You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
296 lines
11 KiB
296 lines
11 KiB
5 years ago
|
/****************************************************************************
|
||
|
*
|
||
|
* Copyright (c) 2019 ECL Development Team. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in
|
||
|
* the documentation and/or other materials provided with the
|
||
|
* distribution.
|
||
|
* 3. Neither the name PX4 nor the names of its contributors may be
|
||
|
* used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
* POSSIBILITY OF SUCH DAMAGE.
|
||
|
*
|
||
|
****************************************************************************/
|
||
|
|
||
|
#include <gtest/gtest.h>
|
||
|
#include <cmath>
|
||
|
#include "EKF/ekf.h"
|
||
|
|
||
|
class EkfInitializationTest : public ::testing::Test {
|
||
|
public:
|
||
|
|
||
|
Ekf _ekf{};
|
||
|
|
||
|
// Basics sensors
|
||
|
const uint32_t _imu_dt_us{4000}; // 250 Hz Period between IMU updates
|
||
|
const uint32_t _baro_dt_us{12500}; // 80 Hz Period between barometer updates
|
||
|
const uint32_t _mag_dt_us{12500}; // 80 Hz Period between magnetometer updates
|
||
|
const uint32_t _gps_dt_us{200000}; // 5 Hz Period between GPS updates
|
||
|
|
||
|
// Flags that control if a sensor is fused
|
||
|
bool _fuse_imu{true};
|
||
|
bool _fuse_baro{true};
|
||
|
bool _fuse_mag{true};
|
||
|
bool _fuse_gps{false}; // GPS measurements are expected to not come in from beginning
|
||
|
|
||
|
// GPS message
|
||
|
gps_message _gps_message{};
|
||
|
|
||
|
uint32_t _update_dt_us{}; // greatest common divider of all basic sensor periods
|
||
|
const uint32_t _init_duration_us{2000000}; // 2s Duration of
|
||
|
|
||
|
// counter of how many sensor measurement are put into Ekf
|
||
|
uint32_t _counter_imu{0};
|
||
|
uint32_t _counter_baro{0};
|
||
|
uint32_t _counter_mag{0};
|
||
|
|
||
|
uint32_t _t_us{0};
|
||
|
|
||
|
// Setup the Ekf with synthetic measurements
|
||
|
void SetUp() override
|
||
|
{
|
||
|
|
||
|
_ekf.init(0);
|
||
|
|
||
|
// setup gps message to reasonable default values
|
||
|
_gps_message.time_usec = 0;
|
||
|
_gps_message.lat = 473566094;
|
||
|
_gps_message.lon = 85190237;
|
||
|
_gps_message.alt = 422056;
|
||
|
_gps_message.yaw = 0.0f;
|
||
|
_gps_message.yaw_offset = 0.0f;
|
||
|
_gps_message.fix_type = 3;
|
||
|
_gps_message.eph = 0.5f;
|
||
|
_gps_message.epv = 0.8f;
|
||
|
_gps_message.sacc = 0.2f;
|
||
|
_gps_message.vel_m_s = 0.0;
|
||
|
_gps_message.vel_ned[0] = 0.0f;
|
||
|
_gps_message.vel_ned[1] = 0.0f;
|
||
|
_gps_message.vel_ned[2] = 0.0f;
|
||
|
_gps_message.vel_ned_valid = 1;
|
||
|
_gps_message.nsats = 16;
|
||
|
_gps_message.gdop = 0.0f;
|
||
|
|
||
|
update_with_const_sensors(_init_duration_us);
|
||
|
|
||
|
// output how many sensor measurement were put into the EKF
|
||
|
// std::cout << "Initialized EKF with:" << std::endl;
|
||
|
// std::cout << "update_dt_us: " << _update_dt_us << std::endl;
|
||
|
// std::cout << "counter_imu: " << _counter_imu << std::endl
|
||
|
// << "counter_baro: " << _counter_baro << std::endl
|
||
|
// << "counter_mag: " << _counter_mag << std::endl;
|
||
|
}
|
||
|
|
||
|
void update_with_const_sensors(uint32_t duration_us,
|
||
|
Vector3f ang_vel = Vector3f{0.0f,0.0f,0.0f},
|
||
|
Vector3f accel = Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G},
|
||
|
Vector3f mag_data = Vector3f{0.2f, 0.0f, 0.4f},
|
||
|
float baro_data = 122.2f)
|
||
|
{
|
||
|
// store start time
|
||
|
uint32_t start_time_us = _t_us;
|
||
|
|
||
|
// compute update time step such that we can update the basic sensor at different rates
|
||
|
_update_dt_us = std::__gcd(_imu_dt_us,std::__gcd(_mag_dt_us,std::__gcd(_baro_dt_us,_gps_dt_us)));
|
||
|
|
||
|
// update EKF with synthetic sensor measurements
|
||
|
for( ; _t_us < start_time_us+duration_us; _t_us += _update_dt_us)
|
||
|
{
|
||
|
// Check which sensors update we should do
|
||
|
if(_fuse_imu && !(_t_us %_imu_dt_us))
|
||
|
{
|
||
|
// push imu data into estimator
|
||
|
imuSample imu_sample_new;
|
||
|
imu_sample_new.time_us = _t_us;
|
||
|
imu_sample_new.delta_ang_dt = _imu_dt_us * 1.e-6f;
|
||
|
imu_sample_new.delta_ang = ang_vel * imu_sample_new.delta_ang_dt;
|
||
|
imu_sample_new.delta_vel_dt = _imu_dt_us * 1.e-6f;
|
||
|
imu_sample_new.delta_vel = accel * imu_sample_new.delta_vel_dt;
|
||
|
|
||
|
_ekf.setIMUData(imu_sample_new);
|
||
|
_counter_imu++;
|
||
|
}
|
||
|
if(_fuse_baro && !(_t_us % _baro_dt_us))
|
||
|
{
|
||
|
_ekf.setBaroData(_t_us,baro_data);
|
||
|
_counter_baro++;
|
||
|
}
|
||
|
if(_fuse_mag && !(_t_us % _mag_dt_us))
|
||
|
{
|
||
|
float mag[3];
|
||
|
mag_data.copyTo(mag);
|
||
|
_ekf.setMagData(_t_us,mag);
|
||
|
_counter_mag++;
|
||
|
}
|
||
|
if(_fuse_gps && !(_t_us % _gps_dt_us))
|
||
|
{
|
||
|
_gps_message.time_usec = _t_us;
|
||
|
_ekf.setGpsData(_t_us,_gps_message);
|
||
|
_counter_mag++;
|
||
|
}
|
||
|
|
||
|
_ekf.update();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Use this method to clean up any memory, network etc. after each test
|
||
|
void TearDown() override
|
||
|
{
|
||
|
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
TEST_F(EkfInitializationTest, tiltAlign)
|
||
|
{
|
||
|
// GIVEN: reasonable static sensor data for some duration
|
||
|
// THEN: EKF should tilt align
|
||
|
EXPECT_EQ(true,_ekf.attitude_valid());
|
||
|
}
|
||
|
|
||
|
TEST_F(EkfInitializationTest, initialControlMode)
|
||
|
{
|
||
|
// GIVEN: reasonable static sensor data for some duration
|
||
|
// THEN: EKF control status should be reasonable
|
||
|
filter_control_status_u control_status;
|
||
|
_ekf.get_control_mode(&control_status.value);
|
||
|
|
||
|
EXPECT_EQ(1, (int) control_status.flags.tilt_align);
|
||
|
EXPECT_EQ(1, (int) control_status.flags.yaw_align);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.gps);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.opt_flow);
|
||
|
EXPECT_EQ(1, (int) control_status.flags.mag_hdg);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.mag_3D);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.mag_dec);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.in_air);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.wind);
|
||
|
EXPECT_EQ(1, (int) control_status.flags.baro_hgt);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.rng_hgt);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.gps_hgt);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.ev_pos);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.ev_yaw);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.ev_hgt);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.fuse_beta);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.update_mag_states_only);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.fixed_wing);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.mag_fault);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.gnd_effect);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.rng_stuck);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.gps_yaw);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.mag_align_complete);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.ev_vel);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.synthetic_mag_z);
|
||
|
}
|
||
|
|
||
|
TEST_F(EkfInitializationTest, convergesToZero)
|
||
|
{
|
||
|
// GIVEN: initialized EKF with default IMU, baro and mag input for 2s
|
||
|
// WHEN: Added more defautl sensor measurements
|
||
|
update_with_const_sensors(4000000); // for further 4s
|
||
|
|
||
|
float converged_pos[3];
|
||
|
float converged_vel[3];
|
||
|
float converged_accel_bias[3];
|
||
|
float converged_gyro_bias[3];
|
||
|
_ekf.get_position(converged_pos);
|
||
|
_ekf.get_velocity(converged_vel);
|
||
|
_ekf.get_accel_bias(converged_accel_bias);
|
||
|
_ekf.get_gyro_bias(converged_gyro_bias);
|
||
|
|
||
|
// THEN: EKF should stay or converge to zero
|
||
|
for(int i=0; i<3; ++i)
|
||
|
{
|
||
|
EXPECT_NEAR(0.0f,converged_pos[i],0.001f);
|
||
|
EXPECT_NEAR(0.0f,converged_vel[i],0.001f);
|
||
|
EXPECT_NEAR(0.0f,converged_accel_bias[i],0.001f);
|
||
|
EXPECT_NEAR(0.0f,converged_gyro_bias[i],0.001f);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST_F(EkfInitializationTest, gpsFusion)
|
||
|
{
|
||
|
// GIVEN: initialized EKF with default IMU, baro and mag input for 2s
|
||
|
// WHEN: setting GPS measurements for 11s, minimum GPS health time is set to 10 sec
|
||
|
|
||
|
_fuse_gps = true;
|
||
|
update_with_const_sensors(11000000,Vector3f{0.0f,0.0f,0.0f},Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G}); // for further 3s
|
||
|
|
||
|
// THEN: EKF should fuse GPS, but no other position sensor
|
||
|
filter_control_status_u control_status;
|
||
|
_ekf.get_control_mode(&control_status.value);
|
||
|
EXPECT_EQ(1, (int) control_status.flags.tilt_align);
|
||
|
EXPECT_EQ(1, (int) control_status.flags.yaw_align);
|
||
|
EXPECT_EQ(1, (int) control_status.flags.gps);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.opt_flow);
|
||
|
EXPECT_EQ(1, (int) control_status.flags.mag_hdg);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.mag_3D);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.mag_dec);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.in_air);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.wind);
|
||
|
EXPECT_EQ(1, (int) control_status.flags.baro_hgt);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.rng_hgt);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.gps_hgt);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.ev_pos);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.ev_yaw);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.ev_hgt);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.fuse_beta);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.update_mag_states_only);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.fixed_wing);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.mag_fault);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.gnd_effect);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.rng_stuck);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.gps_yaw);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.mag_align_complete);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.ev_vel);
|
||
|
EXPECT_EQ(0, (int) control_status.flags.synthetic_mag_z);
|
||
|
}
|
||
|
|
||
|
TEST_F(EkfInitializationTest, accleBiasEstimation)
|
||
|
{
|
||
|
// GIVEN: initialized EKF with default IMU, baro and mag input for 2s
|
||
|
// WHEN: Added more sensor measurements with accel bias and gps measurements
|
||
|
Vector3f accel_bias = {0.0f,0.0f,0.1f};
|
||
|
|
||
|
_fuse_gps = true;
|
||
|
update_with_const_sensors(10000000,Vector3f{0.0f,0.0f,0.0f},Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G}+accel_bias); // for further 10s
|
||
|
|
||
|
float converged_pos[3];
|
||
|
float converged_vel[3];
|
||
|
float converged_accel_bias[3];
|
||
|
float converged_gyro_bias[3];
|
||
|
_ekf.get_position(converged_pos);
|
||
|
_ekf.get_velocity(converged_vel);
|
||
|
_ekf.get_accel_bias(converged_accel_bias);
|
||
|
_ekf.get_gyro_bias(converged_gyro_bias);
|
||
|
|
||
|
// THEN: EKF should estimate bias correctelly
|
||
|
for(int i=0; i<3; ++i)
|
||
|
{
|
||
|
EXPECT_NEAR(0.0f,converged_pos[i],0.001f) << "i: " << i;
|
||
|
EXPECT_NEAR(0.0f,converged_vel[i],0.001f) << "i: " << i;
|
||
|
EXPECT_NEAR(accel_bias(i),converged_accel_bias[i],0.001f) << "i: " << i;
|
||
|
EXPECT_NEAR(0.0f,converged_gyro_bias[i],0.001f) << "i: " << i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TODO: Add sampling tests
|