You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

296 lines
11 KiB

/****************************************************************************
*
* Copyright (c) 2019 ECL Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <gtest/gtest.h>
#include <cmath>
#include "EKF/ekf.h"
class EkfInitializationTest : public ::testing::Test {
public:
Ekf _ekf{};
// Basics sensors
const uint32_t _imu_dt_us{4000}; // 250 Hz Period between IMU updates
const uint32_t _baro_dt_us{12500}; // 80 Hz Period between barometer updates
const uint32_t _mag_dt_us{12500}; // 80 Hz Period between magnetometer updates
const uint32_t _gps_dt_us{200000}; // 5 Hz Period between GPS updates
// Flags that control if a sensor is fused
bool _fuse_imu{true};
bool _fuse_baro{true};
bool _fuse_mag{true};
bool _fuse_gps{false}; // GPS measurements are expected to not come in from beginning
// GPS message
gps_message _gps_message{};
uint32_t _update_dt_us{}; // greatest common divider of all basic sensor periods
const uint32_t _init_duration_us{2000000}; // 2s Duration of
// counter of how many sensor measurement are put into Ekf
uint32_t _counter_imu{0};
uint32_t _counter_baro{0};
uint32_t _counter_mag{0};
uint32_t _t_us{0};
// Setup the Ekf with synthetic measurements
void SetUp() override
{
_ekf.init(0);
// setup gps message to reasonable default values
_gps_message.time_usec = 0;
_gps_message.lat = 473566094;
_gps_message.lon = 85190237;
_gps_message.alt = 422056;
_gps_message.yaw = 0.0f;
_gps_message.yaw_offset = 0.0f;
_gps_message.fix_type = 3;
_gps_message.eph = 0.5f;
_gps_message.epv = 0.8f;
_gps_message.sacc = 0.2f;
_gps_message.vel_m_s = 0.0;
_gps_message.vel_ned[0] = 0.0f;
_gps_message.vel_ned[1] = 0.0f;
_gps_message.vel_ned[2] = 0.0f;
_gps_message.vel_ned_valid = 1;
_gps_message.nsats = 16;
_gps_message.gdop = 0.0f;
update_with_const_sensors(_init_duration_us);
// output how many sensor measurement were put into the EKF
// std::cout << "Initialized EKF with:" << std::endl;
// std::cout << "update_dt_us: " << _update_dt_us << std::endl;
// std::cout << "counter_imu: " << _counter_imu << std::endl
// << "counter_baro: " << _counter_baro << std::endl
// << "counter_mag: " << _counter_mag << std::endl;
}
void update_with_const_sensors(uint32_t duration_us,
Vector3f ang_vel = Vector3f{0.0f,0.0f,0.0f},
Vector3f accel = Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G},
Vector3f mag_data = Vector3f{0.2f, 0.0f, 0.4f},
float baro_data = 122.2f)
{
// store start time
uint32_t start_time_us = _t_us;
// compute update time step such that we can update the basic sensor at different rates
_update_dt_us = std::__gcd(_imu_dt_us,std::__gcd(_mag_dt_us,std::__gcd(_baro_dt_us,_gps_dt_us)));
// update EKF with synthetic sensor measurements
for( ; _t_us < start_time_us+duration_us; _t_us += _update_dt_us)
{
// Check which sensors update we should do
if(_fuse_imu && !(_t_us %_imu_dt_us))
{
// push imu data into estimator
imuSample imu_sample_new;
imu_sample_new.time_us = _t_us;
imu_sample_new.delta_ang_dt = _imu_dt_us * 1.e-6f;
imu_sample_new.delta_ang = ang_vel * imu_sample_new.delta_ang_dt;
imu_sample_new.delta_vel_dt = _imu_dt_us * 1.e-6f;
imu_sample_new.delta_vel = accel * imu_sample_new.delta_vel_dt;
_ekf.setIMUData(imu_sample_new);
_counter_imu++;
}
if(_fuse_baro && !(_t_us % _baro_dt_us))
{
_ekf.setBaroData(_t_us,baro_data);
_counter_baro++;
}
if(_fuse_mag && !(_t_us % _mag_dt_us))
{
float mag[3];
mag_data.copyTo(mag);
_ekf.setMagData(_t_us,mag);
_counter_mag++;
}
if(_fuse_gps && !(_t_us % _gps_dt_us))
{
_gps_message.time_usec = _t_us;
_ekf.setGpsData(_t_us,_gps_message);
_counter_mag++;
}
_ekf.update();
}
}
// Use this method to clean up any memory, network etc. after each test
void TearDown() override
{
}
};
TEST_F(EkfInitializationTest, tiltAlign)
{
// GIVEN: reasonable static sensor data for some duration
// THEN: EKF should tilt align
EXPECT_EQ(true,_ekf.attitude_valid());
}
TEST_F(EkfInitializationTest, initialControlMode)
{
// GIVEN: reasonable static sensor data for some duration
// THEN: EKF control status should be reasonable
filter_control_status_u control_status;
_ekf.get_control_mode(&control_status.value);
EXPECT_EQ(1, (int) control_status.flags.tilt_align);
EXPECT_EQ(1, (int) control_status.flags.yaw_align);
EXPECT_EQ(0, (int) control_status.flags.gps);
EXPECT_EQ(0, (int) control_status.flags.opt_flow);
EXPECT_EQ(1, (int) control_status.flags.mag_hdg);
EXPECT_EQ(0, (int) control_status.flags.mag_3D);
EXPECT_EQ(0, (int) control_status.flags.mag_dec);
EXPECT_EQ(0, (int) control_status.flags.in_air);
EXPECT_EQ(0, (int) control_status.flags.wind);
EXPECT_EQ(1, (int) control_status.flags.baro_hgt);
EXPECT_EQ(0, (int) control_status.flags.rng_hgt);
EXPECT_EQ(0, (int) control_status.flags.gps_hgt);
EXPECT_EQ(0, (int) control_status.flags.ev_pos);
EXPECT_EQ(0, (int) control_status.flags.ev_yaw);
EXPECT_EQ(0, (int) control_status.flags.ev_hgt);
EXPECT_EQ(0, (int) control_status.flags.fuse_beta);
EXPECT_EQ(0, (int) control_status.flags.update_mag_states_only);
EXPECT_EQ(0, (int) control_status.flags.fixed_wing);
EXPECT_EQ(0, (int) control_status.flags.mag_fault);
EXPECT_EQ(0, (int) control_status.flags.gnd_effect);
EXPECT_EQ(0, (int) control_status.flags.rng_stuck);
EXPECT_EQ(0, (int) control_status.flags.gps_yaw);
EXPECT_EQ(0, (int) control_status.flags.mag_align_complete);
EXPECT_EQ(0, (int) control_status.flags.ev_vel);
EXPECT_EQ(0, (int) control_status.flags.synthetic_mag_z);
}
TEST_F(EkfInitializationTest, convergesToZero)
{
// GIVEN: initialized EKF with default IMU, baro and mag input for 2s
// WHEN: Added more defautl sensor measurements
update_with_const_sensors(4000000); // for further 4s
float converged_pos[3];
float converged_vel[3];
float converged_accel_bias[3];
float converged_gyro_bias[3];
_ekf.get_position(converged_pos);
_ekf.get_velocity(converged_vel);
_ekf.get_accel_bias(converged_accel_bias);
_ekf.get_gyro_bias(converged_gyro_bias);
// THEN: EKF should stay or converge to zero
for(int i=0; i<3; ++i)
{
EXPECT_NEAR(0.0f,converged_pos[i],0.001f);
EXPECT_NEAR(0.0f,converged_vel[i],0.001f);
EXPECT_NEAR(0.0f,converged_accel_bias[i],0.001f);
EXPECT_NEAR(0.0f,converged_gyro_bias[i],0.001f);
}
}
TEST_F(EkfInitializationTest, gpsFusion)
{
// GIVEN: initialized EKF with default IMU, baro and mag input for 2s
// WHEN: setting GPS measurements for 11s, minimum GPS health time is set to 10 sec
_fuse_gps = true;
update_with_const_sensors(11000000,Vector3f{0.0f,0.0f,0.0f},Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G}); // for further 3s
// THEN: EKF should fuse GPS, but no other position sensor
filter_control_status_u control_status;
_ekf.get_control_mode(&control_status.value);
EXPECT_EQ(1, (int) control_status.flags.tilt_align);
EXPECT_EQ(1, (int) control_status.flags.yaw_align);
EXPECT_EQ(1, (int) control_status.flags.gps);
EXPECT_EQ(0, (int) control_status.flags.opt_flow);
EXPECT_EQ(1, (int) control_status.flags.mag_hdg);
EXPECT_EQ(0, (int) control_status.flags.mag_3D);
EXPECT_EQ(0, (int) control_status.flags.mag_dec);
EXPECT_EQ(0, (int) control_status.flags.in_air);
EXPECT_EQ(0, (int) control_status.flags.wind);
EXPECT_EQ(1, (int) control_status.flags.baro_hgt);
EXPECT_EQ(0, (int) control_status.flags.rng_hgt);
EXPECT_EQ(0, (int) control_status.flags.gps_hgt);
EXPECT_EQ(0, (int) control_status.flags.ev_pos);
EXPECT_EQ(0, (int) control_status.flags.ev_yaw);
EXPECT_EQ(0, (int) control_status.flags.ev_hgt);
EXPECT_EQ(0, (int) control_status.flags.fuse_beta);
EXPECT_EQ(0, (int) control_status.flags.update_mag_states_only);
EXPECT_EQ(0, (int) control_status.flags.fixed_wing);
EXPECT_EQ(0, (int) control_status.flags.mag_fault);
EXPECT_EQ(0, (int) control_status.flags.gnd_effect);
EXPECT_EQ(0, (int) control_status.flags.rng_stuck);
EXPECT_EQ(0, (int) control_status.flags.gps_yaw);
EXPECT_EQ(0, (int) control_status.flags.mag_align_complete);
EXPECT_EQ(0, (int) control_status.flags.ev_vel);
EXPECT_EQ(0, (int) control_status.flags.synthetic_mag_z);
}
TEST_F(EkfInitializationTest, accleBiasEstimation)
{
// GIVEN: initialized EKF with default IMU, baro and mag input for 2s
// WHEN: Added more sensor measurements with accel bias and gps measurements
Vector3f accel_bias = {0.0f,0.0f,0.1f};
_fuse_gps = true;
update_with_const_sensors(10000000,Vector3f{0.0f,0.0f,0.0f},Vector3f{0.0f,0.0f,-CONSTANTS_ONE_G}+accel_bias); // for further 10s
float converged_pos[3];
float converged_vel[3];
float converged_accel_bias[3];
float converged_gyro_bias[3];
_ekf.get_position(converged_pos);
_ekf.get_velocity(converged_vel);
_ekf.get_accel_bias(converged_accel_bias);
_ekf.get_gyro_bias(converged_gyro_bias);
// THEN: EKF should estimate bias correctelly
for(int i=0; i<3; ++i)
{
EXPECT_NEAR(0.0f,converged_pos[i],0.001f) << "i: " << i;
EXPECT_NEAR(0.0f,converged_vel[i],0.001f) << "i: " << i;
EXPECT_NEAR(accel_bias(i),converged_accel_bias[i],0.001f) << "i: " << i;
EXPECT_NEAR(0.0f,converged_gyro_bias[i],0.001f) << "i: " << i;
}
}
// TODO: Add sampling tests