/****************************************************************************
*
* Copyright ( c ) 2015 Estimation and Control Library ( ECL ) . All rights reserved .
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met :
*
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in
* the documentation and / or other materials provided with the
* distribution .
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission .
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* " AS IS " AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT
* LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT ,
* INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES ( INCLUDING ,
* BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS
* OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
* LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/**
* @ file control . cpp
* Control functions for ekf attitude and position estimator .
*
* @ author Paul Riseborough < p_riseborough @ live . com . au >
*
*/
# include "../ecl.h"
# include "ekf.h"
# include "mathlib.h"
void Ekf : : controlFusionModes ( )
{
// Store the status to enable change detection
_control_status_prev . value = _control_status . value ;
// Get the magnetic declination
calcMagDeclination ( ) ;
// monitor the tilt alignment
if ( ! _control_status . flags . tilt_align ) {
// whilst we are aligning the tilt, monitor the variances
Vector3f angle_err_var_vec = calcRotVecVariances ( ) ;
// Once the tilt variances have reduced to equivalent of 3deg uncertainty, re-set the yaw and magnetic field states
// and declare the tilt alignment complete
if ( ( angle_err_var_vec ( 0 ) + angle_err_var_vec ( 1 ) ) < sq ( 0.05235f ) ) {
_control_status . flags . tilt_align = true ;
_control_status . flags . yaw_align = resetMagHeading ( _mag_sample_delayed . mag ) ;
ECL_INFO ( " EKF alignment complete " ) ;
}
}
// check for arrival of new sensor data at the fusion time horizon
_gps_data_ready = _gps_buffer . pop_first_older_than ( _imu_sample_delayed . time_us , & _gps_sample_delayed ) ;
_mag_data_ready = _mag_buffer . pop_first_older_than ( _imu_sample_delayed . time_us , & _mag_sample_delayed ) ;
_baro_data_ready = _baro_buffer . pop_first_older_than ( _imu_sample_delayed . time_us , & _baro_sample_delayed ) ;
_range_data_ready = _range_buffer . pop_first_older_than ( _imu_sample_delayed . time_us , & _range_sample_delayed )
& & ( _R_to_earth ( 2 , 2 ) > 0.7071f ) ;
_flow_data_ready = _flow_buffer . pop_first_older_than ( _imu_sample_delayed . time_us , & _flow_sample_delayed )
& & ( _R_to_earth ( 2 , 2 ) > 0.7071f ) ;
_ev_data_ready = _ext_vision_buffer . pop_first_older_than ( _imu_sample_delayed . time_us , & _ev_sample_delayed ) ;
_tas_data_ready = _airspeed_buffer . pop_first_older_than ( _imu_sample_delayed . time_us , & _airspeed_sample_delayed ) ;
// check for height sensor timeouts and reset and change sensor if necessary
controlHeightSensorTimeouts ( ) ;
// control use of observations for aiding
controlMagFusion ( ) ;
controlExternalVisionFusion ( ) ;
controlOpticalFlowFusion ( ) ;
controlGpsFusion ( ) ;
controlBaroFusion ( ) ;
controlRangeFinderFusion ( ) ;
controlAirDataFusion ( ) ;
// for efficiency, fusion of direct state observations for position ad velocity is performed sequentially
// in a single function using sensor data from multiple sources (GPS, external vision, baro, range finder, etc)
controlVelPosFusion ( ) ;
}
void Ekf : : controlExternalVisionFusion ( )
{
// Check for new exernal vision data
if ( _ev_data_ready ) {
// external vision position aiding selection logic
if ( ( _params . fusion_mode & MASK_USE_EVPOS ) & & ! _control_status . flags . ev_pos & & _control_status . flags . tilt_align & & _control_status . flags . yaw_align ) {
// check for a exernal vision measurement that has fallen behind the fusion time horizon
if ( _time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL ) {
// turn on use of external vision measurements for position and height
_control_status . flags . ev_pos = true ;
ECL_INFO ( " EKF switching to external vision position fusion " ) ;
// turn off other forms of height aiding
_control_status . flags . baro_hgt = false ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = false ;
// reset the position, height and velocity
resetPosition ( ) ;
resetVelocity ( ) ;
resetHeight ( ) ;
}
}
// external vision yaw aiding selection logic
if ( ( _params . fusion_mode & MASK_USE_EVYAW ) & & ! _control_status . flags . ev_yaw & & _control_status . flags . tilt_align ) {
// check for a exernal vision measurement that has fallen behind the fusion time horizon
if ( _time_last_imu - _time_last_ext_vision < 2 * EV_MAX_INTERVAL ) {
// reset the yaw angle to the value from the observaton quaternion
// get the roll, pitch, yaw estimates from the quaternion states
matrix : : Quaternion < float > q_init ( _state . quat_nominal ( 0 ) , _state . quat_nominal ( 1 ) , _state . quat_nominal ( 2 ) ,
_state . quat_nominal ( 3 ) ) ;
matrix : : Euler < float > euler_init ( q_init ) ;
// get initial yaw from the observation quaternion
extVisionSample ev_newest = _ext_vision_buffer . get_newest ( ) ;
matrix : : Quaternion < float > q_obs ( ev_newest . quat ( 0 ) , ev_newest . quat ( 1 ) , ev_newest . quat ( 2 ) , ev_newest . quat ( 3 ) ) ;
matrix : : Euler < float > euler_obs ( q_obs ) ;
euler_init ( 2 ) = euler_obs ( 2 ) ;
// save a copy of the quaternion state for later use in calculating the amount of reset change
Quaternion quat_before_reset = _state . quat_nominal ;
// calculate initial quaternion states for the ekf
_state . quat_nominal = Quaternion ( euler_init ) ;
// calculate the amount that the quaternion has changed by
_state_reset_status . quat_change = _state . quat_nominal * quat_before_reset . inversed ( ) ;
// add the reset amount to the output observer buffered data
outputSample output_states ;
unsigned output_length = _output_buffer . get_length ( ) ;
for ( unsigned i = 0 ; i < output_length ; i + + ) {
output_states = _output_buffer . get_from_index ( i ) ;
output_states . quat_nominal * = _state_reset_status . quat_change ;
_output_buffer . push_to_index ( i , output_states ) ;
}
// capture the reset event
_state_reset_status . quat_counter + + ;
// flag the yaw as aligned
_control_status . flags . yaw_align = true ;
// turn on fusion of external vision yaw measurements and disable all magnetoemter fusion
_control_status . flags . ev_yaw = true ;
_control_status . flags . mag_hdg = false ;
_control_status . flags . mag_3D = false ;
_control_status . flags . mag_dec = false ;
ECL_INFO ( " EKF switching to external vision yaw fusion " ) ;
}
}
// determine if we should use the height observation
if ( _params . vdist_sensor_type = = VDIST_SENSOR_EV ) {
_control_status . flags . baro_hgt = false ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = true ;
_fuse_height = true ;
}
// determine if we should use the horizontal position observations
if ( _control_status . flags . ev_pos ) {
_fuse_pos = true ;
// correct position and height for offset relative to IMU
Vector3f pos_offset_body = _params . ev_pos_body - _params . imu_pos_body ;
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body ;
_ev_sample_delayed . posNED ( 0 ) - = pos_offset_earth ( 0 ) ;
_ev_sample_delayed . posNED ( 1 ) - = pos_offset_earth ( 1 ) ;
_ev_sample_delayed . posNED ( 2 ) - = pos_offset_earth ( 2 ) ;
}
// determine if we should use the yaw observation
if ( _control_status . flags . ev_yaw ) {
fuseHeading ( ) ;
}
}
}
void Ekf : : controlOpticalFlowFusion ( )
{
// Check for new optical flow data that has fallen behind the fusion time horizon
if ( _flow_data_ready ) {
// optical flow fusion mode selection logic
if ( ( _params . fusion_mode & MASK_USE_OF ) // optical flow has been selected by the user
& & ! _control_status . flags . opt_flow // we are not yet using flow data
& & _control_status . flags . tilt_align // we know our tilt attitude
& & ( _time_last_imu - _time_last_hagl_fuse ) < 5e5 ) // we have a valid distance to ground estimate
{
// If the heading is not aligned, reset the yaw and magnetic field states
if ( ! _control_status . flags . yaw_align ) {
_control_status . flags . yaw_align = resetMagHeading ( _mag_sample_delayed . mag ) ;
}
// If the heading is valid, start using optical flow aiding
if ( _control_status . flags . yaw_align ) {
// set the flag and reset the fusion timeout
_control_status . flags . opt_flow = true ;
_time_last_of_fuse = _time_last_imu ;
// if we are not using GPS then the velocity and position states and covariances need to be set
if ( ! _control_status . flags . gps ) {
// constrain height above ground to be above minimum possible
float heightAboveGndEst = fmaxf ( ( _terrain_vpos - _state . pos ( 2 ) ) , _params . rng_gnd_clearance ) ;
// calculate absolute distance from focal point to centre of frame assuming a flat earth
float range = heightAboveGndEst / _R_to_earth ( 2 , 2 ) ;
if ( ( range - _params . rng_gnd_clearance ) > 0.3f & & _flow_sample_delayed . dt > 0.05f ) {
// we should have reliable OF measurements so
// calculate X and Y body relative velocities from OF measurements
Vector3f vel_optflow_body ;
vel_optflow_body ( 0 ) = - range * _flow_sample_delayed . flowRadXYcomp ( 1 ) / _flow_sample_delayed . dt ;
vel_optflow_body ( 1 ) = range * _flow_sample_delayed . flowRadXYcomp ( 0 ) / _flow_sample_delayed . dt ;
vel_optflow_body ( 2 ) = 0.0f ;
// rotate from body to earth frame
Vector3f vel_optflow_earth ;
vel_optflow_earth = _R_to_earth * vel_optflow_body ;
// take x and Y components
_state . vel ( 0 ) = vel_optflow_earth ( 0 ) ;
_state . vel ( 1 ) = vel_optflow_earth ( 1 ) ;
} else {
_state . vel ( 0 ) = 0.0f ;
_state . vel ( 1 ) = 0.0f ;
}
// reset the velocity covariance terms
zeroRows ( P , 4 , 5 ) ;
zeroCols ( P , 4 , 5 ) ;
// reset the horizontal velocity variance using the optical flow noise variance
P [ 5 ] [ 5 ] = P [ 4 ] [ 4 ] = sq ( range ) * calcOptFlowMeasVar ( ) ;
if ( ! _control_status . flags . in_air ) {
// we are likely starting OF for the first time so reset the horizontal position and vertical velocity states
_state . pos ( 0 ) = 0.0f ;
_state . pos ( 1 ) = 0.0f ;
// reset the corresponding covariances
// we are by definition at the origin at commencement so variances are also zeroed
zeroRows ( P , 7 , 8 ) ;
zeroCols ( P , 7 , 8 ) ;
// align the output observer to the EKF states
alignOutputFilter ( ) ;
}
}
}
} else if ( ! ( _params . fusion_mode & MASK_USE_OF ) ) {
_control_status . flags . opt_flow = false ;
}
// handle the case when we are relying on optical flow fusion and lose it
if ( _control_status . flags . opt_flow & & ! _control_status . flags . gps ) {
// We are relying on flow aiding to constrain attitude drift so after 5s without aiding we need to do something
if ( ( _time_last_imu - _time_last_of_fuse > 5e6 ) ) {
// Switch to the non-aiding mode, zero the velocity states
// and set the synthetic position to the current estimate
_control_status . flags . opt_flow = false ;
_last_known_posNE ( 0 ) = _state . pos ( 0 ) ;
_last_known_posNE ( 1 ) = _state . pos ( 1 ) ;
_state . vel . setZero ( ) ;
}
}
// fuse the data
if ( _control_status . flags . opt_flow ) {
// Update optical flow bias estimates
calcOptFlowBias ( ) ;
// Fuse optical flow LOS rate observations into the main filter
fuseOptFlow ( ) ;
_last_known_posNE ( 0 ) = _state . pos ( 0 ) ;
_last_known_posNE ( 1 ) = _state . pos ( 1 ) ;
}
}
}
void Ekf : : controlGpsFusion ( )
{
// Check for new GPS data that has fallen behind the fusion time horizon
if ( _gps_data_ready ) {
// Determine if we should use GPS aiding for velocity and horizontal position
// To start using GPS we need angular alignment completed, the local NED origin set and GPS data that has not failed checks recently
if ( ( _params . fusion_mode & MASK_USE_GPS ) & & ! _control_status . flags . gps ) {
if ( _control_status . flags . tilt_align & & _NED_origin_initialised & & ( _time_last_imu - _last_gps_fail_us > 5e6 ) ) {
// If the heading is not aligned, reset the yaw and magnetic field states
if ( ! _control_status . flags . yaw_align ) {
_control_status . flags . yaw_align = resetMagHeading ( _mag_sample_delayed . mag ) ;
}
// If the heading is valid start using gps aiding
if ( _control_status . flags . yaw_align ) {
_control_status . flags . gps = true ;
_time_last_gps = _time_last_imu ;
// if we are not already aiding with optical flow, then we need to reset the position and velocity
if ( ! _control_status . flags . opt_flow ) {
if ( resetPosition ( ) & & resetVelocity ( ) ) {
_control_status . flags . gps = true ;
} else {
_control_status . flags . gps = false ;
}
}
if ( _control_status . flags . gps ) {
ECL_INFO ( " EKF commencing GPS aiding " ) ;
}
}
}
} else if ( ! ( _params . fusion_mode & MASK_USE_GPS ) ) {
_control_status . flags . gps = false ;
}
// handle the case when we are relying on GPS fusion and lose it
if ( _control_status . flags . gps & & ! _control_status . flags . opt_flow ) {
// We are relying on GPS aiding to constrain attitude drift so after 10 seconds without aiding we need to do something
if ( ( _time_last_imu - _time_last_pos_fuse > 10e6 ) & & ( _time_last_imu - _time_last_vel_fuse > 10e6 ) ) {
if ( _time_last_imu - _time_last_gps > 5e5 ) {
// if we don't have gps then we need to switch to the non-aiding mode, zero the velocity states
// and set the synthetic GPS position to the current estimate
_control_status . flags . gps = false ;
_last_known_posNE ( 0 ) = _state . pos ( 0 ) ;
_last_known_posNE ( 1 ) = _state . pos ( 1 ) ;
_state . vel . setZero ( ) ;
ECL_WARN ( " EKF GPS fusion timout - stopping GPS aiding " ) ;
} else {
// Reset states to the last GPS measurement
resetPosition ( ) ;
resetVelocity ( ) ;
ECL_WARN ( " EKF GPS fusion timout - resetting to GPS " ) ;
// Reset the timeout counters
_time_last_pos_fuse = _time_last_imu ;
_time_last_vel_fuse = _time_last_imu ;
}
}
}
// Only use GPS data for position and velocity aiding if enabled
if ( _control_status . flags . gps ) {
_fuse_pos = true ;
_fuse_vert_vel = true ;
_fuse_hor_vel = true ;
// correct velocity for offset relative to IMU
Vector3f ang_rate = _imu_sample_delayed . delta_ang * ( 1.0f / _imu_sample_delayed . delta_ang_dt ) ;
Vector3f pos_offset_body = _params . gps_pos_body - _params . imu_pos_body ;
Vector3f vel_offset_body = cross_product ( ang_rate , pos_offset_body ) ;
Vector3f vel_offset_earth = _R_to_earth * vel_offset_body ;
_gps_sample_delayed . vel - = vel_offset_earth ;
// correct position and height for offset relative to IMU
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body ;
_gps_sample_delayed . pos ( 0 ) - = pos_offset_earth ( 0 ) ;
_gps_sample_delayed . pos ( 1 ) - = pos_offset_earth ( 1 ) ;
_gps_sample_delayed . hgt + = pos_offset_earth ( 2 ) ;
}
// Determine if GPS should be used as the height source
if ( ( ( _params . vdist_sensor_type = = VDIST_SENSOR_GPS ) | | _control_status . flags . gps ) & & ! _gps_hgt_faulty ) {
_control_status . flags . baro_hgt = false ;
_control_status . flags . gps_hgt = true ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = false ;
_fuse_height = true ;
}
}
}
void Ekf : : controlHeightSensorTimeouts ( )
{
/*
* Handle the case where we have not fused height measurements recently and
* uncertainty exceeds the max allowable . Reset using the best available height
* measurement source , continue using it after the reset and declare the current
* source failed if we have switched .
*/
// check for inertial sensing errors as evidenced by the vertical innovations having the same sign and not stale
bool bad_vert_accel = ( _control_status . flags . baro_hgt & & // we can only run this check if vertical position and velocity observations are indepedant
( _vel_pos_innov [ 5 ] * _vel_pos_innov [ 2 ] > 0.0f ) & & // vertical position and velocity sensors are in agreement
( ( _imu_sample_delayed . time_us - _baro_sample_delayed . time_us ) < 2 * BARO_MAX_INTERVAL ) & & // vertical position data is fresh
( ( _imu_sample_delayed . time_us - _gps_sample_delayed . time_us ) < 2 * GPS_MAX_INTERVAL ) & & // vertical velocity data is freshs
_vel_pos_test_ratio [ 2 ] > 1.0f & & // vertical velocty innovations have failed innovation consistency checks
_vel_pos_test_ratio [ 5 ] > 1.0f ) ; // vertical position innovations have failed innovation consistency checks
// record time of last bad vert accel
if ( bad_vert_accel ) {
_time_bad_vert_accel = _time_last_imu ;
}
if ( ( P [ 9 ] [ 9 ] > sq ( _params . hgt_reset_lim ) ) & & ( ( _time_last_imu - _time_last_hgt_fuse ) > 5e6 ) ) {
// boolean that indicates we will do a height reset
bool reset_height = false ;
// handle the case where we are using baro for height
if ( _control_status . flags . baro_hgt ) {
// check if GPS height is available
gpsSample gps_init = _gps_buffer . get_newest ( ) ;
bool gps_hgt_available = ( ( _time_last_imu - gps_init . time_us ) < 2 * GPS_MAX_INTERVAL ) ;
bool gps_hgt_accurate = ( gps_init . vacc < _params . req_vacc ) ;
baroSample baro_init = _baro_buffer . get_newest ( ) ;
bool baro_hgt_available = ( ( _time_last_imu - baro_init . time_us ) < 2 * BARO_MAX_INTERVAL ) ;
// check for inertial sensing errors in the last 10 seconds
bool prev_bad_vert_accel = ( _time_last_imu - _time_bad_vert_accel < 10E6 ) ;
// reset to GPS if adequate GPS data is available and the timeout cannot be blamed on IMU data
bool reset_to_gps = gps_hgt_available & & gps_hgt_accurate & & ! _gps_hgt_faulty & & ! prev_bad_vert_accel ;
// reset to GPS if GPS data is available and there is no Baro data
reset_to_gps = reset_to_gps | | ( gps_hgt_available & & ! baro_hgt_available ) ;
// reset to Baro if we are not doing a GPS reset and baro data is available
bool reset_to_baro = ! reset_to_gps & & baro_hgt_available ;
if ( reset_to_gps ) {
// set height sensor health
_baro_hgt_faulty = true ;
_gps_hgt_faulty = false ;
// declare the GPS height healthy
_gps_hgt_faulty = false ;
// reset the height mode
_control_status . flags . baro_hgt = false ;
_control_status . flags . gps_hgt = true ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = false ;
// request a reset
reset_height = true ;
ECL_INFO ( " EKF baro hgt timeout - reset to GPS " ) ;
} else if ( reset_to_baro ) {
// set height sensor health
_baro_hgt_faulty = false ;
// reset the height mode
_control_status . flags . baro_hgt = true ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = false ;
// request a reset
reset_height = true ;
ECL_INFO ( " EKF baro hgt timeout - reset to baro " ) ;
} else {
// we have nothing we can reset to
// deny a reset
reset_height = false ;
}
}
// handle the case we are using GPS for height
if ( _control_status . flags . gps_hgt ) {
// check if GPS height is available
gpsSample gps_init = _gps_buffer . get_newest ( ) ;
bool gps_hgt_available = ( ( _time_last_imu - gps_init . time_us ) < 2 * GPS_MAX_INTERVAL ) ;
bool gps_hgt_accurate = ( gps_init . vacc < _params . req_vacc ) ;
// check the baro height source for consistency and freshness
baroSample baro_init = _baro_buffer . get_newest ( ) ;
bool baro_data_fresh = ( ( _time_last_imu - baro_init . time_us ) < 2 * BARO_MAX_INTERVAL ) ;
float baro_innov = _state . pos ( 2 ) - ( _hgt_sensor_offset - baro_init . hgt + _baro_hgt_offset ) ;
bool baro_data_consistent = fabsf ( baro_innov ) < ( sq ( _params . baro_noise ) + P [ 8 ] [ 8 ] ) * sq ( _params . baro_innov_gate ) ;
// if baro data is acceptable and GPS data is inaccurate, reset height to baro
bool reset_to_baro = baro_data_consistent & & baro_data_fresh & & ! _baro_hgt_faulty & & ! gps_hgt_accurate ;
// if GPS height is unavailable and baro data is available, reset height to baro
reset_to_baro = reset_to_baro | | ( ! gps_hgt_available & & baro_data_fresh ) ;
// if we cannot switch to baro and GPS data is available, reset height to GPS
bool reset_to_gps = ! reset_to_baro & & gps_hgt_available ;
if ( reset_to_baro ) {
// set height sensor health
_gps_hgt_faulty = true ;
_baro_hgt_faulty = false ;
// reset the height mode
_control_status . flags . baro_hgt = true ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = false ;
// request a reset
reset_height = true ;
ECL_INFO ( " EKF gps hgt timeout - reset to baro " ) ;
} else if ( reset_to_gps ) {
// set height sensor health
_gps_hgt_faulty = false ;
// reset the height mode
_control_status . flags . baro_hgt = false ;
_control_status . flags . gps_hgt = true ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = false ;
// request a reset
reset_height = true ;
ECL_INFO ( " EKF gps hgt timeout - reset to GPS " ) ;
} else {
// we have nothing to reset to
reset_height = false ;
}
}
// handle the case we are using range finder for height
if ( _control_status . flags . rng_hgt ) {
// check if range finder data is available
rangeSample rng_init = _range_buffer . get_newest ( ) ;
bool rng_data_available = ( ( _time_last_imu - rng_init . time_us ) < 2 * RNG_MAX_INTERVAL ) ;
// check if baro data is available
baroSample baro_init = _baro_buffer . get_newest ( ) ;
bool baro_data_available = ( ( _time_last_imu - baro_init . time_us ) < 2 * BARO_MAX_INTERVAL ) ;
// reset to baro if we have no range data and baro data is available
bool reset_to_baro = ! rng_data_available & & baro_data_available ;
// reset to range data if it is available
bool reset_to_rng = rng_data_available ;
if ( reset_to_baro ) {
// set height sensor health
_rng_hgt_faulty = true ;
_baro_hgt_faulty = false ;
// reset the height mode
_control_status . flags . baro_hgt = true ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = false ;
// request a reset
reset_height = true ;
ECL_INFO ( " EKF rng hgt timeout - reset to baro " ) ;
} else if ( reset_to_rng ) {
// set height sensor health
_rng_hgt_faulty = false ;
// reset the height mode
_control_status . flags . baro_hgt = false ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = true ;
_control_status . flags . ev_hgt = false ;
// request a reset
reset_height = true ;
ECL_INFO ( " EKF rng hgt timeout - reset to rng hgt " ) ;
} else {
// we have nothing to reset to
reset_height = false ;
}
}
// handle the case where we are using external vision data for height
if ( _control_status . flags . ev_hgt ) {
// check if vision data is available
extVisionSample ev_init = _ext_vision_buffer . get_newest ( ) ;
bool ev_data_available = ( ( _time_last_imu - ev_init . time_us ) < 2 * EV_MAX_INTERVAL ) ;
// check if baro data is available
baroSample baro_init = _baro_buffer . get_newest ( ) ;
bool baro_data_available = ( ( _time_last_imu - baro_init . time_us ) < 2 * BARO_MAX_INTERVAL ) ;
// reset to baro if we have no vision data and baro data is available
bool reset_to_baro = ! ev_data_available & & baro_data_available ;
// reset to ev data if it is available
bool reset_to_ev = ev_data_available ;
if ( reset_to_baro ) {
// set height sensor health
_rng_hgt_faulty = true ;
_baro_hgt_faulty = false ;
// reset the height mode
_control_status . flags . baro_hgt = true ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = false ;
// request a reset
reset_height = true ;
ECL_INFO ( " EKF ev hgt timeout - reset to baro " ) ;
} else if ( reset_to_ev ) {
// reset the height mode
_control_status . flags . baro_hgt = false ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = true ;
// request a reset
reset_height = true ;
ECL_INFO ( " EKF ev hgt timeout - reset to ev hgt " ) ;
} else {
// we have nothing to reset to
reset_height = false ;
}
}
// Reset vertical position and velocity states to the last measurement
if ( reset_height ) {
resetHeight ( ) ;
// Reset the timout timer
_time_last_hgt_fuse = _time_last_imu ;
}
}
}
void Ekf : : controlBaroFusion ( )
{
if ( _baro_data_ready ) {
// determine if we should use the baro as our height source
uint64_t last_baro_time_us = _baro_sample_delayed . time_us ;
if ( ( ( _params . vdist_sensor_type = = VDIST_SENSOR_BARO ) | | _control_status . flags . baro_hgt ) & & ! _baro_hgt_faulty ) {
_control_status . flags . baro_hgt = true ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = false ;
_control_status . flags . ev_hgt = false ;
_fuse_height = true ;
}
// calculate a filtered offset between the baro origin and local NED origin if we are not using the baro as a height reference
if ( ! _control_status . flags . baro_hgt ) {
float local_time_step = 1e-6 f * ( float ) ( _baro_sample_delayed . time_us - last_baro_time_us ) ;
local_time_step = math : : constrain ( local_time_step , 0.0f , 1.0f ) ;
last_baro_time_us = _baro_sample_delayed . time_us ;
float offset_rate_correction = 0.1f * ( _baro_sample_delayed . hgt - _hgt_sensor_offset ) + _state . pos ( 2 ) - _baro_hgt_offset ;
_baro_hgt_offset + = local_time_step * math : : constrain ( offset_rate_correction , - 0.1f , 0.1f ) ;
}
}
}
void Ekf : : controlRangeFinderFusion ( )
{
// determine if we should use range finder data for height
if ( _range_data_ready ) {
// set the height data source to range if requested
if ( ( _params . vdist_sensor_type = = VDIST_SENSOR_RANGE ) & & ! _rng_hgt_faulty ) {
_control_status . flags . baro_hgt = false ;
_control_status . flags . gps_hgt = false ;
_control_status . flags . rng_hgt = true ;
_control_status . flags . ev_hgt = false ;
}
// correct the range data for position offset relative to the IMU
Vector3f pos_offset_body = _params . rng_pos_body - _params . imu_pos_body ;
Vector3f pos_offset_earth = _R_to_earth * pos_offset_body ;
_range_sample_delayed . rng + = pos_offset_earth ( 2 ) / _R_to_earth ( 2 , 2 ) ;
// always fuse available range finder data into a terrain height estimator if the estimator has been initialised
if ( _terrain_initialised ) {
fuseHagl ( ) ;
}
// only use range finder as a height observation in the main filter if specifically enabled
if ( _control_status . flags . rng_hgt ) {
_fuse_height = true ;
}
} else if ( ( _time_last_imu - _time_last_hgt_fuse ) > 2 * RNG_MAX_INTERVAL & & _control_status . flags . rng_hgt ) {
// If we are supposed to be using range finder data as the primary height sensor, have missed or rejected measurements
// and are on the ground, then synthesise a measurement at the expected on ground value
if ( ! _control_status . flags . in_air ) {
_range_sample_delayed . rng = _params . rng_gnd_clearance ;
_range_sample_delayed . time_us = _imu_sample_delayed . time_us ;
}
_fuse_height = true ;
}
}
void Ekf : : controlAirDataFusion ( )
{
// TODO This is just to get the logic inside but we will only start fusion once we tested this again
//if (_tas_data_ready) {
if ( false ) {
fuseAirspeed ( ) ;
}
// control airspeed fusion - TODO move to a function
// if the airspeed measurements have timed out for 10 seconds we declare the wind estimate to be invalid
if ( _time_last_imu - _time_last_arsp_fuse > 10e6 | | _time_last_arsp_fuse = = 0 ) {
_control_status . flags . wind = false ;
} else {
_control_status . flags . wind = true ;
}
}
void Ekf : : controlMagFusion ( )
{
// If we are using external vision data for heading then no magnetometer fusion is used
if ( _control_status . flags . ev_yaw ) {
return ;
}
// If we are on ground, store the local position and time to use as a reference
if ( ! _control_status . flags . in_air ) {
_last_on_ground_posD = _state . pos ( 2 ) ;
}
// checs for new magnetometer data tath has fallen beind the fusion time horizon
if ( _mag_data_ready ) {
// Determine if we should use simple magnetic heading fusion which works better when there are large external disturbances
// or the more accurate 3-axis fusion
if ( _params . mag_fusion_type = = MAG_FUSE_TYPE_AUTO ) {
// start 3D fusion if in-flight and height has increased sufficiently
// to be away from ground magnetic anomalies
// don't switch back to heading fusion until we are back on the ground
bool height_achieved = ( _last_on_ground_posD - _state . pos ( 2 ) ) > 1.5f ;
bool use_3D_fusion = _control_status . flags . in_air & & ( _control_status . flags . mag_3D | | height_achieved ) ;
if ( use_3D_fusion & & _control_status . flags . tilt_align ) {
// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
if ( ! _control_status . flags . mag_3D ) {
_control_status . flags . yaw_align = resetMagHeading ( _mag_sample_delayed . mag ) ;
}
// use 3D mag fusion when airborne
_control_status . flags . mag_hdg = false ;
_control_status . flags . mag_3D = true ;
} else {
// use heading fusion when on the ground
_control_status . flags . mag_hdg = true ;
_control_status . flags . mag_3D = false ;
}
} else if ( _params . mag_fusion_type = = MAG_FUSE_TYPE_HEADING ) {
// always use heading fusion
_control_status . flags . mag_hdg = true ;
_control_status . flags . mag_3D = false ;
} else if ( _params . mag_fusion_type = = MAG_FUSE_TYPE_3D ) {
// if transitioning into 3-axis fusion mode, we need to initialise the yaw angle and field states
if ( ! _control_status . flags . mag_3D ) {
_control_status . flags . yaw_align = resetMagHeading ( _mag_sample_delayed . mag ) ;
}
// always use 3-axis mag fusion
_control_status . flags . mag_hdg = false ;
_control_status . flags . mag_3D = true ;
} else {
// do no magnetometer fusion at all
_control_status . flags . mag_hdg = false ;
_control_status . flags . mag_3D = false ;
}
// if we are using 3-axis magnetometer fusion, but without external aiding, then the declination must be fused as an observation to prevent long term heading drift
// fusing declination when gps aiding is available is optional, but recommneded to prevent problem if the vehicle is static for extended periods of time
if ( _control_status . flags . mag_3D & & ( ! _control_status . flags . gps | | ( _params . mag_declination_source & MASK_FUSE_DECL ) ) ) {
_control_status . flags . mag_dec = true ;
} else {
_control_status . flags . mag_dec = false ;
}
// fuse magnetometer data using the selected methods
if ( _control_status . flags . mag_3D & & _control_status . flags . yaw_align ) {
fuseMag ( ) ;
if ( _control_status . flags . mag_dec ) {
fuseDeclination ( ) ;
}
} else if ( _control_status . flags . mag_hdg & & _control_status . flags . yaw_align ) {
// fusion of an Euler yaw angle from either a 321 or 312 rotation sequence
fuseHeading ( ) ;
} else {
// do no fusion at all
}
}
}
void Ekf : : controlVelPosFusion ( )
{
// if we aren't doing any aiding, fake GPS measurements at the last known position to constrain drift
// Coincide fake measurements with baro data for efficiency with a minimum fusion rate of 5Hz
if ( ! _control_status . flags . gps & & ! _control_status . flags . opt_flow & & ! _control_status . flags . ev_pos
& & ( ( _time_last_imu - _time_last_fake_gps > 2e5 ) | | _fuse_height ) ) {
_fuse_pos = true ;
_time_last_fake_gps = _time_last_imu ;
}
// Fuse available NED velocity and position data into the main filter
if ( _fuse_height | | _fuse_pos | | _fuse_hor_vel | | _fuse_vert_vel ) {
fuseVelPosHeight ( ) ;
_fuse_hor_vel = _fuse_vert_vel = _fuse_pos = _fuse_height = false ;
}
}