You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1589 lines
56 KiB

/****************************************************************************
*
* Copyright (c) 2015 Estimation and Control Library (ECL). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file ekf_helper.cpp
* Definition of ekf helper functions.
*
* @author Roman Bast <bapstroman@gmail.com>
*
*/
#include "ekf.h"
#include <ecl.h>
#include <mathlib/mathlib.h>
#include <cstdlib>
// Reset the velocity states. If we have a recent and valid
// gps measurement then use for velocity initialisation
bool Ekf::resetVelocity()
{
// used to calculate the velocity change due to the reset
Vector3f vel_before_reset = _state.vel;
// reset EKF states
if (_control_status.flags.gps) {
// this reset is only called if we have new gps data at the fusion time horizon
_state.vel = _gps_sample_delayed.vel;
// use GPS accuracy to reset variances
setDiag(P, 4, 6, sq(_gps_sample_delayed.sacc));
EKF: Fix non GPS aiding data reset logic (#418) * EKF: Move optical flow specific state reset to helper functions * EKF: Ensure loss of optical flow aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using flow data as a velocity reference. If flow data is unavailable for too long - declare optical flow use stopped. Use consistent time periods for all resets * EKF: Ensure loss of external vision aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using data as a position. Don't reset velocity if there is another source of aiding constraining it. If data is unavailable for too long, declare external vision use stopped. Use consistent time periods for all resets. * EKF: Update parameter documentation Make the distinction between the no_gps_timeout_max and no_aid_timeout_max parameters clearer * EKF: make class variable units consistent with documentation * EKF: Don't reset states when optical flow use commences if using external vision * EKF: Stop optical flow fusion when on ground if excessive movement is detected. * EKF: fix terrain estimator vulnerabilities Reset estimate to sensor value if rejected for 10 seconds Protect against user motion when on ground. Fix unnecessary duplication of terrain validity check and separate validity update and reporting. * EKF: remove unnecessary Info console prints Optical flow use information can be obtained from the estimator_status.control_mode_flags message * EKF: fix inaccurate comment * EKF: remove duplicate calculation from terrain validity accessor function
7 years ago
} else if (_control_status.flags.opt_flow) {
// constrain height above ground to be above minimum possible
float heightAboveGndEst = fmaxf((_terrain_vpos - _state.pos(2)), _params.rng_gnd_clearance);
// calculate absolute distance from focal point to centre of frame assuming a flat earth
float range = heightAboveGndEst / _R_rng_to_earth_2_2;
if ((range - _params.rng_gnd_clearance) > 0.3f && _flow_sample_delayed.dt > 0.05f) {
// we should have reliable OF measurements so
// calculate X and Y body relative velocities from OF measurements
Vector3f vel_optflow_body;
vel_optflow_body(0) = - range * _flow_sample_delayed.flowRadXYcomp(1) / _flow_sample_delayed.dt;
vel_optflow_body(1) = range * _flow_sample_delayed.flowRadXYcomp(0) / _flow_sample_delayed.dt;
vel_optflow_body(2) = 0.0f;
// rotate from body to earth frame
Vector3f vel_optflow_earth;
vel_optflow_earth = _R_to_earth * vel_optflow_body;
// take x and Y components
_state.vel(0) = vel_optflow_earth(0);
_state.vel(1) = vel_optflow_earth(1);
} else {
_state.vel(0) = 0.0f;
_state.vel(1) = 0.0f;
}
// reset the velocity covariance terms
zeroRows(P, 4, 5);
zeroCols(P, 4, 5);
EKF: Fix non GPS aiding data reset logic (#418) * EKF: Move optical flow specific state reset to helper functions * EKF: Ensure loss of optical flow aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using flow data as a velocity reference. If flow data is unavailable for too long - declare optical flow use stopped. Use consistent time periods for all resets * EKF: Ensure loss of external vision aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using data as a position. Don't reset velocity if there is another source of aiding constraining it. If data is unavailable for too long, declare external vision use stopped. Use consistent time periods for all resets. * EKF: Update parameter documentation Make the distinction between the no_gps_timeout_max and no_aid_timeout_max parameters clearer * EKF: make class variable units consistent with documentation * EKF: Don't reset states when optical flow use commences if using external vision * EKF: Stop optical flow fusion when on ground if excessive movement is detected. * EKF: fix terrain estimator vulnerabilities Reset estimate to sensor value if rejected for 10 seconds Protect against user motion when on ground. Fix unnecessary duplication of terrain validity check and separate validity update and reporting. * EKF: remove unnecessary Info console prints Optical flow use information can be obtained from the estimator_status.control_mode_flags message * EKF: fix inaccurate comment * EKF: remove duplicate calculation from terrain validity accessor function
7 years ago
// reset the horizontal velocity variance using the optical flow noise variance
P[5][5] = P[4][4] = sq(range) * calcOptFlowMeasVar();
} else if (_control_status.flags.ev_pos) {
_state.vel.setZero();
zeroOffDiag(P, 4, 6);
} else {
// Used when falling back to non-aiding mode of operation
_state.vel(0) = 0.0f;
_state.vel(1) = 0.0f;
setDiag(P, 4, 5, 25.0f);
}
// calculate the change in velocity and apply to the output predictor state history
const Vector3f velocity_change = _state.vel - vel_before_reset;
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].vel += velocity_change;
}
// apply the change in velocity to our newest velocity estimate
// which was already taken out from the output buffer
_output_new.vel += velocity_change;
// capture the reset event
_state_reset_status.velNE_change(0) = velocity_change(0);
_state_reset_status.velNE_change(1) = velocity_change(1);
_state_reset_status.velD_change = velocity_change(2);
_state_reset_status.velNE_counter++;
_state_reset_status.velD_counter++;
return true;
}
// Reset position states. If we have a recent and valid
// gps measurement then use for position initialisation
bool Ekf::resetPosition()
{
// used to calculate the position change due to the reset
Vector2f posNE_before_reset;
posNE_before_reset(0) = _state.pos(0);
posNE_before_reset(1) = _state.pos(1);
// let the next odometry update know that the previous value of states cannot be used to calculate the change in position
_hpos_prev_available = false;
if (_control_status.flags.gps) {
// this reset is only called if we have new gps data at the fusion time horizon
_state.pos(0) = _gps_sample_delayed.pos(0);
_state.pos(1) = _gps_sample_delayed.pos(1);
// use GPS accuracy to reset variances
setDiag(P, 7, 8, sq(_gps_sample_delayed.hacc));
} else if (_control_status.flags.ev_pos) {
// this reset is only called if we have new ev data at the fusion time horizon
_state.pos(0) = _ev_sample_delayed.posNED(0);
_state.pos(1) = _ev_sample_delayed.posNED(1);
// use EV accuracy to reset variances
setDiag(P, 7, 8, sq(_ev_sample_delayed.posErr));
EKF: Fix non GPS aiding data reset logic (#418) * EKF: Move optical flow specific state reset to helper functions * EKF: Ensure loss of optical flow aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using flow data as a velocity reference. If flow data is unavailable for too long - declare optical flow use stopped. Use consistent time periods for all resets * EKF: Ensure loss of external vision aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using data as a position. Don't reset velocity if there is another source of aiding constraining it. If data is unavailable for too long, declare external vision use stopped. Use consistent time periods for all resets. * EKF: Update parameter documentation Make the distinction between the no_gps_timeout_max and no_aid_timeout_max parameters clearer * EKF: make class variable units consistent with documentation * EKF: Don't reset states when optical flow use commences if using external vision * EKF: Stop optical flow fusion when on ground if excessive movement is detected. * EKF: fix terrain estimator vulnerabilities Reset estimate to sensor value if rejected for 10 seconds Protect against user motion when on ground. Fix unnecessary duplication of terrain validity check and separate validity update and reporting. * EKF: remove unnecessary Info console prints Optical flow use information can be obtained from the estimator_status.control_mode_flags message * EKF: fix inaccurate comment * EKF: remove duplicate calculation from terrain validity accessor function
7 years ago
} else if (_control_status.flags.opt_flow) {
if (!_control_status.flags.in_air) {
// we are likely starting OF for the first time so reset the horizontal position
_state.pos(0) = 0.0f;
_state.pos(1) = 0.0f;
} else {
// set to the last known position
_state.pos(0) = _last_known_posNE(0);
_state.pos(1) = _last_known_posNE(1);
}
setDiag(P, 7, 8, sq(_params.pos_noaid_noise));
EKF: Fix non GPS aiding data reset logic (#418) * EKF: Move optical flow specific state reset to helper functions * EKF: Ensure loss of optical flow aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using flow data as a velocity reference. If flow data is unavailable for too long - declare optical flow use stopped. Use consistent time periods for all resets * EKF: Ensure loss of external vision aiding is handled correctly If data is only source of aiding and has been rejected for too long - reset using data as a position. Don't reset velocity if there is another source of aiding constraining it. If data is unavailable for too long, declare external vision use stopped. Use consistent time periods for all resets. * EKF: Update parameter documentation Make the distinction between the no_gps_timeout_max and no_aid_timeout_max parameters clearer * EKF: make class variable units consistent with documentation * EKF: Don't reset states when optical flow use commences if using external vision * EKF: Stop optical flow fusion when on ground if excessive movement is detected. * EKF: fix terrain estimator vulnerabilities Reset estimate to sensor value if rejected for 10 seconds Protect against user motion when on ground. Fix unnecessary duplication of terrain validity check and separate validity update and reporting. * EKF: remove unnecessary Info console prints Optical flow use information can be obtained from the estimator_status.control_mode_flags message * EKF: fix inaccurate comment * EKF: remove duplicate calculation from terrain validity accessor function
7 years ago
} else {
// Used when falling back to non-aiding mode of operation
_state.pos(0) = _last_known_posNE(0);
_state.pos(1) = _last_known_posNE(1);
setDiag(P, 7, 8, sq(_params.pos_noaid_noise));
}
// calculate the change in position and apply to the output predictor state history
const Vector2f posNE_change{_state.pos(0) - posNE_before_reset(0), _state.pos(1) - posNE_before_reset(1)};
for (uint8_t index = 0; index < _output_buffer.get_length(); index++) {
_output_buffer[index].pos(0) += posNE_change(0);
_output_buffer[index].pos(1) += posNE_change(1);
}
// apply the change in position to our newest position estimate
// which was already taken out from the output buffer
_output_new.pos(0) += posNE_change(0);
_output_new.pos(1) += posNE_change(1);
// capture the reset event
_state_reset_status.posNE_change = posNE_change;
_state_reset_status.posNE_counter++;
return true;
}
// Reset height state using the last height measurement
void Ekf::resetHeight()
{
// Get the most recent GPS data
const gpsSample &gps_newest = _gps_buffer.get_newest();
// store the current vertical position and velocity for reference so we can calculate and publish the reset amount
float old_vert_pos = _state.pos(2);
bool vert_pos_reset = false;
float old_vert_vel = _state.vel(2);
bool vert_vel_reset = false;
// reset the vertical position
if (_control_status.flags.rng_hgt) {
rangeSample range_newest = _range_buffer.get_newest();
if (_time_last_imu - range_newest.time_us < 2 * RNG_MAX_INTERVAL) {
// correct the range data for position offset relative to the IMU
Vector3f pos_offset_body = _params.rng_pos_body - _params.imu_pos_body;
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body;
range_newest.rng += pos_offset_earth(2) / _R_rng_to_earth_2_2;
// calculate the new vertical position using range sensor
float new_pos_down = _hgt_sensor_offset - range_newest.rng * _R_rng_to_earth_2_2;
// update the state and assoicated variance
_state.pos(2) = new_pos_down;
// reset the associated covariance values
zeroRows(P, 9, 9);
zeroCols(P, 9, 9);
// the state variance is the same as the observation
P[9][9] = sq(_params.range_noise);
vert_pos_reset = true;
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup
const baroSample &baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt + _state.pos(2);
} else {
// TODO: reset to last known range based estimate
}
} else if (_control_status.flags.baro_hgt) {
// initialize vertical position with newest baro measurement
const baroSample &baro_newest = _baro_buffer.get_newest();
if (_time_last_imu - baro_newest.time_us < 2 * BARO_MAX_INTERVAL) {
_state.pos(2) = _hgt_sensor_offset - baro_newest.hgt + _baro_hgt_offset;
// reset the associated covariance values
zeroRows(P, 9, 9);
zeroCols(P, 9, 9);
// the state variance is the same as the observation
P[9][9] = sq(_params.baro_noise);
vert_pos_reset = true;
} else {
// TODO: reset to last known baro based estimate
}
} else if (_control_status.flags.gps_hgt) {
// initialize vertical position and velocity with newest gps measurement
if (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL) {
_state.pos(2) = _hgt_sensor_offset - gps_newest.hgt + _gps_alt_ref;
// reset the associated covarince values
zeroRows(P, 9, 9);
zeroCols(P, 9, 9);
// the state variance is the same as the observation
P[9][9] = sq(gps_newest.hacc);
vert_pos_reset = true;
// reset the baro offset which is subtracted from the baro reading if we need to use it as a backup
const baroSample &baro_newest = _baro_buffer.get_newest();
_baro_hgt_offset = baro_newest.hgt + _state.pos(2);
} else {
// TODO: reset to last known gps based estimate
}
} else if (_control_status.flags.ev_hgt) {
// initialize vertical position with newest measurement
const extVisionSample &ev_newest = _ext_vision_buffer.get_newest();
// use the most recent data if it's time offset from the fusion time horizon is smaller
int32_t dt_newest = ev_newest.time_us - _imu_sample_delayed.time_us;
int32_t dt_delayed = _ev_sample_delayed.time_us - _imu_sample_delayed.time_us;
vert_pos_reset = true;
if (std::abs(dt_newest) < std::abs(dt_delayed)) {
_state.pos(2) = ev_newest.posNED(2);
} else {
_state.pos(2) = _ev_sample_delayed.posNED(2);
}
}
// reset the vertical velocity covariance values
zeroRows(P, 6, 6);
zeroCols(P, 6, 6);
// reset the vertical velocity state
if (_control_status.flags.gps && (_time_last_imu - gps_newest.time_us < 2 * GPS_MAX_INTERVAL)) {
// If we are using GPS, then use it to reset the vertical velocity
_state.vel(2) = gps_newest.vel(2);
// the state variance is the same as the observation
P[6][6] = sq(1.5f * gps_newest.sacc);
} else {
// we don't know what the vertical velocity is, so set it to zero
_state.vel(2) = 0.0f;
// Set the variance to a value large enough to allow the state to converge quickly
// that does not destabilise the filter
P[6][6] = 10.0f;
}
vert_vel_reset = true;
// store the reset amount and time to be published
if (vert_pos_reset) {
_state_reset_status.posD_change = _state.pos(2) - old_vert_pos;
_state_reset_status.posD_counter++;
}
if (vert_vel_reset) {
_state_reset_status.velD_change = _state.vel(2) - old_vert_vel;
_state_reset_status.velD_counter++;
}
// apply the change in height / height rate to our newest height / height rate estimate
// which have already been taken out from the output buffer
if (vert_pos_reset) {
_output_new.pos(2) += _state_reset_status.posD_change;
}
if (vert_vel_reset) {
_output_new.vel(2) += _state_reset_status.velD_change;
}
// add the reset amount to the output observer buffered data
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
if (vert_pos_reset) {
_output_buffer[i].pos(2) += _state_reset_status.posD_change;
_output_vert_buffer[i].vel_d_integ += _state_reset_status.posD_change;
}
if (vert_vel_reset) {
_output_buffer[i].vel(2) += _state_reset_status.velD_change;
_output_vert_buffer[i].vel_d += _state_reset_status.velD_change;
}
}
// add the reset amount to the output observer vertical position state
if (vert_pos_reset) {
_output_vert_delayed.vel_d_integ = _state.pos(2);
_output_vert_new.vel_d_integ = _state.pos(2);
}
if (vert_vel_reset) {
_output_vert_delayed.vel_d = _state.vel(2);
_output_vert_new.vel_d = _state.vel(2);
}
}
// align output filter states to match EKF states at the fusion time horizon
void Ekf::alignOutputFilter()
{
// calculate the quaternion delta between the output and EKF quaternions at the EKF fusion time horizon
Quatf q_delta = _state.quat_nominal.inversed() * _output_sample_delayed.quat_nominal;
q_delta.normalize();
// calculate the velocity and posiiton deltas between the output and EKF at the EKF fusion time horizon
const Vector3f vel_delta = _state.vel - _output_sample_delayed.vel;
const Vector3f pos_delta = _state.pos - _output_sample_delayed.pos;
// loop through the output filter state history and add the deltas
// Note q1 *= q2 is equivalent to q1 = q2 * q1
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].quat_nominal *= q_delta;
_output_buffer[i].quat_nominal.normalize();
_output_buffer[i].vel += vel_delta;
_output_buffer[i].pos += pos_delta;
}
}
// Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS.
// It is used to align the yaw angle after launch or takeoff for fixed wing vehicle only.
bool Ekf::realignYawGPS()
{
// Need at least 5 m/s of GPS horizontal speed and ratio of velocity error to velocity < 0.15 for a reliable alignment
float gpsSpeed = sqrtf(sq(_gps_sample_delayed.vel(0)) + sq(_gps_sample_delayed.vel(1)));
if ((gpsSpeed > 5.0f) && (_gps_sample_delayed.sacc < (0.15f * gpsSpeed))) {
// check for excessive GPS velocity innovations
bool badVelInnov = ((_vel_pos_test_ratio[0] > 1.0f) || (_vel_pos_test_ratio[1] > 1.0f)) && _control_status.flags.gps;
// calculate GPS course over ground angle
float gpsCOG = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0));
// calculate course yaw angle
float ekfGOG = atan2f(_state.vel(1), _state.vel(0));
// Check the EKF and GPS course over ground for consistency
float courseYawError = gpsCOG - ekfGOG;
// If the angles disagree and horizontal GPS velocity innovations are large or no previous yaw alignment, we declare the magnetic yaw as bad
bool badYawErr = fabsf(courseYawError) > 0.5f;
bool badMagYaw = (badYawErr && badVelInnov);
if (badMagYaw) {
_num_bad_flight_yaw_events ++;
}
// correct yaw angle using GPS ground course if compass yaw bad or yaw is previously not aligned
if (badMagYaw || !_control_status.flags.yaw_align) {
ECL_WARN("EKF bad yaw corrected using GPS course");
// declare the magnetomer as failed if a bad yaw has occurred more than once
if (_flt_mag_align_complete && (_num_bad_flight_yaw_events >= 2) && !_control_status.flags.mag_fault) {
ECL_WARN("EKF stopping magnetometer use");
_control_status.flags.mag_fault = true;
}
// save a copy of the quaternion state for later use in calculating the amount of reset change
Quatf quat_before_reset = _state.quat_nominal;
// calculate the variance for the rotation estimate expressed as a rotation vector
// this will be used later to reset the quaternion state covariances
Vector3f angle_err_var_vec = calcRotVecVariances();
// update transformation matrix from body to world frame using the current state estimate
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// get quaternion from existing filter states and calculate roll, pitch and yaw angles
Eulerf euler321(_state.quat_nominal);
// apply yaw correction
if (!_flt_mag_align_complete) {
// This is our first flight aligment so we can assume that the recent change in velocity has occurred due to a
// forward direction takeoff or launch and therefore the inertial and GPS ground course discrepancy is due to yaw error
euler321(2) += courseYawError;
_flt_mag_align_complete = true;
} else if (_control_status.flags.wind) {
// we have previously aligned yaw in-flight and have wind estimates so set the yaw such that the vehicle nose is
// aligned with the wind relative GPS velocity vector
euler321(2) = atan2f((_gps_sample_delayed.vel(1) - _state.wind_vel(1)),
(_gps_sample_delayed.vel(0) - _state.wind_vel(0)));
} else {
// we don't have wind estimates, so align yaw to the GPS velocity vector
euler321(2) = atan2f(_gps_sample_delayed.vel(1), _gps_sample_delayed.vel(0));
}
// calculate new filter quaternion states using corected yaw angle
_state.quat_nominal = Quatf(euler321);
// If heading was bad, then we alos need to reset the velocity and position states
_velpos_reset_request = badMagYaw;
// update transformation matrix from body to world frame using the current state estimate
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// Use the last magnetometer measurements to reset the field states
_state.mag_B.zero();
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag;
// use the combined EKF and GPS speed variance to calculate a rough estimate of the yaw error after alignment
float SpdErrorVariance = sq(_gps_sample_delayed.sacc) + P[4][4] + P[5][5];
float sineYawError = math::constrain(sqrtf(SpdErrorVariance) / gpsSpeed, 0.0f, 1.0f);
angle_err_var_vec(2) = sq(asinf(sineYawError));
// reset the quaternion covariances using the rotation vector variances
initialiseQuatCovariances(angle_err_var_vec);
// reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance
zeroRows(P, 16, 21);
zeroCols(P, 16, 21);
for (uint8_t index = 16; index <= 21; index ++) {
P[index][index] = sq(_params.mag_noise);
}
// record the start time for the magnetic field alignment
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
// calculate the amount that the quaternion has changed by
_state_reset_status.quat_change = quat_before_reset.inversed() * _state.quat_nominal;
// add the reset amount to the output observer buffered data
// Note q1 *= q2 is equivalent to q1 = q2 * q1
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
_output_buffer[i].quat_nominal *= _state_reset_status.quat_change;
}
// apply the change in attitude quaternion to our newest quaternion estimate
// which was already taken out from the output buffer
_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal;
// capture the reset event
_state_reset_status.quat_counter++;
return true;
} else {
// align mag states only
// calculate initial earth magnetic field states
_state.mag_I = _R_to_earth * _mag_sample_delayed.mag;
// reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance
zeroRows(P, 16, 21);
zeroCols(P, 16, 21);
for (uint8_t index = 16; index <= 21; index ++) {
P[index][index] = sq(_params.mag_noise);
}
// record the start time for the magnetic field alignment
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
return true;
}
} else {
// attempt a normal alignment using the magnetometer
return resetMagHeading(_mag_sample_delayed.mag);
}
}
// Reset heading and magnetic field states
bool Ekf::resetMagHeading(Vector3f &mag_init)
{
// save a copy of the quaternion state for later use in calculating the amount of reset change
Quatf quat_before_reset = _state.quat_nominal;
Quatf quat_after_reset = _state.quat_nominal;
// calculate the variance for the rotation estimate expressed as a rotation vector
// this will be used later to reset the quaternion state covariances
Vector3f angle_err_var_vec = calcRotVecVariances();
// update transformation matrix from body to world frame using the current estimate
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// calculate the initial quaternion
// determine if a 321 or 312 Euler sequence is best
if (fabsf(_R_to_earth(2, 0)) < fabsf(_R_to_earth(2, 1))) {
// use a 321 sequence
// rotate the magnetometer measurement into earth frame
Eulerf euler321(_state.quat_nominal);
// Set the yaw angle to zero and calculate the rotation matrix from body to earth frame
euler321(2) = 0.0f;
Dcmf R_to_earth(euler321);
// calculate the observed yaw angle
if (_control_status.flags.ev_yaw) {
// convert the observed quaternion to a rotation matrix
Dcmf R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame
// calculate the yaw angle for a 312 sequence
euler321(2) = atan2f(R_to_earth_ev(1, 0), R_to_earth_ev(0, 0));
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) {
// rotate the magnetometer measurements into earth frame using a zero yaw angle
Vector3f mag_earth_pred = R_to_earth * _mag_sample_delayed.mag;
// the angle of the projection onto the horizontal gives the yaw angle
euler321(2) = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + _mag_declination;
} else {
// there is no yaw observation
return false;
}
// calculate initial quaternion states for the ekf
// we don't change the output attitude to avoid jumps
quat_after_reset = Quatf(euler321);
} else {
// use a 312 sequence
// Calculate the 312 sequence euler angles that rotate from earth to body frame
// See http://www.atacolorado.com/eulersequences.doc
Vector3f euler312;
euler312(0) = atan2f(-_R_to_earth(0, 1), _R_to_earth(1, 1)); // first rotation (yaw)
euler312(1) = asinf(_R_to_earth(2, 1)); // second rotation (roll)
euler312(2) = atan2f(-_R_to_earth(2, 0), _R_to_earth(2, 2)); // third rotation (pitch)
// Set the first rotation (yaw) to zero and calculate the rotation matrix from body to earth frame
euler312(0) = 0.0f;
// Calculate the body to earth frame rotation matrix from the euler angles using a 312 rotation sequence
float c2 = cosf(euler312(2));
float s2 = sinf(euler312(2));
float s1 = sinf(euler312(1));
float c1 = cosf(euler312(1));
float s0 = sinf(euler312(0));
float c0 = cosf(euler312(0));
Dcmf R_to_earth;
R_to_earth(0, 0) = c0 * c2 - s0 * s1 * s2;
R_to_earth(1, 1) = c0 * c1;
R_to_earth(2, 2) = c2 * c1;
R_to_earth(0, 1) = -c1 * s0;
R_to_earth(0, 2) = s2 * c0 + c2 * s1 * s0;
R_to_earth(1, 0) = c2 * s0 + s2 * s1 * c0;
R_to_earth(1, 2) = s0 * s2 - s1 * c0 * c2;
R_to_earth(2, 0) = -s2 * c1;
R_to_earth(2, 1) = s1;
// calculate the observed yaw angle
if (_control_status.flags.ev_yaw) {
// convert the observed quaternion to a rotation matrix
Dcmf R_to_earth_ev(_ev_sample_delayed.quat); // transformation matrix from body to world frame
// calculate the yaw angle for a 312 sequence
euler312(0) = atan2f(-R_to_earth_ev(0, 1), R_to_earth_ev(1, 1));
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) {
// rotate the magnetometer measurements into earth frame using a zero yaw angle
Vector3f mag_earth_pred = R_to_earth * _mag_sample_delayed.mag;
// the angle of the projection onto the horizontal gives the yaw angle
euler312(0) = -atan2f(mag_earth_pred(1), mag_earth_pred(0)) + _mag_declination;
} else {
// there is no yaw observation
return false;
}
// re-calculate the rotation matrix using the updated yaw angle
s0 = sinf(euler312(0));
c0 = cosf(euler312(0));
R_to_earth(0, 0) = c0 * c2 - s0 * s1 * s2;
R_to_earth(1, 1) = c0 * c1;
R_to_earth(2, 2) = c2 * c1;
R_to_earth(0, 1) = -c1 * s0;
R_to_earth(0, 2) = s2 * c0 + c2 * s1 * s0;
R_to_earth(1, 0) = c2 * s0 + s2 * s1 * c0;
R_to_earth(1, 2) = s0 * s2 - s1 * c0 * c2;
R_to_earth(2, 0) = -s2 * c1;
R_to_earth(2, 1) = s1;
// calculate initial quaternion states for the ekf
// we don't change the output attitude to avoid jumps
quat_after_reset = Quatf(R_to_earth);
}
// set the earth magnetic field states using the updated rotation
Dcmf _R_to_earth_after = quat_to_invrotmat(quat_after_reset);
_state.mag_I = _R_to_earth_after * mag_init;
// reset the corresponding rows and columns in the covariance matrix and set the variances on the magnetic field states to the measurement variance
zeroRows(P, 16, 21);
zeroCols(P, 16, 21);
for (uint8_t index = 16; index <= 21; index ++) {
P[index][index] = sq(_params.mag_noise);
}
// record the time for the magnetic field alignment event
_flt_mag_align_start_time = _imu_sample_delayed.time_us;
// calculate the amount that the quaternion has changed by
Quatf q_error = quat_before_reset.inversed() * quat_after_reset;
q_error.normalize();
// convert the quaternion delta to a delta angle
Vector3f delta_ang_error;
float scalar;
if (q_error(0) >= 0.0f) {
scalar = -2.0f;
} else {
scalar = 2.0f;
}
delta_ang_error(0) = scalar * q_error(1);
delta_ang_error(1) = scalar * q_error(2);
delta_ang_error(2) = scalar * q_error(3);
// update the quaternion state estimates and corresponding covariances only if the change in angle has been large
if (delta_ang_error.norm() > math::radians(15.0f)) {
// update quaternion states
_state.quat_nominal = quat_after_reset;
// record the state change
_state_reset_status.quat_change = q_error;
// update transformation matrix from body to world frame using the current estimate
_R_to_earth = quat_to_invrotmat(_state.quat_nominal);
// reset the rotation from the EV to EKF frame of reference if it is being used
if ((_params.fusion_mode & MASK_ROTATE_EV) && (_params.fusion_mode & MASK_USE_EVPOS) && !_control_status.flags.ev_yaw) {
resetExtVisRotMat();
}
// update the yaw angle variance using the variance of the measurement
if (!_control_status.flags.ev_yaw) {
// using error estimate from external vision data
angle_err_var_vec(2) = sq(fmaxf(_ev_sample_delayed.angErr, 1.0e-2f));
} else if (_params.mag_fusion_type <= MAG_FUSE_TYPE_AUTOFW) {
// using magnetic heading tuning parameter
angle_err_var_vec(2) = sq(fmaxf(_params.mag_heading_noise, 1.0e-2f));
}
// reset the quaternion covariances using the rotation vector variances
initialiseQuatCovariances(angle_err_var_vec);
// add the reset amount to the output observer buffered data
for (uint8_t i = 0; i < _output_buffer.get_length(); i++) {
// Note q1 *= q2 is equivalent to q1 = q2 * q1
_output_buffer[i].quat_nominal *= _state_reset_status.quat_change;
}
// apply the change in attitude quaternion to our newest quaternion estimate
// which was already taken out from the output buffer
_output_new.quat_nominal = _state_reset_status.quat_change * _output_new.quat_nominal;
// capture the reset event
_state_reset_status.quat_counter++;
}
return true;
}
// Calculate the magnetic declination to be used by the alignment and fusion processing
void Ekf::calcMagDeclination()
{
// set source of magnetic declination for internal use
if (_flt_mag_align_complete) {
// Use value consistent with earth field state
_mag_declination = atan2f(_state.mag_I(1), _state.mag_I(0));
} else if (_params.mag_declination_source & MASK_USE_GEO_DECL) {
// use parameter value until GPS is available, then use value returned by geo library
if (_NED_origin_initialised) {
_mag_declination = _mag_declination_gps;
_mag_declination_to_save_deg = math::degrees(_mag_declination);
} else {
_mag_declination = math::radians(_params.mag_declination_deg);
_mag_declination_to_save_deg = _params.mag_declination_deg;
}
} else {
// always use the parameter value
_mag_declination = math::radians(_params.mag_declination_deg);
_mag_declination_to_save_deg = _params.mag_declination_deg;
}
}
// This function forces the covariance matrix to be symmetric
void Ekf::makeSymmetrical(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last)
{
for (unsigned row = first; row <= last; row++) {
for (unsigned column = 0; column < row; column++) {
float tmp = (cov_mat[row][column] + cov_mat[column][row]) / 2;
cov_mat[row][column] = tmp;
cov_mat[column][row] = tmp;
}
}
}
void Ekf::constrainStates()
{
for (int i = 0; i < 4; i++) {
_state.quat_nominal(i) = math::constrain(_state.quat_nominal(i), -1.0f, 1.0f);
}
for (int i = 0; i < 3; i++) {
_state.vel(i) = math::constrain(_state.vel(i), -1000.0f, 1000.0f);
}
for (int i = 0; i < 3; i++) {
_state.pos(i) = math::constrain(_state.pos(i), -1.e6f, 1.e6f);
}
for (int i = 0; i < 3; i++) {
_state.gyro_bias(i) = math::constrain(_state.gyro_bias(i), -0.349066f * _dt_ekf_avg, 0.349066f * _dt_ekf_avg);
}
for (int i = 0; i < 3; i++) {
_state.accel_bias(i) = math::constrain(_state.accel_bias(i), -_params.acc_bias_lim * _dt_ekf_avg, _params.acc_bias_lim * _dt_ekf_avg);
}
for (int i = 0; i < 3; i++) {
_state.mag_I(i) = math::constrain(_state.mag_I(i), -1.0f, 1.0f);
}
for (int i = 0; i < 3; i++) {
_state.mag_B(i) = math::constrain(_state.mag_B(i), -0.5f, 0.5f);
}
for (int i = 0; i < 2; i++) {
_state.wind_vel(i) = math::constrain(_state.wind_vel(i), -100.0f, 100.0f);
}
}
// calculate the earth rotation vector
void Ekf::calcEarthRateNED(Vector3f &omega, double lat_rad) const
{
omega(0) = _k_earth_rate * cosf((float)lat_rad);
omega(1) = 0.0f;
omega(2) = -_k_earth_rate * sinf((float)lat_rad);
}
// gets the innovations of velocity and position measurements
// 0-2 vel, 3-5 pos
void Ekf::get_vel_pos_innov(float vel_pos_innov[6])
{
memcpy(vel_pos_innov, _vel_pos_innov, sizeof(float) * 6);
}
// gets the innovations of the earth magnetic field measurements
void Ekf::get_aux_vel_innov(float aux_vel_innov[2])
{
memcpy(aux_vel_innov, _aux_vel_innov, sizeof(float) * 2);
}
// writes the innovations of the earth magnetic field measurements
void Ekf::get_mag_innov(float mag_innov[3])
{
memcpy(mag_innov, _mag_innov, 3 * sizeof(float));
}
// gets the innovations of the airspeed measnurement
void Ekf::get_airspeed_innov(float *airspeed_innov)
{
memcpy(airspeed_innov, &_airspeed_innov, sizeof(float));
}
// gets the innovations of the synthetic sideslip measurements
void Ekf::get_beta_innov(float *beta_innov)
{
memcpy(beta_innov, &_beta_innov, sizeof(float));
}
// gets the innovations of the heading measurement
void Ekf::get_heading_innov(float *heading_innov)
{
memcpy(heading_innov, &_heading_innov, sizeof(float));
}
// gets the innovation variances of velocity and position measurements
// 0-2 vel, 3-5 pos
void Ekf::get_vel_pos_innov_var(float vel_pos_innov_var[6])
{
memcpy(vel_pos_innov_var, _vel_pos_innov_var, sizeof(float) * 6);
}
// gets the innovation variances of the earth magnetic field measurements
void Ekf::get_mag_innov_var(float mag_innov_var[3])
{
memcpy(mag_innov_var, _mag_innov_var, sizeof(float) * 3);
}
// gest the innovation variance of the airspeed measurement
void Ekf::get_airspeed_innov_var(float *airspeed_innov_var)
{
memcpy(airspeed_innov_var, &_airspeed_innov_var, sizeof(float));
}
// gets the innovation variance of the synthetic sideslip measurement
void Ekf::get_beta_innov_var(float *beta_innov_var)
{
memcpy(beta_innov_var, &_beta_innov_var, sizeof(float));
}
// gets the innovation variance of the heading measurement
void Ekf::get_heading_innov_var(float *heading_innov_var)
{
memcpy(heading_innov_var, &_heading_innov_var, sizeof(float));
}
// get GPS check status
void Ekf::get_gps_check_status(uint16_t *val)
{
*val = _gps_check_fail_status.value;
}
// get the state vector at the delayed time horizon
void Ekf::get_state_delayed(float *state)
{
for (int i = 0; i < 4; i++) {
state[i] = _state.quat_nominal(i);
}
for (int i = 0; i < 3; i++) {
state[i + 4] = _state.vel(i);
}
for (int i = 0; i < 3; i++) {
state[i + 7] = _state.pos(i);
}
for (int i = 0; i < 3; i++) {
state[i + 10] = _state.gyro_bias(i);
}
for (int i = 0; i < 3; i++) {
state[i + 13] = _state.accel_bias(i);
}
for (int i = 0; i < 3; i++) {
state[i + 16] = _state.mag_I(i);
}
for (int i = 0; i < 3; i++) {
state[i + 19] = _state.mag_B(i);
}
for (int i = 0; i < 2; i++) {
state[i + 22] = _state.wind_vel(i);
}
}
// get the accelerometer bias
void Ekf::get_accel_bias(float bias[3])
{
float temp[3];
temp[0] = _state.accel_bias(0) / _dt_ekf_avg;
temp[1] = _state.accel_bias(1) / _dt_ekf_avg;
temp[2] = _state.accel_bias(2) / _dt_ekf_avg;
memcpy(bias, temp, 3 * sizeof(float));
}
// get the gyroscope bias in rad/s
void Ekf::get_gyro_bias(float bias[3])
{
float temp[3];
temp[0] = _state.gyro_bias(0) / _dt_ekf_avg;
temp[1] = _state.gyro_bias(1) / _dt_ekf_avg;
temp[2] = _state.gyro_bias(2) / _dt_ekf_avg;
memcpy(bias, temp, 3 * sizeof(float));
}
// get the diagonal elements of the covariance matrix
void Ekf::get_covariances(float *covariances)
{
for (unsigned i = 0; i < _k_num_states; i++) {
covariances[i] = P[i][i];
}
}
// get the position and height of the ekf origin in WGS-84 coordinates and time the origin was set
// return true if the origin is valid
bool Ekf::get_ekf_origin(uint64_t *origin_time, map_projection_reference_s *origin_pos, float *origin_alt)
{
memcpy(origin_time, &_last_gps_origin_time_us, sizeof(uint64_t));
memcpy(origin_pos, &_pos_ref, sizeof(map_projection_reference_s));
memcpy(origin_alt, &_gps_alt_ref, sizeof(float));
return _NED_origin_initialised;
}
// return an array containing the output predictor angular, velocity and position tracking
// error magnitudes (rad), (m/s), (m)
void Ekf::get_output_tracking_error(float error[3])
{
memcpy(error, _output_tracking_error, 3 * sizeof(float));
}
/*
Returns following IMU vibration metrics in the following array locations
0 : Gyro delta angle coning metric = filtered length of (delta_angle x prev_delta_angle)
1 : Gyro high frequency vibe = filtered length of (delta_angle - prev_delta_angle)
2 : Accel high frequency vibe = filtered length of (delta_velocity - prev_delta_velocity)
*/
void Ekf::get_imu_vibe_metrics(float vibe[3])
{
memcpy(vibe, _vibe_metrics, 3 * sizeof(float));
}
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
void Ekf::get_ekf_gpos_accuracy(float *ekf_eph, float *ekf_epv)
{
// report absolute accuracy taking into account the uncertainty in location of the origin
// If not aiding, return 0 for horizontal position estimate as no estimate is available
// TODO - allow for baro drift in vertical position error
float hpos_err = sqrtf(P[7][7] + P[8][8] + sq(_gps_origin_eph));
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_is_dead_reckoning && (_control_status.flags.gps || _control_status.flags.ev_pos)) {
hpos_err = math::max(hpos_err, sqrtf(sq(_vel_pos_innov[3]) + sq(_vel_pos_innov[4])));
}
*ekf_eph = hpos_err;
*ekf_epv = sqrtf(P[9][9] + sq(_gps_origin_epv));
}
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
void Ekf::get_ekf_lpos_accuracy(float *ekf_eph, float *ekf_epv)
{
// TODO - allow for baro drift in vertical position error
float hpos_err = sqrtf(P[7][7] + P[8][8]);
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal position error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_is_dead_reckoning && (_control_status.flags.gps || _control_status.flags.ev_pos)) {
hpos_err = math::max(hpos_err, sqrtf(sq(_vel_pos_innov[3]) + sq(_vel_pos_innov[4])));
}
*ekf_eph = hpos_err;
*ekf_epv = sqrtf(P[9][9]);
}
// get the 1-sigma horizontal and vertical velocity uncertainty
void Ekf::get_ekf_vel_accuracy(float *ekf_evh, float *ekf_evv)
{
float hvel_err = sqrtf(P[4][4] + P[5][5]);
// If we are dead-reckoning, use the innovations as a conservative alternate measure of the horizontal velocity error
// The reason is that complete rejection of measurements is often caused by heading misalignment or inertial sensing errors
// and using state variances for accuracy reporting is overly optimistic in these situations
if (_is_dead_reckoning) {
float vel_err_conservative = 0.0f;
if (_control_status.flags.opt_flow) {
float gndclearance = math::max(_params.rng_gnd_clearance, 0.1f);
vel_err_conservative = math::max((_terrain_vpos - _state.pos(2)), gndclearance) * sqrtf(sq(_flow_innov[0]) + sq(_flow_innov[1]));
}
if (_control_status.flags.gps || _control_status.flags.ev_pos) {
vel_err_conservative = math::max(vel_err_conservative, sqrtf(sq(_vel_pos_innov[0]) + sq(_vel_pos_innov[1])));
}
hvel_err = math::max(hvel_err, vel_err_conservative);
}
*ekf_evh = hvel_err;
*ekf_evv = sqrtf(P[6][6]);
}
/*
Returns the following vehicle control limits required by the estimator.
vxy_max : Maximum ground relative horizontal speed (metres/sec). NaN when no limiting required.
limit_hagl : Boolean true when height above ground needs to be controlled to remain between optical flow focus and rang efinder max range limits.
*/
void Ekf::get_ekf_ctrl_limits(float *vxy_max, bool *limit_hagl)
{
float flow_gnd_spd_max;
bool flow_limit_hagl;
// If relying on optical flow for navigation we need to keep within flow and range sensor limits
bool relying_on_optical_flow = _control_status.flags.opt_flow && !(_control_status.flags.gps || _control_status.flags.ev_pos);
if (relying_on_optical_flow) {
// Allow ground relative velocity to use 50% of available flow sensor range to allow for angular motion
flow_gnd_spd_max = 0.5f * _params.flow_rate_max * (_terrain_vpos - _state.pos(2));
flow_gnd_spd_max = fmaxf(flow_gnd_spd_max, 0.0f);
flow_limit_hagl = true;
} else {
flow_gnd_spd_max = NAN;
flow_limit_hagl = false;
}
memcpy(vxy_max, &flow_gnd_spd_max, sizeof(float));
memcpy(limit_hagl, &flow_limit_hagl, sizeof(bool));
}
bool Ekf::reset_imu_bias()
{
if (_imu_sample_delayed.time_us - _last_imu_bias_cov_reset_us < (uint64_t)10e6) {
return false;
}
// Zero the delta angle and delta velocity bias states
_state.gyro_bias.zero();
_state.accel_bias.zero();
// Zero the corresponding covariances
zeroCols(P, 10, 15);
zeroRows(P, 10, 15);
// Set the corresponding variances to the values use for initial alignment
float dt = 0.001f * (float)FILTER_UPDATE_PERIOD_MS;
P[12][12] = P[11][11] = P[10][10] = sq(_params.switch_on_gyro_bias * dt);
P[15][15] = P[14][14] = P[13][13] = sq(_params.switch_on_accel_bias * dt);
_last_imu_bias_cov_reset_us = _imu_sample_delayed.time_us;
// Set previous frame values
_prev_dvel_bias_var(0) = P[13][13];
_prev_dvel_bias_var(1) = P[14][14];
_prev_dvel_bias_var(2) = P[15][15];
return true;
}
// get EKF innovation consistency check status information comprising of:
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
// Where a measurement type is a vector quantity, eg magnetoemter, GPS position, etc, the maximum value is returned.
void Ekf::get_innovation_test_status(uint16_t *status, float *mag, float *vel, float *pos, float *hgt, float *tas, float *hagl, float *beta)
{
// return the integer bitmask containing the consistency check pass/fail satus
*status = _innov_check_fail_status.value;
// return the largest magnetometer innovation test ratio
*mag = sqrtf(math::max(_yaw_test_ratio, math::max(math::max(_mag_test_ratio[0], _mag_test_ratio[1]), _mag_test_ratio[2])));
// return the largest NED velocity innovation test ratio
*vel = sqrtf(math::max(math::max(_vel_pos_test_ratio[0], _vel_pos_test_ratio[1]), _vel_pos_test_ratio[2]));
// return the largest NE position innovation test ratio
*pos = sqrtf(math::max(_vel_pos_test_ratio[3], _vel_pos_test_ratio[4]));
// return the vertical position innovation test ratio
*hgt = sqrtf(_vel_pos_test_ratio[5]);
// return the airspeed fusion innovation test ratio
*tas = sqrtf(_tas_test_ratio);
// return the terrain height innovation test ratio
*hagl = sqrtf(_terr_test_ratio);
// return the synthetic sideslip innovation test ratio
*beta = sqrtf(_beta_test_ratio);
}
// return a bitmask integer that describes which state estimates are valid
void Ekf::get_ekf_soln_status(uint16_t *status)
{
ekf_solution_status soln_status;
soln_status.flags.attitude = _control_status.flags.tilt_align && _control_status.flags.yaw_align && (_fault_status.value == 0);
soln_status.flags.velocity_horiz = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow || (_control_status.flags.fuse_beta && _control_status.flags.fuse_aspd)) && (_fault_status.value == 0);
soln_status.flags.velocity_vert = (_control_status.flags.baro_hgt || _control_status.flags.ev_hgt || _control_status.flags.gps_hgt || _control_status.flags.rng_hgt) && (_fault_status.value == 0);
soln_status.flags.pos_horiz_rel = (_control_status.flags.gps || _control_status.flags.ev_pos || _control_status.flags.opt_flow) && (_fault_status.value == 0);
soln_status.flags.pos_horiz_abs = (_control_status.flags.gps || _control_status.flags.ev_pos) && (_fault_status.value == 0);
soln_status.flags.pos_vert_abs = soln_status.flags.velocity_vert;
soln_status.flags.pos_vert_agl = get_terrain_valid();
soln_status.flags.const_pos_mode = !soln_status.flags.velocity_horiz;
soln_status.flags.pred_pos_horiz_rel = soln_status.flags.pos_horiz_rel;
soln_status.flags.pred_pos_horiz_abs = soln_status.flags.pos_horiz_abs;
bool gps_vel_innov_bad = (_vel_pos_test_ratio[0] > 1.0f) || (_vel_pos_test_ratio[1] > 1.0f);
bool gps_pos_innov_bad = (_vel_pos_test_ratio[3] > 1.0f) || (_vel_pos_test_ratio[4] > 1.0f);
bool mag_innov_good = (_mag_test_ratio[0] < 1.0f) && (_mag_test_ratio[1] < 1.0f) && (_mag_test_ratio[2] < 1.0f) && (_yaw_test_ratio < 1.0f);
soln_status.flags.gps_glitch = (gps_vel_innov_bad || gps_pos_innov_bad) && mag_innov_good;
soln_status.flags.accel_error = _bad_vert_accel_detected;
*status = soln_status.value;
}
// fuse measurement
void Ekf::fuse(float *K, float innovation)
{
for (unsigned i = 0; i < 4; i++) {
_state.quat_nominal(i) = _state.quat_nominal(i) - K[i] * innovation;
}
_state.quat_nominal.normalize();
for (unsigned i = 0; i < 3; i++) {
_state.vel(i) = _state.vel(i) - K[i + 4] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.pos(i) = _state.pos(i) - K[i + 7] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.gyro_bias(i) = _state.gyro_bias(i) - K[i + 10] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.accel_bias(i) = _state.accel_bias(i) - K[i + 13] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.mag_I(i) = _state.mag_I(i) - K[i + 16] * innovation;
}
for (unsigned i = 0; i < 3; i++) {
_state.mag_B(i) = _state.mag_B(i) - K[i + 19] * innovation;
}
for (unsigned i = 0; i < 2; i++) {
_state.wind_vel(i) = _state.wind_vel(i) - K[i + 22] * innovation;
}
}
// zero specified range of rows in the state covariance matrix
void Ekf::zeroRows(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last)
{
uint8_t row;
for (row = first; row <= last; row++) {
memset(&cov_mat[row][0], 0, sizeof(cov_mat[0][0]) * 24);
}
}
// zero specified range of columns in the state covariance matrix
void Ekf::zeroCols(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last)
{
uint8_t row;
for (row = 0; row <= 23; row++) {
memset(&cov_mat[row][first], 0, sizeof(cov_mat[0][0]) * (1 + last - first));
}
}
void Ekf::zeroOffDiag(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last)
{
// save diagonal elements
uint8_t row;
float variances[_k_num_states];
for (row = first; row <= last; row++) {
variances[row] = cov_mat[row][row];
}
// zero rows and columns
zeroRows(cov_mat, first, last);
zeroCols(cov_mat, first, last);
// restore diagonals
for (row = first; row <= last; row++) {
cov_mat[row][row] = variances[row];
}
}
void Ekf::setDiag(float (&cov_mat)[_k_num_states][_k_num_states], uint8_t first, uint8_t last, float variance)
{
// zero rows and columns
zeroRows(cov_mat, first, last);
zeroCols(cov_mat, first, last);
// set diagonals
uint8_t row;
for (row = first; row <= last; row++) {
cov_mat[row][row] = variance;
}
}
bool Ekf::global_position_is_valid()
{
// return true if the origin is set we are not doing unconstrained free inertial navigation
// and have not started using synthetic position observations to constrain drift
return (_NED_origin_initialised && !_deadreckon_time_exceeded && !_using_synthetic_position);
}
// return true if we are totally reliant on inertial dead-reckoning for position
void Ekf::update_deadreckoning_status()
{
bool velPosAiding = (_control_status.flags.gps || _control_status.flags.ev_pos)
&& ((_time_last_imu - _time_last_pos_fuse <= _params.no_aid_timeout_max)
|| (_time_last_imu - _time_last_vel_fuse <= _params.no_aid_timeout_max)
|| (_time_last_imu - _time_last_delpos_fuse <= _params.no_aid_timeout_max));
bool optFlowAiding = _control_status.flags.opt_flow && (_time_last_imu - _time_last_of_fuse <= _params.no_aid_timeout_max);
bool airDataAiding = _control_status.flags.wind && (_time_last_imu - _time_last_arsp_fuse <= _params.no_aid_timeout_max) && (_time_last_imu - _time_last_beta_fuse <= _params.no_aid_timeout_max);
_is_wind_dead_reckoning = !velPosAiding && !optFlowAiding && airDataAiding;
_is_dead_reckoning = !velPosAiding && !optFlowAiding && !airDataAiding;
// record the time we start inertial dead reckoning
if (!_is_dead_reckoning) {
_time_ins_deadreckon_start = _time_last_imu - _params.no_aid_timeout_max;
}
// report if we have been deadreckoning for too long
_deadreckon_time_exceeded = ((_time_last_imu - _time_ins_deadreckon_start) > (unsigned)_params.valid_timeout_max);
}
// perform a vector cross product
Vector3f EstimatorInterface::cross_product(const Vector3f &vecIn1, const Vector3f &vecIn2)
{
Vector3f vecOut;
vecOut(0) = vecIn1(1) * vecIn2(2) - vecIn1(2) * vecIn2(1);
vecOut(1) = vecIn1(2) * vecIn2(0) - vecIn1(0) * vecIn2(2);
vecOut(2) = vecIn1(0) * vecIn2(1) - vecIn1(1) * vecIn2(0);
return vecOut;
}
// calculate the inverse rotation matrix from a quaternion rotation
Matrix3f EstimatorInterface::quat_to_invrotmat(const Quatf &quat)
{
float q00 = quat(0) * quat(0);
float q11 = quat(1) * quat(1);
float q22 = quat(2) * quat(2);
float q33 = quat(3) * quat(3);
float q01 = quat(0) * quat(1);
float q02 = quat(0) * quat(2);
float q03 = quat(0) * quat(3);
float q12 = quat(1) * quat(2);
float q13 = quat(1) * quat(3);
float q23 = quat(2) * quat(3);
Matrix3f dcm;
dcm(0, 0) = q00 + q11 - q22 - q33;
dcm(1, 1) = q00 - q11 + q22 - q33;
dcm(2, 2) = q00 - q11 - q22 + q33;
dcm(0, 1) = 2.0f * (q12 - q03);
dcm(0, 2) = 2.0f * (q13 + q02);
dcm(1, 0) = 2.0f * (q12 + q03);
dcm(1, 2) = 2.0f * (q23 - q01);
dcm(2, 0) = 2.0f * (q13 - q02);
dcm(2, 1) = 2.0f * (q23 + q01);
return dcm;
}
// calculate the variances for the rotation vector equivalent
Vector3f Ekf::calcRotVecVariances()
{
Vector3f rot_var_vec;
float q0, q1, q2, q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float t2 = q0*q0;
float t3 = acosf(q0);
float t4 = -t2+1.0f;
float t5 = t2-1.0f;
if ((t4 > 1e-9f) && (t5 < -1e-9f)) {
float t6 = 1.0f/t5;
float t7 = q1*t6*2.0f;
float t8 = 1.0f/powf(t4,1.5f);
float t9 = q0*q1*t3*t8*2.0f;
float t10 = t7+t9;
float t11 = 1.0f/sqrtf(t4);
float t12 = q2*t6*2.0f;
float t13 = q0*q2*t3*t8*2.0f;
float t14 = t12+t13;
float t15 = q3*t6*2.0f;
float t16 = q0*q3*t3*t8*2.0f;
float t17 = t15+t16;
rot_var_vec(0) = t10*(P[0][0]*t10+P[1][0]*t3*t11*2.0f)+t3*t11*(P[0][1]*t10+P[1][1]*t3*t11*2.0f)*2.0f;
rot_var_vec(1) = t14*(P[0][0]*t14+P[2][0]*t3*t11*2.0f)+t3*t11*(P[0][2]*t14+P[2][2]*t3*t11*2.0f)*2.0f;
rot_var_vec(2) = t17*(P[0][0]*t17+P[3][0]*t3*t11*2.0f)+t3*t11*(P[0][3]*t17+P[3][3]*t3*t11*2.0f)*2.0f;
} else {
rot_var_vec(0) = 4.0f * P[1][1];
rot_var_vec(1) = 4.0f * P[2][2];
rot_var_vec(2) = 4.0f * P[3][3];
}
return rot_var_vec;
}
// initialise the quaternion covariances using rotation vector variances
void Ekf::initialiseQuatCovariances(Vector3f &rot_vec_var)
{
// calculate an equivalent rotation vector from the quaternion
float q0,q1,q2,q3;
if (_state.quat_nominal(0) >= 0.0f) {
q0 = _state.quat_nominal(0);
q1 = _state.quat_nominal(1);
q2 = _state.quat_nominal(2);
q3 = _state.quat_nominal(3);
} else {
q0 = -_state.quat_nominal(0);
q1 = -_state.quat_nominal(1);
q2 = -_state.quat_nominal(2);
q3 = -_state.quat_nominal(3);
}
float delta = 2.0f*acosf(q0);
float scaler = (delta/sinf(delta*0.5f));
float rotX = scaler*q1;
float rotY = scaler*q2;
float rotZ = scaler*q3;
// autocode generated using matlab symbolic toolbox
float t2 = rotX*rotX;
float t4 = rotY*rotY;
float t5 = rotZ*rotZ;
float t6 = t2+t4+t5;
if (t6 > 1e-9f) {
float t7 = sqrtf(t6);
float t8 = t7*0.5f;
float t3 = sinf(t8);
float t9 = t3*t3;
float t10 = 1.0f/t6;
float t11 = 1.0f/sqrtf(t6);
float t12 = cosf(t8);
float t13 = 1.0f/powf(t6,1.5f);
float t14 = t3*t11;
float t15 = rotX*rotY*t3*t13;
float t16 = rotX*rotZ*t3*t13;
float t17 = rotY*rotZ*t3*t13;
float t18 = t2*t10*t12*0.5f;
float t27 = t2*t3*t13;
float t19 = t14+t18-t27;
float t23 = rotX*rotY*t10*t12*0.5f;
float t28 = t15-t23;
float t20 = rotY*rot_vec_var(1)*t3*t11*t28*0.5f;
float t25 = rotX*rotZ*t10*t12*0.5f;
float t31 = t16-t25;
float t21 = rotZ*rot_vec_var(2)*t3*t11*t31*0.5f;
float t22 = t20+t21-rotX*rot_vec_var(0)*t3*t11*t19*0.5f;
float t24 = t15-t23;
float t26 = t16-t25;
float t29 = t4*t10*t12*0.5f;
float t34 = t3*t4*t13;
float t30 = t14+t29-t34;
float t32 = t5*t10*t12*0.5f;
float t40 = t3*t5*t13;
float t33 = t14+t32-t40;
float t36 = rotY*rotZ*t10*t12*0.5f;
float t39 = t17-t36;
float t35 = rotZ*rot_vec_var(2)*t3*t11*t39*0.5f;
float t37 = t15-t23;
float t38 = t17-t36;
float t41 = rot_vec_var(0)*(t15-t23)*(t16-t25);
float t42 = t41-rot_vec_var(1)*t30*t39-rot_vec_var(2)*t33*t39;
float t43 = t16-t25;
float t44 = t17-t36;
// zero all the quaternion covariances
zeroRows(P, 0, 3);
zeroCols(P, 0, 3);
// Update the quaternion internal covariances using auto-code generated using matlab symbolic toolbox
P[0][0] = rot_vec_var(0)*t2*t9*t10*0.25f+rot_vec_var(1)*t4*t9*t10*0.25f+rot_vec_var(2)*t5*t9*t10*0.25f;
P[0][1] = t22;
P[0][2] = t35+rotX*rot_vec_var(0)*t3*t11*(t15-rotX*rotY*t10*t12*0.5f)*0.5f-rotY*rot_vec_var(1)*t3*t11*t30*0.5f;
P[0][3] = rotX*rot_vec_var(0)*t3*t11*(t16-rotX*rotZ*t10*t12*0.5f)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-rotY*rotZ*t10*t12*0.5f)*0.5f-rotZ*rot_vec_var(2)*t3*t11*t33*0.5f;
P[1][0] = t22;
P[1][1] = rot_vec_var(0)*(t19*t19)+rot_vec_var(1)*(t24*t24)+rot_vec_var(2)*(t26*t26);
P[1][2] = rot_vec_var(2)*(t16-t25)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P[1][3] = rot_vec_var(1)*(t15-t23)*(t17-rotY*rotZ*t10*t12*0.5f)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P[2][0] = t35-rotY*rot_vec_var(1)*t3*t11*t30*0.5f+rotX*rot_vec_var(0)*t3*t11*(t15-t23)*0.5f;
P[2][1] = rot_vec_var(2)*(t16-t25)*(t17-t36)-rot_vec_var(0)*t19*t28-rot_vec_var(1)*t28*t30;
P[2][2] = rot_vec_var(1)*(t30*t30)+rot_vec_var(0)*(t37*t37)+rot_vec_var(2)*(t38*t38);
P[2][3] = t42;
P[3][0] = rotZ*rot_vec_var(2)*t3*t11*t33*(-0.5f)+rotX*rot_vec_var(0)*t3*t11*(t16-t25)*0.5f+rotY*rot_vec_var(1)*t3*t11*(t17-t36)*0.5f;
P[3][1] = rot_vec_var(1)*(t15-t23)*(t17-t36)-rot_vec_var(0)*t19*t31-rot_vec_var(2)*t31*t33;
P[3][2] = t42;
P[3][3] = rot_vec_var(2)*(t33*t33)+rot_vec_var(0)*(t43*t43)+rot_vec_var(1)*(t44*t44);
} else {
// the equations are badly conditioned so use a small angle approximation
P[0][0] = 0.0f;
P[0][1] = 0.0f;
P[0][2] = 0.0f;
P[0][3] = 0.0f;
P[1][0] = 0.0f;
P[1][1] = 0.25f * rot_vec_var(0);
P[1][2] = 0.0f;
P[1][3] = 0.0f;
P[2][0] = 0.0f;
P[2][1] = 0.0f;
P[2][2] = 0.25f * rot_vec_var(1);
P[2][3] = 0.0f;
P[3][0] = 0.0f;
P[3][1] = 0.0f;
P[3][2] = 0.0f;
P[3][3] = 0.25f * rot_vec_var(2);
}
}
void Ekf::setControlBaroHeight()
{
_control_status.flags.baro_hgt = true;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlRangeHeight()
{
_control_status.flags.rng_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlGPSHeight()
{
_control_status.flags.gps_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.rng_hgt = false;
_control_status.flags.ev_hgt = false;
}
void Ekf::setControlEVHeight()
{
_control_status.flags.ev_hgt = true;
_control_status.flags.baro_hgt = false;
_control_status.flags.gps_hgt = false;
_control_status.flags.rng_hgt = false;
}
// update the estimated misalignment between the EV navigation frame and the EKF navigation frame
// and calculate a rotation matrix which rotates EV measurements into the EKF's navigatin frame
void Ekf::calcExtVisRotMat()
{
// calculate the quaternion delta between the EKF and EV reference frames at the EKF fusion time horizon
Quatf quat_inv = _ev_sample_delayed.quat.inversed();
Quatf q_error = quat_inv * _state.quat_nominal;
q_error.normalize();
// convert to a delta angle and apply a spike and low pass filter
Vector3f rot_vec = q_error.to_axis_angle();
float rot_vec_norm = rot_vec.norm();
if (rot_vec_norm > 1e-6f) {
// apply an input limiter to protect from spikes
Vector3f _input_delta_vec = rot_vec - _ev_rot_vec_filt;
float input_delta_mag = _input_delta_vec.norm();
if (input_delta_mag > 0.1f) {
rot_vec = _ev_rot_vec_filt + _input_delta_vec * (0.1f / input_delta_mag);
}
// Apply a first order IIR low pass filter
const float omega_lpf_us = 0.2e-6f; // cutoff frequency in rad/uSec
float alpha = math::constrain(omega_lpf_us * (float)(_time_last_imu - _ev_rot_last_time_us), 0.0f, 1.0f);
_ev_rot_last_time_us = _time_last_imu;
_ev_rot_vec_filt = _ev_rot_vec_filt * (1.0f - alpha) + rot_vec * alpha;
}
// convert filtered vector to a quaternion and then to a rotation matrix
q_error.from_axis_angle(_ev_rot_vec_filt);
_ev_rot_mat = quat_to_invrotmat(q_error);
}
// reset the estimated misalignment between the EV navigation frame and the EKF navigation frame
// and update the rotation matrix which rotates EV measurements into the EKF's navigation frame
void Ekf::resetExtVisRotMat()
{
// calculate the quaternion delta between the EKF and EV reference frames at the EKF fusion time horizon
Quatf quat_inv = _ev_sample_delayed.quat.inversed();
Quatf q_error = quat_inv * _state.quat_nominal;
q_error.normalize();
// convert to a delta angle and reset
Vector3f rot_vec = q_error.to_axis_angle();
float rot_vec_norm = rot_vec.norm();
if (rot_vec_norm > 1e-9f) {
_ev_rot_vec_filt = rot_vec;
} else {
_ev_rot_vec_filt.zero();
}
// reset the rotation matrix
_ev_rot_mat = quat_to_invrotmat(q_error);
}
// return the quaternions for the rotation from the EKF to the External Vision system frame of reference
void Ekf::get_ekf2ev_quaternion(float *quat)
{
Quatf quat_ekf2ev;
quat_ekf2ev.from_axis_angle(_ev_rot_vec_filt);
for (unsigned i = 0; i < 4; i++) {
quat[i] = quat_ekf2ev(i);
}
}