no-member
|
|
|
|
plot_data.altitude[i] = ekf.get_position()[2]
|
|
|
|
plot_data.accel_bias[i] = ekf.get_accel_bias()[2]
|
|
|
|
|
|
|
|
# Plot if necessary
|
|
|
|
if pytest.ENABLE_PLOTTING: # pylint: disable=no-member
|
|
|
|
from plot_utils import figure
|
|
|
|
with figure(params={'z_bias': z_bias},
|
|
|
|
subplots=(2, 1)) as (_, (ax1, ax2)):
|
|
|
|
ax1.plot(plot_data.time,
|
|
|
|
plot_data.altitude,
|
|
|
|
label='Altitude Estimate')
|
|
|
|
ax1.legend(loc='best')
|
|
|
|
ax1.set_ylabel('Altitude $[m]$')
|
|
|
|
ax2.plot(plot_data.time,
|
|
|
|
plot_data.accel_bias,
|
|
|
|
label='Accel Z Bias Estimate')
|
|
|
|
ax2.axhline(z_bias, color='k', label='Accel Bias Value')
|
|
|
|
ax2.legend(loc='best')
|
|
|
|
ax2.set_ylabel('Bias $[m / s^2]$')
|
|
|
|
ax2.set_xlabel('Time $[s]$')
|
|
|
|
|
|
|
|
# Check assumptions
|
|
|
|
converged_pos = ekf.get_position()
|
|
|
|
converged_vel = ekf.get_velocity()
|
|
|
|
converged_accel_bias = ekf.get_accel_bias()
|
|
|
|
for i in range(3):
|
|
|
|
assert converged_pos[i] == pytest.approx(0.0, abs=1e-2)
|
|
|
|
assert converged_vel[i] == pytest.approx(0.0, abs=1e-2)
|
|
|
|
for i in range(2):
|
|
|
|
assert converged_accel_bias[i] == pytest.approx(0.0, abs=1e-3)
|
|
|
|
assert converged_accel_bias[2] == pytest.approx(z_bias, abs=1e-2)
|
|
|
|
|
|
|
|
|
|
|
|
@given(altitude=st.floats(0.0, 10.0))
|
|
|
|
@example(0.1)
|
|
|
|
@example(1.0)
|
|
|
|
@example(5.0)
|
|
|
|
@example(10.0)
|
|
|
|
def test_converges_to_baro_altitude(altitude):
|
|
|
|
"""Make sure that the ekf converges to (arbitrary) baro altitudes
|
|
|
|
|
|
|
|
Increase the altitude with a bang-bang acceleration profile to target
|
|
|
|
altitude, then wait there for a while and make sure it converges
|
|
|
|
"""
|
|
|
|
# Due to hypothesis not interacting with pytest, cannot use fixture here
|
|
|
|
ekf, time_usec = initialized_ekf()
|
|
|
|
|
|
|
|
dt_usec = ecl_EKF.Ekf.FILTER_UPDATE_PERIOD_MS * 1000
|
|
|
|
|
|
|
|
# No samples, half are used for ramping up / down to the altitude
|
|
|
|
n_samples = 200
|
|
|
|
|
|
|
|
# Compute smooth acceleration profile
|
|
|
|
rampup_accel = altitude / (((n_samples // 2 // 2) * (dt_usec / 1e6))**2)
|
|
|
|
|
|
|
|
# Prepare data collection for plotting
|
|
|
|
if pytest.ENABLE_PLOTTING: # pylint: disable=no-member
|
|
|
|
plot_data = namedtuple('PlotData', ['time',
|
|
|
|
'baro',
|
|
|
|
'altitude',
|
|
|
|
'accel_z_bias'])
|
|
|
|
plot_data.time = np.array([i * dt_usec * 1e-6
|
|
|
|
for i in range(n_samples)])
|
|
|
|
plot_data.baro = np.zeros(n_samples)
|
|
|
|
plot_data.accel_z_bias = np.zeros(n_samples)
|
|
|
|
plot_data.altitude = np.zeros(n_samples)
|
|
|
|
|
|
|
|
# Simulate
|
|
|
|
current_state = namedtuple('State', ['alt', 'vel'])
|
|
|
|
current_state.alt = 0.0
|
|
|
|
current_state.vel = 0.0
|
|
|
|
for i in range(n_samples // 2):
|
|
|
|
update_sensors(ekf,
|
|
|
|
time_usec,
|
|
|
|
dt_usec,
|
|
|
|
accel=float_array([0,
|
|
|
|
0,
|
|
|
|
-ecl_EKF.one_g - rampup_accel
|
|
|
|
if i < n_samples // 4
|
|
|
|
else -ecl_EKF.one_g + rampup_accel]),
|
|
|
|
baro_data=current_state.alt)
|
|
|
|
ekf.update()
|
|
|
|
|
|
|
|
if pytest.ENABLE_PLOTTING: # pylint: disable=no-member
|
|
|
|
plot_data.baro[i] = current_state.alt
|
|
|
|
plot_data.altitude[i] = -ekf.get_position()[2]
|
|
|
|
plot_data.accel_z_bias[i] = ekf.get_accel_bias()[2]
|
|
|
|
|
|
|
|
# Euler step
|
|
|
|
current_state.vel += (dt_usec / 1e6) * (rampup_accel
|
|
|
|
if i < n_samples // 4
|
|
|
|
else -rampup_accel)
|
|
|
|
current_state.alt += current_state.vel * dt_usec / 1e6
|
|
|
|
time_usec += dt_usec
|
|
|
|
|
|
|
|
# Stay at altitude
|
|
|
|
for i in range(n_samples // 2):
|
|
|
|
update_sensors(ekf, time_usec, dt_usec, baro_data=altitude)
|
|
|
|
ekf.update()
|
|
|
|
time_usec += dt_usec
|
|
|
|
|
|
|
|
if pytest.ENABLE_PLOTTING: # pylint: disable=no-member
|
|
|
|
plot_data.baro[n_samples // 2 + i] = altitude
|
|
|
|
plot_data.altitude[n_samples // 2 + i] = -ekf.get_position()[2]
|
|
|
|
plot_data.accel_z_bias[
|
|
|
|
n_samples // 2 + i] = ekf.get_accel_bias()[2]
|
|
|
|
|
|
|
|
# Plot if necessary
|
|
|
|
if pytest.ENABLE_PLOTTING: # pylint: disable=no-member
|
|
|
|
from plot_utils import figure
|
|
|
|
with figure(params={'altitude': altitude},
|
|
|
|
subplots=(2, 1)) as (_, (ax1, ax2)):
|
|
|
|
ax1.plot(plot_data.time,
|
|
|
|
plot_data.altitude,
|
|
|
|
label='Altitude Estimate')
|
|
|
|
ax1.plot(plot_data.time,
|
|
|
|
plot_data.altitude,
|
|
|
|
label='Baro Input')
|
|
|
|
ax1.legend(loc='best')
|
|
|
|
ax1.set_ylabel('Altitude $[m]$')
|
|
|
|
ax2.plot(plot_data.time,
|
|
|
|
plot_data.accel_z_bias,
|
|
|
|
label='Accel Z Bias Estimate')
|
|
|
|
ax2.legend(loc='best')
|
|
|
|
ax2.set_ylabel('Bias $[m / s^2]$')
|
|
|
|
ax2.set_xlabel('Time $[s]$')
|
|
|
|
# plt.plot(np.array(baro_vs_pos))
|
|
|
|
# plt.show()
|
|
|
|
# print(ekf.get_accel_bias())
|
|
|
|
|
|
|
|
converged_pos = ekf.get_position()
|
|
|
|
converged_vel = ekf.get_velocity()
|
|
|
|
assert converged_pos[0] == pytest.approx(0.0, abs=1e-6)
|
|
|
|
assert converged_pos[1] == pytest.approx(0.0, abs=1e-6)
|
|
|
|
# Check for 10cm level accuracy
|
|
|
|
assert converged_pos[2] == pytest.approx(-altitude, abs=1e-1)
|
|
|
|
assert converged_vel[0] == pytest.approx(0.0, abs=1e-3)
|
|
|
|
assert converged_vel[1] == pytest.approx(0.0, abs=1e-3)
|
|
|
|
assert converged_vel[2] == pytest.approx(0.0, abs=1e-1)
|