/****************************************************************************
*
* Copyright ( c ) 2015 Estimation and Control Library ( ECL ) . All rights reserved .
*
* Redistribution and use in source and binary forms , with or without
* modification , are permitted provided that the following conditions
* are met :
*
* 1. Redistributions of source code must retain the above copyright
* notice , this list of conditions and the following disclaimer .
* 2. Redistributions in binary form must reproduce the above copyright
* notice , this list of conditions and the following disclaimer in
* the documentation and / or other materials provided with the
* distribution .
* 3. Neither the name ECL nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission .
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* " AS IS " AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT
* LIMITED TO , THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT ,
* INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES ( INCLUDING ,
* BUT NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS
* OF USE , DATA , OR PROFITS ; OR BUSINESS INTERRUPTION ) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT
* LIABILITY , OR TORT ( INCLUDING NEGLIGENCE OR OTHERWISE ) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE .
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/**
* @ file estimator_base . h
* Definition of base class for attitude estimators
*
* @ author Roman Bast < bapstroman @ gmail . com >
* @ author Siddharth Bharat Purohit < siddharthbharatpurohit @ gmail . com >
*
*/
namespace estimator
{
struct gps_message {
uint64_t time_usec ;
int32_t lat ; // Latitude in 1E-7 degrees
int32_t lon ; // Longitude in 1E-7 degrees
int32_t alt ; // Altitude in 1E-3 meters (millimeters) above MSL
uint8_t fix_type ; // 0-1: no fix, 2: 2D fix, 3: 3D fix, 4: RTCM code differential, 5: Real-Time
float eph ; // GPS horizontal position accuracy in m
float epv ; // GPS vertical position accuracy in m
float sacc ; // GPS speed accuracy in m/s
uint64_t time_usec_vel ; // Timestamp for velocity informations
float vel_m_s ; // GPS ground speed (m/s)
float vel_ned [ 3 ] ; // GPS ground speed NED
bool vel_ned_valid ; // GPS ground speed is valid
uint8_t nsats ; // number of satellites used
float gdop ; // geometric dilution of precision
} ;
typedef matrix : : Vector < float , 2 > Vector2f ;
typedef matrix : : Vector < float , 3 > Vector3f ;
typedef matrix : : Quaternion < float > Quaternion ;
typedef matrix : : Matrix < float , 3 , 3 > Matrix3f ;
struct outputSample {
Quaternion quat_nominal ; // nominal quaternion describing vehicle attitude
Vector3f vel ; // NED velocity estimate in earth frame in m/s
Vector3f pos ; // NED position estimate in earth frame in m/s
uint64_t time_us ; // timestamp in microseconds
} ;
struct imuSample {
Vector3f delta_ang ; // delta angle in body frame (integrated gyro measurements)
Vector3f delta_vel ; // delta velocity in body frame (integrated accelerometer measurements)
float delta_ang_dt ; // delta angle integration period in seconds
float delta_vel_dt ; // delta velocity integration period in seconds
uint64_t time_us ; // timestamp in microseconds
} ;
struct gpsSample {
Vector2f pos ; // NE earth frame gps horizontal position measurement in m
float hgt ; // gps height measurement in m
Vector3f vel ; // NED earth frame gps velocity measurement in m/s
uint64_t time_us ; // timestamp in microseconds
} ;
struct magSample {
Vector3f mag ; // NED magnetometer body frame measurements
uint64_t time_us ; // timestamp in microseconds
} ;
struct baroSample {
float hgt ; // barometer height above sea level measurement in m
uint64_t time_us ; // timestamp in microseconds
} ;
struct rangeSample {
float rng ; // range (distance to ground) measurement in m
uint64_t time_us ; // timestamp in microseconds
} ;
struct airspeedSample {
float airspeed ; // airspeed measurement in m/s
uint64_t time_us ; // timestamp in microseconds
} ;
struct flowSample {
Vector2f flowRadXY ;
Vector2f flowRadXYcomp ;
uint64_t time_us ;
} ;
struct parameters {
float mag_delay_ms = 0.0f ; // magnetometer measurement delay relative to the IMU
float baro_delay_ms = 0.0f ; // barometer height measurement delay relative to the IMU
float gps_delay_ms = 200.0f ; // GPS measurement delay relative to the IMU
float airspeed_delay_ms = 200.0f ; // airspeed measurement delay relative to the IMU
// input noise
float gyro_noise = 1.0e-3 f ; // IMU angular rate noise used for covariance prediction
float accel_noise = 2.5e-1 f ; // IMU acceleration noise use for covariance prediction
// process noise
float gyro_bias_p_noise = 7.0e-5 f ; // process noise for IMU delta angle bias prediction
float accel_bias_p_noise = 1.0e-4 f ; // process noise for IMU delta velocity bias prediction
float gyro_scale_p_noise = 3.0e-3 f ; // process noise for gyro scale factor prediction
float mag_p_noise = 2.5e-2 f ; // process noise for magnetic field prediction
float wind_vel_p_noise = 1.0e-1 f ; // process noise for wind velocity prediction
float gps_vel_noise = 5.0e-1 f ; // observation noise for gps velocity fusion
float gps_pos_noise = 1.0f ; // observation noise for gps position fusion
float pos_noaid_noise = 10.0f ; // observation noise for non-aiding position fusion
float baro_noise = 3.0f ; // observation noise for barometric height fusion
float baro_innov_gate = 3.0f ; // barometric height innovation consistency gate size in standard deviations
float posNE_innov_gate = 3.0f ; // GPS horizontal position innovation consistency gate size in standard deviations
float vel_innov_gate = 3.0f ; // GPS velocity innovation consistency gate size in standard deviations
float mag_heading_noise = 1.7e-1 f ; // measurement noise used for simple heading fusion
float mag_noise = 5.0e-2 f ; // measurement noise used for 3-axis magnetoemeter fusion
float mag_declination_deg = 0.0f ; // magnetic declination in degrees
float heading_innov_gate = 3.0f ; // heading fusion innovation consistency gate size in standard deviations
float mag_innov_gate = 3.0f ; // magnetometer fusion innovation consistency gate size in standard deviations
int mag_declination_source = 3 ; // bitmask used to control the handling of declination data
int mag_fusion_type = 0 ; // integer used to specify the type of magnetometer fusion used
// these parameters control the strictness of GPS quality checks used to determine uf the GPS is
// good enough to set a local origin and commence aiding
int gps_check_mask = 21 ; // bitmask used to control which GPS quality checks are used
float req_hacc = 5.0f ; // maximum acceptable horizontal position error
float req_vacc = 8.0f ; // maximum acceptable vertical position error
float req_sacc = 1.0f ; // maximum acceptable speed error
int req_nsats = 6 ; // minimum acceptable satellite count
float req_gdop = 2.0f ; // maximum acceptable geometric dilution of precision
float req_hdrift = 0.3f ; // maximum acceptable horizontal drift speed
float req_vdrift = 0.5f ; // maximum acceptable vertical drift speed
} ;
// Bit locations for mag_declination_source
# define MASK_USE_GEO_DECL (1<<0) // set to true to use the declination from the geo library when the GPS position becomes available, set to false to always use the EKF2_MAG_DECL value
# define MASK_SAVE_GEO_DECL (1<<1) // set to true to set the EKF2_MAG_DECL parameter to the value returned by the geo library
# define MASK_FUSE_DECL (1<<2) // set to true if the declination is always fused as an observation to contrain drift when 3-axis fusion is performed
// Integer definitions for mag_fusion_type
# define MAG_FUSE_TYPE_AUTO 0 // The selection of either heading or 3D magnetometer fusion will be automatic
# define MAG_FUSE_TYPE_HEADING 1 // Magnetic heading fusion will alays be used. This is less accurate, but less affected by earth field distortions
# define MAG_FUSE_TYPE_3D 2 // Magnetometer 3-axis fusion will always be used. This is more accurate, but more affected by localised earth field distortions
struct stateSample {
Vector3f ang_error ; // attitude axis angle error (error state formulation)
Vector3f vel ; // NED velocity in earth frame in m/s
Vector3f pos ; // NED position in earth frame in m
Vector3f gyro_bias ; // gyro bias estimate in rad/s
Vector3f gyro_scale ; // gyro scale estimate
float accel_z_bias ; // accelerometer z axis bias estimate
Vector3f mag_I ; // NED earth magnetic field in gauss
Vector3f mag_B ; // magnetometer bias estimate in body frame in gauss
Vector2f wind_vel ; // wind velocity in m/s
Quaternion quat_nominal ; // nominal quaternion describing vehicle attitude
} ;
struct fault_status_t {
bool bad_mag_x : 1 ; // true if the fusion of the magnetometer X-axis has encountered a numerical error
bool bad_mag_y : 1 ; // true if the fusion of the magnetometer Y-axis has encountered a numerical error
bool bad_mag_z : 1 ; // true if the fusion of the magnetometer Z-axis has encountered a numerical error
bool bad_mag_hdg : 1 ; // true if the fusion of the magnetic heading has encountered a numerical error
bool bad_mag_decl : 1 ; // true if the fusion of the magnetic declination has encountered a numerical error
bool bad_airspeed : 1 ; // true if fusion of the airspeed has encountered a numerical error
bool bad_sideslip : 1 ; // true if fusion of the synthetic sideslip constraint has encountered a numerical error
bool bad_optflow_X : 1 ; // true if fusion of the optical flow X axis has encountered a numerical error
bool bad_optflow_Y : 1 ; // true if fusion of the optical flow Y axis has encountered a numerical error
} ;
// publish the status of various GPS quality checks
union gps_check_fail_status_u {
struct {
uint16_t fix : 1 ; // 0 - true if the fix type is insufficient (no 3D solution)
uint16_t nsats : 1 ; // 1 - true if number of satellites used is insufficient
uint16_t gdop : 1 ; // 2 - true if geometric dilution of precision is insufficient
uint16_t hacc : 1 ; // 3 - true if reported horizontal accuracy is insufficient
uint16_t vacc : 1 ; // 4 - true if reported vertical accuracy is insufficient
uint16_t sacc : 1 ; // 5 - true if reported speed accuracy is insufficient
uint16_t hdrift : 1 ; // 6 - true if horizontal drift is excessive (can only be used when stationary on ground)
uint16_t vdrift : 1 ; // 7 - true if vertical drift is excessive (can only be used when stationary on ground)
uint16_t hspeed : 1 ; // 8 - true if horizontal speed is excessive (can only be used when stationary on ground)
uint16_t vspeed : 1 ; // 9 - true if vertical speed error is excessive
} flags ;
uint16_t value ;
} ;
// bitmask containing filter control status
union filter_control_status_u {
struct {
uint8_t tilt_align : 1 ; // 0 - true if the filter tilt alignment is complete
uint8_t yaw_align : 1 ; // 1 - true if the filter yaw alignment is complete
uint8_t gps : 1 ; // 2 - true if GPS measurements are being fused
uint8_t opt_flow : 1 ; // 3 - true if optical flow measurements are being fused
uint8_t mag_hdg : 1 ; // 4 - true if a simple magnetic heading is being fused
uint8_t mag_3D : 1 ; // 5 - true if 3-axis magnetometer measurement are being fused
uint8_t mag_dec : 1 ; // 6 - true if synthetic magnetic declination measurements are being fused
uint8_t in_air : 1 ; // 7 - true when the vehicle is airborne
uint8_t armed : 1 ; // 8 - true when the vehicle motors are armed
uint8_t wind : 1 ; // 9 - true when wind velocity is being estimated
} flags ;
uint16_t value ;
} ;
}