/****************************************************************************
*
* Copyright ( c ) 2015 Estimation and Control Library ( ECL ) . All rights reserved .
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met :
*
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in
* the documentation and / or other materials provided with the
* distribution .
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission .
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* " AS IS " AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT
* LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT ,
* INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES ( INCLUDING ,
* BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS
* OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
* LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/**
* @ file ekf . h
* Class for core functions for ekf attitude and position estimator .
*
* @ author Roman Bast < bapstroman @ gmail . com >
* @ author Paul Riseborough < p_riseborough @ live . com . au >
*
*/
# pragma once
# include "estimator_interface.h"
class Ekf : public EstimatorInterface
{
public :
Ekf ( ) = default ;
virtual ~ Ekf ( ) = default ;
// initialise variables to sane values (also interface class)
bool init ( uint64_t timestamp ) override ;
// set the internal states and status to their default value
void reset ( ) override ;
bool initialiseTilt ( ) ;
// should be called every time new data is pushed into the filter
bool update ( ) override ;
void getGpsVelPosInnov ( float hvel [ 2 ] , float & vvel , float hpos [ 2 ] , float & vpos ) override ;
void getGpsVelPosInnovVar ( float hvel [ 2 ] , float & vvel , float hpos [ 2 ] , float & vpos ) override ;
void getGpsVelPosInnovRatio ( float & hvel , float & vvel , float & hpos , float & vpos ) override ;
void getEvVelPosInnov ( float hvel [ 2 ] , float & vvel , float hpos [ 2 ] , float & vpos ) override ;
void getEvVelPosInnovVar ( float hvel [ 2 ] , float & vvel , float hpos [ 2 ] , float & vpos ) override ;
void getEvVelPosInnovRatio ( float & hvel , float & vvel , float & hpos , float & vpos ) override ;
void getBaroHgtInnov ( float & baro_hgt_innov ) override ;
void getBaroHgtInnovVar ( float & baro_hgt_innov_var ) override ;
void getBaroHgtInnovRatio ( float & baro_hgt_innov_ratio ) override ;
void getRngHgtInnov ( float & rng_hgt_innov ) override ;
void getRngHgtInnovVar ( float & rng_hgt_innov_var ) override ;
void getRngHgtInnovRatio ( float & rng_hgt_innov_ratio ) override ;
void getAuxVelInnov ( float aux_vel_innov [ 2 ] ) override ;
void getAuxVelInnovVar ( float aux_vel_innov [ 2 ] ) override ;
void getAuxVelInnovRatio ( float & aux_vel_innov_ratio ) override ;
void getFlowInnov ( float flow_innov [ 2 ] ) override ;
void getFlowInnovVar ( float flow_innov_var [ 2 ] ) override ;
void getFlowInnovRatio ( float & flow_innov_ratio ) override ;
void getHeadingInnov ( float & heading_innov ) override ;
void getHeadingInnovVar ( float & heading_innov_var ) override ;
void getHeadingInnovRatio ( float & heading_innov_ratio ) override ;
void getMagInnov ( float mag_innov [ 3 ] ) override ;
void getMagInnovVar ( float mag_innov_var [ 3 ] ) override ;
void getMagInnovRatio ( float & mag_innov_ratio ) override ;
void getDragInnov ( float drag_innov [ 2 ] ) override ;
void getDragInnovVar ( float drag_innov_var [ 2 ] ) override ;
void getDragInnovRatio ( float drag_innov_ratio [ 2 ] ) override ;
void getAirspeedInnov ( float & airspeed_innov ) override ;
void getAirspeedInnovVar ( float & airspeed_innov_var ) override ;
void getAirspeedInnovRatio ( float & airspeed_innov_ratio ) override ;
void getBetaInnov ( float & beta_innov ) override ;
void getBetaInnovVar ( float & beta_innov_var ) override ;
void getBetaInnovRatio ( float & beta_innov_ratio ) override ;
void getHaglInnov ( float & hagl_innov ) override ;
void getHaglInnovVar ( float & hagl_innov_var ) override ;
void getHaglInnovRatio ( float & hagl_innov_ratio ) override ;
// get the state vector at the delayed time horizon
void get_state_delayed ( float * state ) override ;
// get the wind velocity in m/s
void get_wind_velocity ( float * wind ) override ;
// get the wind velocity var
void get_wind_velocity_var ( float * wind_var ) override ;
// get the true airspeed in m/s
void get_true_airspeed ( float * tas ) override ;
// get the full covariance matrix
matrix : : SquareMatrix < float , 24 > covariances ( ) const { return P ; }
// get the diagonal elements of the covariance matrix
matrix : : Vector < float , 24 > covariances_diagonal ( ) const { return P . diag ( ) ; }
// get the orientation (quaterion) covariances
matrix : : SquareMatrix < float , 4 > orientation_covariances ( ) const { return P . slice < 4 , 4 > ( 0 , 0 ) ; }
// get the linear velocity covariances
matrix : : SquareMatrix < float , 3 > velocity_covariances ( ) const { return P . slice < 3 , 3 > ( 4 , 4 ) ; }
// get the position covariances
matrix : : SquareMatrix < float , 3 > position_covariances ( ) const { return P . slice < 3 , 3 > ( 7 , 7 ) ; }
// ask estimator for sensor data collection decision and do any preprocessing if required, returns true if not defined
bool collect_gps ( const gps_message & gps ) override ;
// get the ekf WGS-84 origin position and height and the system time it was last set
// return true if the origin is valid
bool get_ekf_origin ( uint64_t * origin_time , map_projection_reference_s * origin_pos , float * origin_alt ) override ;
// get the 1-sigma horizontal and vertical position uncertainty of the ekf WGS-84 position
void get_ekf_gpos_accuracy ( float * ekf_eph , float * ekf_epv ) override ;
// get the 1-sigma horizontal and vertical position uncertainty of the ekf local position
void get_ekf_lpos_accuracy ( float * ekf_eph , float * ekf_epv ) override ;
// get the 1-sigma horizontal and vertical velocity uncertainty
void get_ekf_vel_accuracy ( float * ekf_evh , float * ekf_evv ) override ;
// get the vehicle control limits required by the estimator to keep within sensor limitations
void get_ekf_ctrl_limits ( float * vxy_max , float * vz_max , float * hagl_min , float * hagl_max ) override ;
/*
Reset all IMU bias states and covariances to initial alignment values .
Use when the IMU sensor has changed .
Returns true if reset performed , false if rejected due to less than 10 seconds lapsed since last reset .
*/
bool reset_imu_bias ( ) override ;
void get_vel_var ( Vector3f & vel_var ) override ;
void get_pos_var ( Vector3f & pos_var ) override ;
// return an array containing the output predictor angular, velocity and position tracking
// error magnitudes (rad), (m/sec), (m)
void get_output_tracking_error ( float error [ 3 ] ) override ;
/*
Returns following IMU vibration metrics in the following array locations
0 : Gyro delta angle coning metric = filtered length of ( delta_angle x prev_delta_angle )
1 : Gyro high frequency vibe = filtered length of ( delta_angle - prev_delta_angle )
2 : Accel high frequency vibe = filtered length of ( delta_velocity - prev_delta_velocity )
*/
void get_imu_vibe_metrics ( float vibe [ 3 ] ) override ;
/*
First argument returns GPS drift metrics in the following array locations
0 : Horizontal position drift rate ( m / s )
1 : Vertical position drift rate ( m / s )
2 : Filtered horizontal velocity ( m / s )
Second argument returns true when IMU movement is blocking the drift calculation
Function returns true if the metrics have been updated and not returned previously by this function
*/
bool get_gps_drift_metrics ( float drift [ 3 ] , bool * blocked ) override ;
// return true if the global position estimate is valid
bool global_position_is_valid ( ) override ;
// check if the EKF is dead reckoning horizontal velocity using inertial data only
void update_deadreckoning_status ( ) ;
bool isTerrainEstimateValid ( ) const override ;
void updateTerrainValidity ( ) ;
// get the estimated terrain vertical position relative to the NED origin
void getTerrainVertPos ( float * ret ) override ;
// get the terrain variance
float get_terrain_var ( ) const { return _terrain_var ; }
// get the accelerometer bias in m/s/s
void get_accel_bias ( float bias [ 3 ] ) override ;
// get the gyroscope bias in rad/s
void get_gyro_bias ( float bias [ 3 ] ) override ;
// get GPS check status
void get_gps_check_status ( uint16_t * val ) override ;
// return the amount the local vertical position changed in the last reset and the number of reset events
void get_posD_reset ( float * delta , uint8_t * counter ) override { * delta = _state_reset_status . posD_change ; * counter = _state_reset_status . posD_counter ; }
// return the amount the local vertical velocity changed in the last reset and the number of reset events
void get_velD_reset ( float * delta , uint8_t * counter ) override { * delta = _state_reset_status . velD_change ; * counter = _state_reset_status . velD_counter ; }
// return the amount the local horizontal position changed in the last reset and the number of reset events
void get_posNE_reset ( float delta [ 2 ] , uint8_t * counter ) override
{
_state_reset_status . posNE_change . copyTo ( delta ) ;
* counter = _state_reset_status . posNE_counter ;
}
// return the amount the local horizontal velocity changed in the last reset and the number of reset events
void get_velNE_reset ( float delta [ 2 ] , uint8_t * counter ) override
{
_state_reset_status . velNE_change . copyTo ( delta ) ;
* counter = _state_reset_status . velNE_counter ;
}
// return the amount the quaternion has changed in the last reset and the number of reset events
void get_quat_reset ( float delta_quat [ 4 ] , uint8_t * counter ) override
{
_state_reset_status . quat_change . copyTo ( delta_quat ) ;
* counter = _state_reset_status . quat_counter ;
}
// get EKF innovation consistency check status information comprising of:
// status - a bitmask integer containing the pass/fail status for each EKF measurement innovation consistency check
// Innovation Test Ratios - these are the ratio of the innovation to the acceptance threshold.
// A value > 1 indicates that the sensor measurement has exceeded the maximum acceptable level and has been rejected by the EKF
// Where a measurement type is a vector quantity, eg magnetometer, GPS position, etc, the maximum value is returned.
void get_innovation_test_status ( uint16_t & status , float & mag , float & vel , float & pos , float & hgt , float & tas , float & hagl , float & beta ) override ;
// return a bitmask integer that describes which state estimates can be used for flight control
void get_ekf_soln_status ( uint16_t * status ) override ;
// return the quaternion defining the rotation from the External Vision to the EKF reference frame
void get_ev2ekf_quaternion ( float * quat ) override ;
// use the latest IMU data at the current time horizon.
Quatf calculate_quaternion ( ) const ;
// set minimum continuous period without GPS fail required to mark a healthy GPS status
void set_min_required_gps_health_time ( uint32_t time_us ) { _min_gps_health_time_us = time_us ; }
private :
static constexpr uint8_t _k_num_states { 24 } ; ///< number of EKF states
struct {
uint8_t velNE_counter ; ///< number of horizontal position reset events (allow to wrap if count exceeds 255)
uint8_t velD_counter ; ///< number of vertical velocity reset events (allow to wrap if count exceeds 255)
uint8_t posNE_counter ; ///< number of horizontal position reset events (allow to wrap if count exceeds 255)
uint8_t posD_counter ; ///< number of vertical position reset events (allow to wrap if count exceeds 255)
uint8_t quat_counter ; ///< number of quaternion reset events (allow to wrap if count exceeds 255)
Vector2f velNE_change ; ///< North East velocity change due to last reset (m)
float velD_change ; ///< Down velocity change due to last reset (m/sec)
Vector2f posNE_change ; ///< North, East position change due to last reset (m)
float posD_change ; ///< Down position change due to last reset (m)
Quatf quat_change ; ///< quaternion delta due to last reset - multiply pre-reset quaternion by this to get post-reset quaternion
} _state_reset_status { } ; ///< reset event monitoring structure containing velocity, position, height and yaw reset information
float _dt_ekf_avg { FILTER_UPDATE_PERIOD_S } ; ///< average update rate of the ekf
float _dt_update { 0.01f } ; ///< delta time since last ekf update. This time can be used for filters which run at the same rate as the Ekf::update() function. (sec)
stateSample _state { } ; ///< state struct of the ekf running at the delayed time horizon
bool _filter_initialised { false } ; ///< true when the EKF sttes and covariances been initialised
bool _fuse_height { false } ; ///< true when baro height data should be fused
bool _fuse_pos { false } ; ///< true when gps position data should be fused
bool _fuse_hor_vel { false } ; ///< true when gps horizontal velocity measurement should be fused
bool _fuse_vert_vel { false } ; ///< true when gps vertical velocity measurement should be fused
bool _fuse_hor_vel_aux { false } ; ///< true when auxiliary horizontal velocity measurement should be fused
// variables used when position data is being fused using a relative position odometry model
bool _fuse_hpos_as_odom { false } ; ///< true when the NE position data is being fused using an odometry assumption
Vector3f _pos_meas_prev ; ///< previous value of NED position measurement fused using odometry assumption (m)
Vector2f _hpos_pred_prev ; ///< previous value of NE position state used by odometry fusion (m)
bool _hpos_prev_available { false } ; ///< true when previous values of the estimate and measurement are available for use
AxisAnglef _ev_rot_vec_filt ; ///< filtered rotation vector defining the rotation EV to EKF reference, initiliazied to zero rotation (rad)
Dcmf _R_ev_to_ekf ; ///< transformation matrix that rotates observations from the EV to the EKF navigation frame, initialized with Identity
uint64_t _ev_rot_last_time_us { 0 } ; ///< previous time that the calculation of the EV to EKF rotation matrix was updated (uSec)
bool _R_ev_to_ekf_initialised { 0 } ; ///< _R_ev_to_ekf should only be initialised once in the beginning through the reset function
// booleans true when fresh sensor data is available at the fusion time horizon
bool _gps_data_ready { false } ; ///< true when new GPS data has fallen behind the fusion time horizon and is available to be fused
bool _mag_data_ready { false } ; ///< true when new magnetometer data has fallen behind the fusion time horizon and is available to be fused
bool _baro_data_ready { false } ; ///< true when new baro height data has fallen behind the fusion time horizon and is available to be fused
bool _range_data_ready { false } ; ///< true when new range finder data has fallen behind the fusion time horizon and is available to be fused
bool _flow_data_ready { false } ; ///< true when the leading edge of the optical flow integration period has fallen behind the fusion time horizon
bool _ev_data_ready { false } ; ///< true when new external vision system data has fallen behind the fusion time horizon and is available to be fused
bool _tas_data_ready { false } ; ///< true when new true airspeed data has fallen behind the fusion time horizon and is available to be fused
bool _flow_for_terrain_data_ready { false } ; /// same flag as "_flow_data_ready" but used for separate terrain estimator
uint64_t _time_ins_deadreckon_start { 0 } ; ///< amount of time we have been doing inertial only deadreckoning (uSec)
bool _using_synthetic_position { false } ; ///< true if we are using a synthetic position to constrain drift
uint64_t _time_last_hor_pos_fuse { 0 } ; ///< time the last fusion of horizontal position measurements was performed (uSec)
uint64_t _time_last_hgt_fuse { 0 } ; ///< time the last fusion of vertical position measurements was performed (uSec)
uint64_t _time_last_hor_vel_fuse { 0 } ; ///< time the last fusion of horizontal velocity measurements was performed (uSec)
uint64_t _time_last_ver_vel_fuse { 0 } ; ///< time the last fusion of verticalvelocity measurements was performed (uSec)
uint64_t _time_last_delpos_fuse { 0 } ; ///< time the last fusion of incremental horizontal position measurements was performed (uSec)
uint64_t _time_last_of_fuse { 0 } ; ///< time the last fusion of optical flow measurements were performed (uSec)
uint64_t _time_last_arsp_fuse { 0 } ; ///< time the last fusion of airspeed measurements were performed (uSec)
uint64_t _time_last_beta_fuse { 0 } ; ///< time the last fusion of synthetic sideslip measurements were performed (uSec)
uint64_t _time_last_rng_ready { 0 } ; ///< time the last range finder measurement was ready (uSec)
uint64_t _time_last_mag { 0 } ; ///< measurement time of last magnetomter sample (uSec)
uint64_t _time_last_fake_pos { 0 } ; ///< last time we faked position measurements to constrain tilt errors during operation without external aiding (uSec)
Vector2f _last_known_posNE ; ///< last known local NE position vector (m)
float _imu_collection_time_adj { 0.0f } ; ///< the amount of time the IMU collection needs to be advanced to meet the target set by FILTER_UPDATE_PERIOD_MS (sec)
uint64_t _time_acc_bias_check { 0 } ; ///< last time the accel bias check passed (uSec)
uint64_t _delta_time_baro_us { 0 } ; ///< delta time between two consecutive delayed baro samples from the buffer (uSec)
uint64_t _last_imu_bias_cov_reset_us { 0 } ; ///< time the last reset of IMU delta angle and velocity state covariances was performed (uSec)
Vector3f _earth_rate_NED ; ///< earth rotation vector (NED) in rad/s
Dcmf _R_to_earth ; ///< transformation matrix from body frame to earth frame from last EKF prediction
// used by magnetometer fusion mode selection
Vector2f _accel_lpf_NE ; ///< Low pass filtered horizontal earth frame acceleration (m/sec**2)
float _yaw_delta_ef { 0.0f } ; ///< Recent change in yaw angle measured about the earth frame D axis (rad)
float _yaw_rate_lpf_ef { 0.0f } ; ///< Filtered angular rate about earth frame D axis (rad/sec)
bool _mag_bias_observable { false } ; ///< true when there is enough rotation to make magnetometer bias errors observable
bool _yaw_angle_observable { false } ; ///< true when there is enough horizontal acceleration to make yaw observable
uint64_t _time_yaw_started { 0 } ; ///< last system time in usec that a yaw rotation manoeuvre was detected
uint8_t _num_bad_flight_yaw_events { 0 } ; ///< number of times a bad heading has been detected in flight and required a yaw reset
uint64_t _mag_use_not_inhibit_us { 0 } ; ///< last system time in usec before magnetometer use was inhibited
bool _mag_use_inhibit { false } ; ///< true when magnetometer use is being inhibited
bool _mag_use_inhibit_prev { false } ; ///< true when magnetometer use was being inhibited the previous frame
bool _mag_inhibit_yaw_reset_req { false } ; ///< true when magnetometer inhibit has been active for long enough to require a yaw reset when conditions improve.
float _last_static_yaw { 0.0f } ; ///< last yaw angle recorded when on ground motion checks were passing (rad)
bool _mag_yaw_reset_req { false } ; ///< true when a reset of the yaw using the magnetometer data has been requested
bool _mag_decl_cov_reset { false } ; ///< true after the fuseDeclination() function has been used to modify the earth field covariances after a magnetic field reset event.
bool _synthetic_mag_z_active { false } ; ///< true if we are generating synthetic magnetometer Z measurements
matrix : : SquareMatrix < float , _k_num_states > P ; ///< state covariance matrix
Vector3f _delta_vel_bias_var_accum ; ///< kahan summation algorithm accumulator for delta velocity bias variance
Vector3f _delta_angle_bias_var_accum ; ///< kahan summation algorithm accumulator for delta angle bias variance
Vector3f _gps_vel_innov ; ///< GPS velocity innovations (m/sec)
Vector3f _gps_vel_innov_var ; ///< GPS velocity innovation variances ((m/sec)**2)
Vector3f _gps_pos_innov ; ///< GPS position innovations (m)
Vector3f _gps_pos_innov_var ; ///< GPS position innovation variances (m**2)
Vector3f _ev_vel_innov ; ///< external vision velocity innovations (m/sec)
Vector3f _ev_vel_innov_var ; ///< external vision velocity innovation variances ((m/sec)**2)
Vector3f _ev_pos_innov ; ///< external vision position innovations (m)
Vector3f _ev_pos_innov_var ; ///< external vision position innovation variances (m**2)
Vector3f _baro_hgt_innov ; ///< baro hgt innovations (m)
Vector3f _baro_hgt_innov_var ; ///< baro hgt innovation variances (m**2)
Vector3f _rng_hgt_innov ; ///< range hgt innovations (m)
Vector3f _rng_hgt_innov_var ; ///< range hgt innovation variances (m**2)
Vector3f _aux_vel_innov ; ///< horizontal auxiliary velocity innovations: (m/sec)
Vector3f _aux_vel_innov_var ; ///< horizontal auxiliary velocity innovation variances: ((m/sec)**2)
float _heading_innov { 0.0f } ; ///< heading measurement innovation (rad)
float _heading_innov_var { 0.0f } ; ///< heading measurement innovation variance (rad**2)
float _mag_innov [ 3 ] { } ; ///< earth magnetic field innovations (Gauss)
float _mag_innov_var [ 3 ] { } ; ///< earth magnetic field innovation variance (Gauss**2)
float _drag_innov [ 2 ] { } ; ///< multirotor drag measurement innovation (m/sec**2)
float _drag_innov_var [ 2 ] { } ; ///< multirotor drag measurement innovation variance ((m/sec**2)**2)
float _airspeed_innov { 0.0f } ; ///< airspeed measurement innovation (m/sec)
float _airspeed_innov_var { 0.0f } ; ///< airspeed measurement innovation variance ((m/sec)**2)
float _beta_innov { 0.0f } ; ///< synthetic sideslip measurement innovation (rad)
float _beta_innov_var { 0.0f } ; ///< synthetic sideslip measurement innovation variance (rad**2)
float _hagl_innov { 0.0f } ; ///< innovation of the last height above terrain measurement (m)
float _hagl_innov_var { 0.0f } ; ///< innovation variance for the last height above terrain measurement (m**2)
// optical flow processing
float _flow_innov [ 2 ] { } ; ///< flow measurement innovation (rad/sec)
float _flow_innov_var [ 2 ] { } ; ///< flow innovation variance ((rad/sec)**2)
Vector3f _flow_gyro_bias ; ///< bias errors in optical flow sensor rate gyro outputs (rad/sec)
Vector3f _imu_del_ang_of ; ///< bias corrected delta angle measurements accumulated across the same time frame as the optical flow rates (rad)
float _delta_time_of { 0.0f } ; ///< time in sec that _imu_del_ang_of was accumulated over (sec)
uint64_t _time_bad_motion_us { 0 } ; ///< last system time that on-ground motion exceeded limits (uSec)
uint64_t _time_good_motion_us { 0 } ; ///< last system time that on-ground motion was within limits (uSec)
bool _inhibit_flow_use { false } ; ///< true when use of optical flow and range finder is being inhibited
Vector2f _flowRadXYcomp ; ///< measured delta angle of the image about the X and Y body axes after removal of body rotation (rad), RH rotation is positive
// output predictor states
Vector3f _delta_angle_corr ; ///< delta angle correction vector (rad)
Vector3f _vel_err_integ ; ///< integral of velocity tracking error (m)
Vector3f _pos_err_integ ; ///< integral of position tracking error (m.s)
float _output_tracking_error [ 3 ] { } ; ///< contains the magnitude of the angle, velocity and position track errors (rad, m/s, m)
// variables used for the GPS quality checks
Vector3f _gps_pos_deriv_filt ; ///< GPS NED position derivative (m/sec)
Vector2f _gps_velNE_filt ; ///< filtered GPS North and East velocity (m/sec)
float _gps_velD_diff_filt { 0.0f } ; ///< GPS filtered Down velocity (m/sec)
uint64_t _last_gps_fail_us { 0 } ; ///< last system time in usec that the GPS failed it's checks
uint64_t _last_gps_pass_us { 0 } ; ///< last system time in usec that the GPS passed it's checks
float _gps_error_norm { 1.0f } ; ///< normalised gps error
uint32_t _min_gps_health_time_us { 10000000 } ; ///< GPS is marked as healthy only after this amount of time
bool _gps_checks_passed { false } ; ///> true when all active GPS checks have passed
// Variables used to publish the WGS-84 location of the EKF local NED origin
uint64_t _last_gps_origin_time_us { 0 } ; ///< time the origin was last set (uSec)
float _gps_alt_ref { 0.0f } ; ///< WGS-84 height (m)
// Variables used to initialise the filter states
bool _is_first_imu_sample { true } ;
uint32_t _baro_counter { 0 } ; ///< number of baro samples read during initialisation
uint32_t _mag_counter { 0 } ; ///< number of magnetometer samples read during initialisation
AlphaFilterVector3f _mag_lpf ; ///< filtered magnetometer measurement for instant reset(Gauss)
AlphaFilterVector3f _accel_lpf ; ///< filtered accelerometer measurement for instant reset(Gauss)
float _hgt_sensor_offset { 0.0f } ; ///< set as necessary if desired to maintain the same height after a height reset (m)
float _baro_hgt_offset { 0.0f } ; ///< baro height reading at the local NED origin (m)
// Variables used to control activation of post takeoff functionality
float _last_on_ground_posD { 0.0f } ; ///< last vertical position when the in_air status was false (m)
uint64_t _flt_mag_align_start_time { 0 } ; ///< time that inflight magnetic field alignment started (uSec)
uint64_t _time_last_mov_3d_mag_suitable { 0 } ; ///< last system time that sufficient movement to use 3-axis magnetometer fusion was detected (uSec)
float _saved_mag_bf_variance [ 4 ] { } ; ///< magnetic field state variances that have been saved for use at the next initialisation (Gauss**2)
float _saved_mag_ef_covmat [ 2 ] [ 2 ] { } ; ///< NE magnetic field state covariance sub-matrix saved for use at the next initialisation (Gauss**2)
bool _velpos_reset_request { false } ; ///< true when a large yaw error has been fixed and a velocity and position state reset is required
gps_check_fail_status_u _gps_check_fail_status { } ;
// variables used to inhibit accel bias learning
bool _accel_bias_inhibit { false } ; ///< true when the accel bias learning is being inhibited
Vector3f _accel_vec_filt ; ///< acceleration vector after application of a low pass filter (m/sec**2)
float _accel_magnitude_filt { 0.0f } ; ///< acceleration magnitude after application of a decaying envelope filter (rad/sec)
float _ang_rate_magnitude_filt { 0.0f } ; ///< angular rate magnitude after application of a decaying envelope filter (rad/sec)
Vector3f _prev_dvel_bias_var ; ///< saved delta velocity XYZ bias variances (m/sec)**2
// Terrain height state estimation
float _terrain_vpos { 0.0f } ; ///< estimated vertical position of the terrain underneath the vehicle in local NED frame (m)
float _terrain_var { 1e4 f } ; ///< variance of terrain position estimate (m**2)
uint64_t _time_last_hagl_fuse { 0 } ; ///< last system time that the hagl measurement failed it's checks (uSec)
bool _terrain_initialised { false } ; ///< true when the terrain estimator has been initialized
float _sin_tilt_rng { 0.0f } ; ///< sine of the range finder tilt rotation about the Y body axis
float _cos_tilt_rng { 0.0f } ; ///< cosine of the range finder tilt rotation about the Y body axis
float _R_rng_to_earth_2_2 { 0.0f } ; ///< 2,2 element of the rotation matrix from sensor frame to earth frame
float _dt_last_range_update_filt_us { 0.0f } ; ///< filtered value of the delta time elapsed since the last range measurement came into the filter (uSec)
bool _hagl_valid { false } ; ///< true when the height above ground estimate is valid
// height sensor status
bool _baro_hgt_faulty { false } ; ///< true if valid baro data is unavailable for use
bool _gps_hgt_intermittent { false } ; ///< true if gps height into the buffer is intermittent
bool _rng_hgt_valid { false } ; ///< true if range finder sample retrieved from buffer is valid
uint64_t _time_bad_rng_signal_quality { 0 } ; ///< timestamp at which range finder signal quality was 0 (used for hysteresis)
// imu fault status
uint64_t _time_bad_vert_accel { 0 } ; ///< last time a bad vertical accel was detected (uSec)
uint64_t _time_good_vert_accel { 0 } ; ///< last time a good vertical accel was detected (uSec)
bool _bad_vert_accel_detected { false } ; ///< true when bad vertical accelerometer data has been detected
// variables used to control range aid functionality
bool _is_range_aid_suitable { false } ; ///< true when range finder can be used in flight as the height reference instead of the primary height sensor
bool _range_aid_mode_selected { false } ; ///< true when range finder is being used as the height reference instead of the primary height sensor
// variables used to check range finder validity data
float _rng_stuck_min_val { 0.0f } ; ///< minimum value for new rng measurement when being stuck
float _rng_stuck_max_val { 0.0f } ; ///< maximum value for new rng measurement when being stuck
float _height_rate_lpf { 0.0f } ;
// update the real time complementary filter states. This includes the prediction
// and the correction step
void calculateOutputStates ( ) ;
// initialise filter states of both the delayed ekf and the real time complementary filter
bool initialiseFilter ( void ) ;
// initialise ekf covariance matrix
void initialiseCovariance ( ) ;
// predict ekf state
void predictState ( ) ;
// predict ekf covariance
void predictCovariance ( ) ;
// ekf sequential fusion of magnetometer measurements
void fuseMag ( ) ;
// fuse the first euler angle from either a 321 or 312 rotation sequence as the observation (currently measures yaw using the magnetometer)
void fuseHeading ( ) ;
// fuse the yaw angle obtained from a dual antenna GPS unit
void fuseGpsAntYaw ( ) ;
// reset the quaternions states using the yaw angle obtained from a dual antenna GPS unit
// return true if the reset was successful
bool resetGpsAntYaw ( ) ;
// fuse magnetometer declination measurement
// argument passed in is the declination uncertainty in radians
void fuseDeclination ( float decl_sigma ) ;
// apply sensible limits to the declination and length of the NE mag field states estimates
void limitDeclination ( ) ;
// fuse airspeed measurement
void fuseAirspeed ( ) ;
// fuse synthetic zero sideslip measurement
void fuseSideslip ( ) ;
// fuse body frame drag specific forces for multi-rotor wind estimation
void fuseDrag ( ) ;
// fuse single velocity and position measurement
void fuseVelPosHeight ( const float innov , const float innov_var , const int obs_index ) ;
// reset velocity states of the ekf
bool resetVelocity ( ) ;
// fuse optical flow line of sight rate measurements
void fuseOptFlow ( ) ;
bool fuseHorizontalVelocity ( const Vector3f & innov , const Vector2f & innov_gate ,
const Vector3f & obs_var , Vector3f & innov_var , Vector2f & test_ratio ) ;
bool fuseVerticalVelocity ( const Vector3f & innov , const Vector2f & innov_gate ,
const Vector3f & obs_var , Vector3f & innov_var , Vector2f & test_ratio ) ;
bool fuseHorizontalPosition ( const Vector3f & innov , const Vector2f & innov_gate ,
const Vector3f & obs_var , Vector3f & innov_var , Vector2f & test_ratio ) ;
bool fuseVerticalPosition ( const Vector3f & innov , const Vector2f & innov_gate ,
const Vector3f & obs_var , Vector3f & innov_var , Vector2f & test_ratio ) ;
// calculate optical flow body angular rate compensation
// returns false if bias corrected body rate data is unavailable
bool calcOptFlowBodyRateComp ( ) ;
// initialise the terrain vertical position estimator
// return true if the initialisation is successful
bool initHagl ( ) ;
// run the terrain estimator
void runTerrainEstimator ( ) ;
// update the terrain vertical position estimate using a height above ground measurement from the range finder
void fuseHagl ( ) ;
// update the terrain vertical position estimate using an optical flow measurement
void fuseFlowForTerrain ( ) ;
// reset the heading and magnetic field states using the declination and magnetometer/external vision measurements
// return true if successful
bool resetMagHeading ( const Vector3f & mag_init , bool increase_yaw_var = true , bool update_buffer = true ) ;
// Do a forced re-alignment of the yaw angle to align with the horizontal velocity vector from the GPS.
// It is used to align the yaw angle after launch or takeoff for fixed wing vehicle.
bool realignYawGPS ( ) ;
// Return the magnetic declination in radians to be used by the alignment and fusion processing
float getMagDeclination ( ) ;
// reset position states of the ekf (only horizontal position)
bool resetPosition ( ) ;
// reset height state of the ekf
void resetHeight ( ) ;
// modify output filter to match the the EKF state at the fusion time horizon
void alignOutputFilter ( ) ;
// update the estimated angular misalignment vector between the EV naigration frame and the EKF navigation frame
// and update the rotation matrix which transforms EV navigation frame measurements into NED
void calcExtVisRotMat ( ) ;
// reset the estimated angular misalignment vector between the EV naigration frame and the EKF navigation frame
// and reset the rotation matrix which transforms EV navigation frame measurements into NED
void resetExtVisRotMat ( ) ;
// limit the diagonal of the covariance matrix
// force symmetry when the argument is true
void fixCovarianceErrors ( bool force_symmetry ) ;
// constrain the ekf states
void constrainStates ( ) ;
// generic function which will perform a fusion step given a kalman gain K
// and a scalar innovation value
void fuse ( float * K , float innovation ) ;
float compensateBaroForDynamicPressure ( float baro_alt_uncompensated ) override ;
// calculate the earth rotation vector from a given latitude
Vector3f calcEarthRateNED ( float lat_rad ) const ;
// return true id the GPS quality is good enough to set an origin and start aiding
bool gps_is_good ( const gps_message & gps ) ;
// Control the filter fusion modes
void controlFusionModes ( ) ;
// control fusion of external vision observations
void controlExternalVisionFusion ( ) ;
// control fusion of optical flow observations
void controlOpticalFlowFusion ( ) ;
// control fusion of GPS observations
void controlGpsFusion ( ) ;
// control fusion of magnetometer observations
void controlMagFusion ( ) ;
void updateMagFilter ( ) ;
bool canRunMagFusion ( ) const ;
void checkHaglYawResetReq ( ) ;
float getTerrainVPos ( ) const ;
void runOnGroundYawReset ( ) ;
bool isYawResetAuthorized ( ) const ;
bool canResetMagHeading ( ) const ;
void runInAirYawReset ( ) ;
bool canRealignYawUsingGps ( ) const ;
void runVelPosReset ( ) ;
void selectMagAuto ( ) ;
void check3DMagFusionSuitability ( ) ;
void checkYawAngleObservability ( ) ;
void checkMagBiasObservability ( ) ;
bool isYawAngleObservable ( ) const ;
bool isMagBiasObservable ( ) const ;
bool canUse3DMagFusion ( ) const ;
void checkMagDeclRequired ( ) ;
void checkMagInhibition ( ) ;
bool shouldInhibitMag ( ) const ;
void checkMagFieldStrength ( ) ;
bool isStrongMagneticDisturbance ( ) const ;
bool isMeasuredMatchingGpsMagStrength ( ) const ;
bool isMeasuredMatchingAverageMagStrength ( ) const ;
static bool isMeasuredMatchingExpected ( float measured , float expected , float gate ) ;
void runMagAndMagDeclFusions ( ) ;
void run3DMagAndDeclFusions ( ) ;
// control fusion of range finder observations
void controlRangeFinderFusion ( ) ;
// control fusion of air data observations
void controlAirDataFusion ( ) ;
// control fusion of synthetic sideslip observations
void controlBetaFusion ( ) ;
// control fusion of multi-rotor drag specific force observations
void controlDragFusion ( ) ;
// control fusion of pressure altitude observations
void controlBaroFusion ( ) ;
// control fusion of fake position observations to constrain drift
void controlFakePosFusion ( ) ;
// control fusion of auxiliary velocity observations
void controlAuxVelFusion ( ) ;
// control for height sensor timeouts, sensor changes and state resets
void controlHeightSensorTimeouts ( ) ;
// control for combined height fusion mode (implemented for switching between baro and range height)
void controlHeightFusion ( ) ;
// determine if flight condition is suitable to use range finder instead of the primary height sensor
void checkRangeAidSuitability ( ) ;
bool isRangeAidSuitable ( ) { return _is_range_aid_suitable ; }
// update _rng_hgt_valid, which indicates if the current range sample has passed validity checks
void updateRangeDataValidity ( ) ;
// check for "stuck" range finder measurements when rng was not valid for certain period
void updateRangeDataStuck ( ) ;
// return the square of two floating point numbers - used in auto coded sections
static constexpr float sq ( float var ) { return var * var ; }
// set control flags to use baro height
void setControlBaroHeight ( ) ;
// set control flags to use range height
void setControlRangeHeight ( ) ;
// set control flags to use GPS height
void setControlGPSHeight ( ) ;
// set control flags to use external vision height
void setControlEVHeight ( ) ;
void stopMagFusion ( ) ;
void stopMag3DFusion ( ) ;
void stopMagHdgFusion ( ) ;
void startMagHdgFusion ( ) ;
void startMag3DFusion ( ) ;
// calculate the measurement variance for the optical flow sensor
float calcOptFlowMeasVar ( ) ;
// rotate quaternion covariances into variances for an equivalent rotation vector
Vector3f calcRotVecVariances ( ) ;
// initialise the quaternion covariances using rotation vector variances
void initialiseQuatCovariances ( Vector3f & rot_vec_var ) ;
// perform a limited reset of the magnetic field state covariances
void resetMagRelatedCovariances ( ) ;
// perform a limited reset of the wind state covariances
void resetWindCovariance ( ) ;
// perform a reset of the wind states
void resetWindStates ( ) ;
// check that the range finder data is continuous
void updateRangeDataContinuity ( ) ;
bool isRangeDataContinuous ( ) { return _dt_last_range_update_filt_us < 2e6 f ; }
// Increase the yaw error variance of the quaternions
// Argument is additional yaw variance in rad**2
void increaseQuatYawErrVariance ( float yaw_variance ) ;
// load and save mag field state covariance data for re-use
void loadMagCovData ( ) ;
void saveMagCovData ( ) ;
void clearMagCov ( ) ;
void zeroMagCov ( ) ;
// uncorrelate quaternion states from other states
void uncorrelateQuatStates ( ) ;
// Use Kahan summation algorithm to get the sum of "sum_previous" and "input".
// This function relies on the caller to be responsible for keeping a copy of
// "accumulator" and passing this value at the next iteration.
// Ref: https://en.wikipedia.org/wiki/Kahan_summation_algorithm
float kahanSummation ( float sum_previous , float input , float & accumulator ) const ;
// calculate a synthetic value for the magnetometer Z component, given the 3D magnetomter
// sensor measurement
float calculate_synthetic_mag_z_measurement ( const Vector3f & mag_meas , const Vector3f & mag_earth_predicted ) ;
void stopGpsFusion ( ) ;
void stopGpsPosFusion ( ) ;
void stopGpsVelFusion ( ) ;
void stopGpsYawFusion ( ) ;
void stopEvFusion ( ) ;
void stopEvPosFusion ( ) ;
void stopEvVelFusion ( ) ;
void stopEvYawFusion ( ) ;
void stopAuxVelFusion ( ) ;
void stopFlowFusion ( ) ;
void setVelPosFaultStatus ( const int index , const bool status ) ;
} ;